Spatial Configuration and Extent Explains the Urban Heat Mitigation Potential due to Green Spaces: Analysis over Addis Ababa, Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing Data and Processing
2.3. Land Cover Mapping
2.4. Land Surface Temperature Retrieval
2.4.1. Retrieval of Spectral Radiance
- (a)
- —TOA Spectral Radiance ;
- (b)
- —the spectral radiance (QCALMAX ());
- (c)
- —the spectral radiance (QCALMIN );
- (d)
- = 1.238; = 15.303;
- (e)
- QCAL—the quantized rectified pixel value in Digital Numbers (DN); and
- (f)
- QCALMAX and QCALMIN the—maximum and minimum quantized adjusted pixel values matching to in DN = 255 and in DN = 1, respectively.
2.4.2. Estimation of the Land Surface Emissivity
2.5. The Spatial Pattern of Urban Green Space Analysis
2.6. Statistical Analysis
2.6.1. Correlation Analysis
2.6.2. Regression Analysis
2.7. Summary of Experimental Steps
3. Results
3.1. LULC Changes in Addis Ababa Metropolitan Regions
3.2. Space and Time-Based Pattern of UGS in the Addis Ababa Metropolitan Area
3.3. Effects of Spatial Patterns of UGS on LST
3.4. Influences of UGS Spatial Size Pattern on LST
3.5. The Relative Significance of Composition and Configuration of UGS on LST
4. Discussion
4.1. Scale-Dependence of UGS Spatial Patterns and LST Relationships
4.2. The Spatial Composition and Configuration of UGS Effects on LST
4.3. Methodological Implications for Urban Greenspace Spatial Pattern Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Scale | Variables | 1987 | 1999 | 2019 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MNN | ED | PD | PGS | MNN | ED | PD | PGS | MNN | ED | PD | PGS | ||
120 m | MNN | 1 | 1 | 1 | |||||||||
ED | −0.488 ** | 1 | −0.452 ** | 1 | −0.372 ** | 1 | |||||||
PD | 0.503 ** | −0.738 ** | 1 | 0.317 ** | −0.686 ** | 1 | 0.381 ** | −0.734 ** | 1 | ||||
PGS | −0.458 ** | 0.788 ** | −0.683 ** | 1 | −0.413 ** | 0.703 ** | −0.647 ** | 1 | −0.261 ** | 0.689 ** | −0.647 ** | 1 | |
240 m | MNN | 1 | 1 | 1 | |||||||||
ED | −0.385 ** | 1 | −0.421 ** | 1 | −0.265 ** | 1 | |||||||
PD | 0.402 ** | −0.824 ** | 1 | 0.401 ** | −0.743 ** | 1 | 0.335 ** | −0.727 ** | 1 | ||||
PGS | −0.394 ** | 0.830 ** | −0.780 ** | 1 | −0.443 ** | 0.773 ** | −0.724 ** | 1 | −0.311 ** | 0.739 ** | −0.716 ** | 1 | |
360 m | MNN | 1 | 1 | 1 | |||||||||
ED | −0.177 ** | 1 | −0.103 | 1 | 0.001 | 1 | |||||||
PD | 0.226 ** | −0.837 ** | 1 | 0.158 ** | −0.779 ** | 1 | 0.135 ** | −0.762 ** | 1 | ||||
PGS | −0.293 ** | 0.866 ** | −0.808 ** | 1 | −0.270 ** | 0.818 ** | −0.765 ** | 1 | −0.204 ** | 0.795 ** | −0.737 ** | 1 | |
480 m | MNN | 1 | 1 | 1 | |||||||||
ED | 0.156 * | 1 | −0.048 | 1 | −0.074 | 1 | |||||||
PD | −0.005 | −0.824 ** | 1 | 0.296 ** | −0.775 ** | 1 | 0.335 ** | −0.731 ** | 1 | ||||
PGS | −0.098 * | 0.868 ** | −0.813 ** | 1 | −0.228 ** | 0.848 | −0.774 ** | 1 | −0.277 ** | 0.811 ** | −0.747 ** | 1 | |
600 m | MNN | 1 | 1 | ||||||||||
ED | 0.022 * | 1 | 0.052 * | 0.140 * | 1 | ||||||||
PD | 0.237 ** | −0.820 ** | 1 | 0.198 ** | −0.835 ** | 0.218 ** | −0.747 ** | 1 | |||||
PGS | −0.169 * | 0.877 ** | −0.829 ** | 1 | −0.147 | .0874 ** | −0.827 ** | 1 | −0.115 | 0.848 ** | −0.768 ** | 1 | |
720 m | MNN | 1 | 1 | 1 | |||||||||
ED | 0.169 * | 1 | 0.173 ** | 1 | 0.125 | 1 | |||||||
PD | 0.146 * | −0.795 ** | 1 | 0.207 ** | −0.776 ** | 1 | 0.318 ** | −0.754 ** | 1 | ||||
PGS | −0.047 | 0.889 ** | −0.822 ** | 1 | −0.090 | 0.853 ** | −0.819 ** | 1 | −0.141 * | 0.859 ** | −0.832 ** | 1 | |
840 m | MNN | 1 | 1 | 1 | |||||||||
ED | 0.074 | 1 | 0.174 * | 1 | 0.316 ** | 1 | |||||||
PD | 0.279 ** | −0.828 ** | 1 | 0.217 ** | −0.808 ** | 1 | −0.332 ** | −0.907 ** | 1 | ||||
PGS | −0.104 | 0.893 ** | −0.858 ** | 1 | −0.029 | 0.900 ** | −0.852 ** | 1 | 0.071 | 0.922 ** | −0.841 ** | 1 | |
960 m | MNN | 1 | 1 | 1 | |||||||||
ED | 0.146 * | 1 | 0.215 ** | 1 | 0.226 ** | 1 | |||||||
PD | 0.252 ** | −0.820 ** | 1 | 0.264 ** | −0.794 ** | 1 | 0.166 * | −0.851 ** | 1 | ||||
PGS | −0.050 | 0.909 ** | −0.872 ** | 1 | −0.039 | 0.874 ** | −0.859 ** | 1 | 0.041 | 0.899 ** | −0.859 ** | 1 | |
1080 m | MNN | 1 | 1 | 1 | |||||||||
ED | 0.271 ** | 1 | 0.174 * | 1 | 0.317 ** | 1 | |||||||
PD | 0.203 * | −0.801 ** | 1 | 0.122 * | −0.863 ** | 1 | 0.161 * | −0.790 ** | 1 | ||||
PGS | 0.019 | 0.888 ** | −0.877 ** | 1 | 0.021 | 0.905 ** | −0.898 ** | 1 | 0.068 | 0.909 ** | −0.881 ** | 1 |
References
- UN (United Nation Department of Economic and Social Affairs Population Division). The World’s Cities in 2018-Data Booklet (ST/ESA/SER.A/417) 2018. Available online: https://www.un.org/en/development/desa/population/publications/pdf/urbanization/the_worlds_cities_in_2018_data_booklet.pdf (accessed on 13 January 2019).
- Shaker, R.R.; Altman, Y.; Deng, C.; Vaz, E.; Forsythe, K.W. Investigating urban heat island through spatial analysis of New York City streetscapes. J. Clean. Prod. 2019, 233, 972–992. [Google Scholar] [CrossRef]
- Terfa, B.K.; Chen, N.; Liu, D.; Zhang, X.; Niyogi, D. Urban expansion in Ethiopia from 1987 to 2017:Characteristics, spatial patterns, and driving forces. Sustainability 2019, 11, 2973. [Google Scholar] [CrossRef] [Green Version]
- Fonseka, H.P.U.; Zhang, H.; Sun, Y.; Su, H.; Lin, H.; Lin, Y. Urbanization and its impacts on land surface temperature in Colombo Metropolitan Area, Sri Lanka, from 1988 to 2016. Remote Sens. 2019, 11, 957. [Google Scholar] [CrossRef] [Green Version]
- Hung, T.; Uchihama, D.; Ochi, S.; Yasuoka, Y. Assessment with satellite data of the urban heat island effects in Asian mega cities. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 34–48. [Google Scholar] [CrossRef]
- Calice, C.; Clemente, C.; Salvati, A.; Palme, M. urban heat island effect on the energy consumption of institutional buildings in Rome claudia. Mater. Sci. Eng. 2017, 245. [Google Scholar] [CrossRef]
- Santamouris, M. On the energy impact of urban heat island and global warming on buildings. Energy Build 2014, 82, 100–113. [Google Scholar] [CrossRef]
- Shahmohamadi, P.; Maulud, K.N.A.; Tawil, N.M.; Abdullah, N.A.G. The impact of anthropogenic heat on formation of urban heat island and energy consumption balance. Urban Stud. Res. 2011, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Faroughi, M.; Karimimoshaver, M.; Aram, F.; Solgi, E.; Mosavi, A.; Nabipour, N.; Chau, K. Mechanics computational modeling of land surface temperature using remote sensing data to investigate the spatial arrangement of buildings and energy consumption relationship. Eng. Appl. Comput. Fluid Mech. 2020, 14, 254–270. [Google Scholar] [CrossRef]
- Mcglynn, T.P.; Meineke, E.K.; Bahlai, C.A.; Li, E.; Hartop, E.A.; Adams, B.J.; Brown, B.V.; Mcglynn, T.P. Temperature accounts for the biodiversity of a hyperdiverse group of insects in Urban Los Angeles. Proc. R. Soc. B 2019, 286. [Google Scholar] [CrossRef] [Green Version]
- Moser-Reischl, A.; Uhl, E.; Rötzer, T.; Biber, P.; van Con, T.; Tan, N.T.; Pretzsch, H. Effects of the urban heat island and climate change on the growth of khaya senegalensis in Hanoi, Vietnam. For. Ecosyst. 2018, 5, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Debbage, N.; Shepherd, J.M. The urban heat island effect and city contiguity. Comput. Environ. Urban Syst. 2015, 54, 181–194. [Google Scholar] [CrossRef]
- Heaviside, C.; Vardoulakis, S.; Cai, X. Attribution of mortality to the urban heat island during heatwaves in the West Midlands, UK. Environ. Health 2016, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, M.; González, F.; Baylis, P.; Heft-Neal, S.; Baysan, C.; Basu, S.; Hsiang, S. Higher temperatures increase suicide rates in the United States and Mexico. Nat. Clim. Chang. 2018. [Google Scholar] [CrossRef]
- Matsaba, E.; Fakharizadehshirazi, E.; Ochieng, A.; Bosco, J.; Mwibanda, J.; Sodoudi, S. Urban climate land surface temperatures for management of urban heat in Nairobi City, Kenya. Urban Clim. 2020, 31, 100540. [Google Scholar] [CrossRef]
- Zhou, W.; Cao, F. Effects of changing spatial extent on the relationship between urban forest patterns and land surface temperature. Ecol. Indic. 2020, 109, 105778. [Google Scholar] [CrossRef]
- Sun, Y.; Gao, C.; Li, J.; Wang, R.; Liu, J. Evaluating urban heat island intensity and its associated determinants of towns and cities continuum in the yangtze river delta urban agglomerations. Sustain. Cities Soc. 2019, 50, 101659. [Google Scholar] [CrossRef]
- Wu, X.; Wang, G.; Yao, R.; Wang, L.; Yu, D.; Gui, X. Investigating surface urban heat islands in South America Based on MODIS Data from 2003–2016. Remote Sens. 2019, 11, 1212. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhou, W. Optimizing urban greenspace spatial pattern to mitigate urban heat island effects: Extending understanding from local to the city scale. Urban For. Urban Green. 2019, 41, 255–263. [Google Scholar] [CrossRef]
- Liang, Z.; Wu, S.; Wang, Y.; Wei, F.; Huang, J.; Shen, J.; Li, S. The relationship between urban form and heat island intensity along the urban development gradients. Sci. Total Environ. 2019, 135011. [Google Scholar] [CrossRef]
- Miles, V.; Esau, I. Seasonal and spatial characteristics of urban heat islands (UHIs) in Northern West Siberian cities. Remote Sens. 2017, 9, 989. [Google Scholar] [CrossRef] [Green Version]
- Naeem, S.; Cao, C.; Qazi, W.A.; Zamani, M.; Wei, C.; Acharya, B.K.; Ur, A.; Id, R. Studying the association between green space characteristics and land surface temperature for sustainable urban environments: An Analysis of Beijing and Islamabad. Int. J. Geo Inf. Artic. 2017, 7, 38. [Google Scholar] [CrossRef] [Green Version]
- Guo, A.; Yang, J.; Xiao, X.; Xia, J.; Jin, C.; Li, X. Influences of urban spatial form on urban heat island effects at the community level in China. Sustain. Cities Soc. 2019, 1–30. [Google Scholar] [CrossRef]
- Dissanayake, D.; Morimoto, T.; Murayama, Y.; Ranagalage, M. Impact of landscape structure on the variation of land surface temperature in Sub-Saharan region: A case study of addis ababa using landsat data. Sustainability 2016, 11, 2257. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Tan, J.; Guo, F.; Li, H.; Chen, S. Multi-scale relationship between land surface temperature and landscape pattern based on wavelet coherence: The case of metropolitan Beijing, China. Remote Sens. 2019, 11, 3021. [Google Scholar] [CrossRef] [Green Version]
- Amani-Beni, M.; Zhang, B.; Xie, G.; Shi, Y. Impacts of urban green landscape patterns on land surface temperature: Evidence from the adjacent area of olympic forest park of Beijing, China. Sustainability 2019, 11, 513. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Chen, Y.; Tong, C. Spatiotemporal evolution of urban green space and its impact on the urban thermal environment based on remote sensing data: A case study of Fuzhou City, China. Urban For. Urban Green. 2019. [Google Scholar] [CrossRef]
- Kong, F.; Yin, H.; James, P.; Hutyra, L.R.; He, H.S. Effects of spatial pattern of greenspace on urban cooling in a large metropolitan area of Eastern China. Landsc. Urban Plan. 2014, 128, 35–47. [Google Scholar] [CrossRef]
- Yue, W.; Liu, X.; Zhou, Y.; Liu, Y. Impacts of urban configuration on urban heat island: An empirical study in China mega-cities. Sci. Total Environ. 2019, 671, 1036–1046. [Google Scholar] [CrossRef]
- Li, C.; Zhao, J.; Thinh, N.X.; Yang, W.; Li, Z. Analysis of spatiotemporally varying effects of urban spatial patterns on land surface temperetures. J. Environ. Eng. Landsc. Manag. 2018, 26, 216–231. [Google Scholar] [CrossRef] [Green Version]
- Soltanifard, H.; Aliabadi, K. Impact of urban spatial configuration on land surface temperature and urban heat islands: A case study of Mashhad, Iran. Theor. Appl. Climatol. 2019, 137, 2889–2903. [Google Scholar] [CrossRef]
- Guo, L.; Liu, R.; Men, C.; Wang, Q.; Miao, Y.; Zhang, Y. Quantifying and simulating landscape composition and pattern impacts on land surface temperature: A decadal study of the rapidly urbanizing city of Beijing, China. Sci. Total Environ. 2019, 654, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, T.; Hsu, A.; Manya, D.; Sheriff, G. disproportionately higher exposure to urban heat in lower-income neighborhoods: A multi-city perspective. Environ. Res. Lett. 2019, 14, 105003. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Han, C.; Li, W.; Zhou, W.; Han, L. Multi-scale effects of urban agglomeration on thermal environment: A case of the yangtze river delta Megaregion, China Weife. Sci. Total Environ. 2020, 136556. [Google Scholar] [CrossRef] [PubMed]
- Tayyebi, A.; Sha, H.; Tayyebi, A.H. Analyzing long-term spatio-temporal patterns of land surface temperature in response to rapid urbanization in the mega-city of Tehran. Land Use Policy 2017. [Google Scholar] [CrossRef]
- Quan, J. Multi-temporal effects of urban forms and functions on urban heat islands based on local climate zone classification. Int. J. Environ. Res. Publ. Health 2019, 16, 2140. [Google Scholar] [CrossRef] [Green Version]
- Ramakreshnan, L.; Aghamohammadi, N.; Fong, C.S.; Ghaffarianhoseini, A.; Wong, L.P.; Sulaiman, N.M. Empirical study on temporal variations of canopy-level urban heat island effect in the tropical city of greater Kuala Lumpu. Sustain. Cities Soc. 2018. [Google Scholar] [CrossRef]
- Li, L.; Yong, Z. Satellite-based spatiotemporal trends of canopy urban heat islands and associated drivers in China’s 32 major cities. Remote Sens. 2019, 11, 102. [Google Scholar] [CrossRef] [Green Version]
- Hoan, N.T.; Liou, Y.; Nguyen, K.; Sharma, R.C.; Tran, D.P.; Liou, C.L.; Cham, D.D. Assessing the effects of land-use types in surface urban heat islands for developing comfortable living in Hanoi City. Remote Sens. 2018, 10, 1965. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Aktas, Y.D.; Stocker, J.; Carruthers, D.; Hunt, J.; Epshtein, L.M. urban heat island modelling of a tropical city: Case of Kuala Lumpur. Geosci. Lett. 2019, 6, 1–11. [Google Scholar] [CrossRef]
- Granero-Belinchon, C.; Michel, A.; Lagouarde, J.; Sobrino, J.A.; Briottet, X. Multi-resolution study of thermal unmixing techniques over madrid urban area: Case Study of TRISHNA Mission. Remote Sens. 2019, 11, 1251. [Google Scholar] [CrossRef] [Green Version]
- Wesley, E.J.; Brunsell, N.A. Greenspace pattern and the surface urban heat island: A biophysically-based approach to investigating the effects of urban landscape configuration. Remote Sens. 2019, 11, 2322. [Google Scholar] [CrossRef] [Green Version]
- Masoudi, M.; Tan, P.Y. Multi-year comparison of the effects of spatial pattern of urban green spaces on urban land surface temperature. Landsc. Urban Plan. 2019, 184, 44–58. [Google Scholar] [CrossRef]
- Du, H.; Ai, J.; Cai, Y.; Jiang, H.; Liu, P. Combined effects of the surface urban heat island with landscape composition and configuration based on remote sensing: A case study of Shanghai, China. Sustainability 2019, 11, 2890. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Wang, J.; Cadenasso, M.L. Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sens. Environ. 2017, 195, 1–12. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, W.; Jiao, M.; Zhong, Z.; Ren, T.; Qiming, Z. Significant effects of ecological context on urban trees’ cooling efficiency. ISPRS J. Photogramm. Remote Sens. 2020, 159, 78–89. [Google Scholar] [CrossRef]
- Qiu, K.; Jia, B. The roles of landscape both inside the park and the surroundings in park cooling effect. Sustain. Cities Soc. 2019, 101864. [Google Scholar] [CrossRef]
- Huang, G.; Zhou, W.; Cadenasso, M.L. Is everyone hot in the city? Spatial pattern of land surface temperatures, land cover and neighborhood socioeconomic characteristics in Baltimore, MD. J. Environ. Manag. 2011, 92, 1753–1759. [Google Scholar] [CrossRef]
- Maimaitiyiming, M.; Ghulam, A.; Tiyip, T.; Pla, F.; Latorre-Carmona, P.; Halik, Ü.; Sawut, M.; Caetano, M. Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS J. Photogramm. Remote Sens. 2014, 89, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Shih, W. Greenspace patterns and the mitigation of land surface temperature in Taipei Metropolis. Habitat Int. 2017, 60, 69–80. [Google Scholar] [CrossRef]
- Yan, J.; Zhou, W.; Jenerette, G.D. Testing an energy exchange and microclimate cooling hypothesis for the effect of vegetation configuration on urban heat. Agric. For. Meteorol. 2019, 279, 107666. [Google Scholar] [CrossRef]
- Dugord, P.; Lauf, S.; Schuster, C.; Kleinschmit, B. Urban systems land use patterns, temperature distribution, and potential heat stress risk–The case study Berlin, Germany. Comput. Environ. Urban Syst. 2014, 48, 86–98. [Google Scholar] [CrossRef]
- Masoudi, M.; Yok, P.; Chin, S. Multi-city comparison of the relationships between spatial pattern and cooling effect of urban green spaces in four major Asian cities. Ecol. Indic. 2019, 98, 200–213. [Google Scholar] [CrossRef]
- Simwanda, M.; Ranagalage, M.; Estoque, R.C.; Murayama, Y. Spatial analysis of surface urban heat islands in four rapidly growing African cities. Remote Sens. 2019, 11, 1645. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhou, W.; Ouyang, Z. Relationship between land surface temperature and spatial pattern of greenspace: What are the effects of spatial resolution ? Landsc. Urban Plan. 2013, 114, 1–8. [Google Scholar] [CrossRef]
- Cao, X.; Onishi, A.; Chen, J.; Imura, H. Quantifying the cool island intensity of urban parks using ASTER and IKONOS data. Landsc. Urban Plan. 2010, 96, 224–231. [Google Scholar] [CrossRef]
- Bao, T.; Li, X.; Zhang, J.; Zhang, Y.; Tian, S. Assessing the distribution of urban green spaces and its anisotropic cooling distance on urban heat island pattern in Baotou, China. Int. J. Geo Inf. 2016, 5, 12. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2016. [Google Scholar] [CrossRef]
- Peng, J.; Xie, P.; Liu, Y.; Ma, J. Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region. Remote Sens. Environ. 2016, 173, 145–155. [Google Scholar] [CrossRef]
- Sapena, M.; Ruiz, L.Á. Analysis of land use/land cover spatio-temporal metrics and population dynamics for urban growth characterization. Comput. Environ. Urban Syst. 2019. [Google Scholar] [CrossRef]
- CSA (Central Statistical Authority). Central Statistical Authority (CSA). Census-2007 Report. Addis Ababa, Ethiopia, 2007. Available online: http://www.csa.gov.et/census-report/complete-report/census-2007# (accessed on 22 January 2018).
- Zewdie, M.; Worku, H.; Bantider, A. Temporal dynamics of the driving factors of urban landscape change of Addis Ababa During the past three decades. Environ. Manag. 2018, 61, 132–146. [Google Scholar] [CrossRef]
- Mohamed, A.; Worku, H. Quantification of the land use/land cover dynamics and the degree of urban growth goodness for sustainable urban land use planning in addis ababa and the surrounding oromia special zone. J. Urban Manag. 2018. [Google Scholar] [CrossRef]
- Choudhury, D.; Das, K.; Das, A. Assessment of land use land cover changes and its impact on variations of land surface temperature in asansol-durgapur development region. Egypt J. Remote Sens. Space Sci. 2019, 22, 203–218. [Google Scholar] [CrossRef]
- Grigora, G.; Uri, B. Land use/land cover changes dynamics and their effects on surface urban heat island in Bucharest, Romania. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 115–126. [Google Scholar] [CrossRef]
- Rwanga, S.S.; Ndambuki, J.M. Accuracy assessment of land use/land cover classification using remote sensing and GIS. Int. J. Geosci. 2017, 8, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Viana, C.M.; Oliveira, S.; Oliveira, S.C.; Rocha, J. Land use/land cover change detection and urban sprawl analysis. Spat. Model. GIS R Earth Environ. Sci. 2019, 621–651. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Tilahun, A.; Teferie, B. Accuracy assessment of land use land cover classification using google earth. Am. J. Environ. Prot. 2015, 4, 193–198. [Google Scholar] [CrossRef]
- Terfa, B.K.; Chen, N.; Zhang, X.; Niyogi, D. Urbanization in small cities and their significant implications on landscape structures: The case in Ethiopia. Sustainability 2020, 12, 1235. [Google Scholar] [CrossRef] [Green Version]
- Sekertekin, A.; Bonafoni, S. Land surface temperature retrieval from landsat 5, 7, and 8 over rural areas: Assessment of different retrieval algorithms and emissivity models and toolbox implementation. Remote Sens. 2020, 12, 294. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Tang, B.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef] [Green Version]
- Malbéteau, Y.; Merlin, O.; Gascoin, S.; Gastellu, J.P.; Mattar, C.; Olivera-Guerra, L.; Khabba, S.; Jarlan, L. Normalizing land surface temperature data for elevation and illumination effects in mountainous areas: A Case study using ASTER data over a steep-sided valley in Morocco. Remote Sens. Environ. 2017, 189, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Mutiibwa, D.; Strachan, S.; Albright, T. Land surface temperature and surface air temperature in complex terrain. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4762–4774. [Google Scholar] [CrossRef]
- Guo, J.; Ren, H.; Zheng, Y.; Lu, S.; Dong, J. Evaluation of land surface temperature retrieval from landsat 8/TIRS images before and after stray light correction using the SURFRAD dataset. Remote Sens. 2020, 12, 1023. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, C.; Prigent, C.; Ermida, S.L.; Monce, J.L. Inversion of AMSR-E observations for land surface temperature estimation: 1. methodology and evaluation with station temperature. J. Geophys. Res. Atmos. Res. 2017, 122, 3330–3347. [Google Scholar] [CrossRef]
- Sobrinoa, J.A.; Jimé Nez-Munoza, J.C.; Paolinib, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Van de Griend, A.A.; Owe, M. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. Int. J. Remote Sens. 1993, 14, 1119–1131. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Vlassova, L.; Perez-Cabello, F.; Nieto, H.; Martín, P.; Riaño, D.; de la Riva, J. Assessment of methods for land surface temperature retrieval from landsat-5 tm images applicable to multiscale tree-grass ecosystem modeling. Remote Sens. 2014, 6, 4345–4368. [Google Scholar] [CrossRef] [Green Version]
- Valor, E.; Caselles, V. Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote Sens. Environ. 1996, 57, 167–184. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Caselles, V.; Becker, F. Significance of the remotely sensed thermal infrared measurements obtained over a citrus orchard. ISPRS J. Photogramm. Remote Sens. 1990, 44, 343–354. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.A.; Neel, M.C.; Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. Computer Software Program. 2015. Available online: https://www.umass.edu/landeco/research/fragstats/documents/fragstats.help.4.2.pdf (accessed on 21 May 2018).
- Fotheringham, A.S.; Oshan, T.M. Geographically weighted regression and multicollinearity: Dispelling the myth. J. Geogr. Syst. 2016, 18, 303–329. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W.; Ouyang, Z.; Xu, W.; Zheng, H. Spatial pattern of greenspace affects land surface temperature: Evidence from the heavily urbanized Beijing Metropolitan Area, China. Landsc. Ecol. 2012, 887–898. [Google Scholar] [CrossRef]
- Anselin, L. Exploring Spatial Data with GeoDa TM: A Workbook; University of Illinois, Urbana-Champaign Urbana: Champaign, IL, USA, 2005; pp. 1–223. Available online: https://www.geos.ed.ac.uk/~gisteac/fspat/geodaworkbook.pdf (accessed on 9 December 2019).
- Anselin, L.; Syabri, I.; Kho, Y. Geo Da: An Introduction to Spatial Data Analysis; Manfred, M., Fischer, A.G., Eds.; Springer: Berlin, Germany, 2010. [Google Scholar] [CrossRef]
- Yu, W.; Zhou, W. The spatiotemporal pattern of urban expansion in China: A comparison study of three urban megaregions. Remote Sens. 2017, 9, 45. [Google Scholar] [CrossRef] [Green Version]
Satellite | Sensor | Path/Row | Acquisition Date | Season | Source |
---|---|---|---|---|---|
Landsat-5 | TM | 168/54 | 1987/02/09 | Dry | |
Landsat-5 | TM | 1999/02/10 | www.earthexplorer.usgs.gov | ||
Landsat-8 | OLI/TIRS | 2019/02/01 | |||
Digital elevation model (DEM) data (30-m spatial resolution) |
Metric | Formula | Units | Narrative |
---|---|---|---|
Percent of urban green spaces (PGS) (%) | PGS = = | Percent | = share of the landscape occupied by patch type (class) i. A = area of entire landscape (m2). |
Patch density (PD) | Number/100 hectares | = number of patches in the landscape of patch type (class) i. | |
Edge density (ED) | Meter/hectare | eik = whole length (m) of edge in landscape containing patch type (class) i. | |
Mean nearest-neighbor distance (MNN) | Hectare | = distance (m) from patch ij to closest adjoining patch of the same type (class). |
Metrics | Unit | 1987 | 1999 | 2019 |
---|---|---|---|---|
PGS | % | 44.33 | 38.36 | 26.31 |
PD | Number/100 ha | 5 | 7 | 27 |
ED | m/ha | 96.30 | 111.39 | 215.14 |
MNN | m | 42.00 | 57.88 | 91.36 |
Year | Variable | Scale | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
120 m | 240 m | 360 m | 480 m | 600 m | 720 m | 840 m | 960 m | 1080 m | ||
1987 | PGS | −0.658 ** | −0.647 ** | −0.661 ** | −0.610 ** | −0.529 ** | −0.509 ** | −0.449 ** | −0.427 ** | −0.470 ** |
−0.465 ** | −0.347 ** | −0.305 ** | −0.300 ** | −0.298 ** | −0.146 * | −0.103 | −0.179 * | −0.175 * | ||
PD | 0.570 ** | 0.625 ** | 0.631 ** | 0.598 ** | 0.503 ** | 0.552 ** | 0.467 ** | 0.375 ** | 0.429 ** | |
0.259 ** | 0.282 ** | 0.230 ** | 0.267 ** | 0.205 ** | 0.277 ** | 0.219 ** | 0.019 | 0.001 | ||
ED | −0.484 ** | −0.536 ** | −0.586 ** | −0.513 ** | −0.417 ** | −0.447 ** | −0.418 ** | −0.380 ** | −0.410 ** | |
0.209 ** | 0.161 * | 0.077 | 0.166 * | 0.192 * | 0.089 | 0.077 | 0.032 | −0.018 | ||
MNN | 0.392 ** | 0.350 ** | 0.194 ** | 0.038 | 0.119 | 0.087 | 0.016 | 0.020 | 0.050 | |
0.103 | 0.105 | −0.008 | −0.076 | −0.078 | −0.028 | −0.135 | −0.022 | 0.052 | ||
1999 | PGS | −0.649 ** | −0.686 ** | −0.606 ** | −0.566 ** | −0.514 ** | −0.555 ** | −0.530 ** | −0.468 ** | −0.420 ** |
−0.483 ** | −0.468 ** | −0.376 | −0.337 ** | −0.305 ** | −0.394 ** | −0.235 ** | −0.289 ** | −0.279 ** | ||
PD | 0.548 ** | 0.581 ** | 0.519 ** | 0.482 ** | 0.453 ** | 0.449 ** | 0.501 ** | 0.406 ** | 0.352 ** | |
0.282 ** | 0.214 ** | 0.148 | 0.129 | 0.113 * | 0.071 | 0.131 | 0.021 | −0.002 | ||
ED | −0.414 ** | −0.492 ** | −0.466 ** | −0.457 ** | −0.397 ** | −0.405 ** | −0.450 ** | −0.346 ** | −0.325 ** | |
0.194 ** | 0.183 ** | 0.126 | 0.112 * | 0.143 * | 0.188 * | 0.104 | 0.108 | 0.133 | ||
MNN | 0.262 ** | 0.398 ** | 0.142 * | 0.111 * | 0.146 * | 0.055 | 0.067 | 0.104 | −0.004 | |
0.023 | 0.144 * | −0.045 | −0.079 | −0.001 | −0.102 | −0.042 | 0.006 | −0.042 | ||
2019 | PGS | −0.797 ** | −0.823 ** | −0.769 ** | −0.708 ** | −0.733 ** | −0.652 ** | −0.613 ** | −0.551 ** | −0.490 ** |
−0.613 ** | −0.580 ** | −0.487 ** | −0.410 ** | −0.400 ** | −0.246 ** | −0.249 ** | −0.253 ** | −0.098 | ||
PD | 0.740 ** | 0.708 ** | 0.649 ** | 0.612 ** | 0.649 ** | 0.598 ** | 0.580 ** | 0.504 ** | 0.494 ** | |
0.466 ** | 0.245 ** | 0.172 * | 0.177 * | 0.195 * | 0.122 * | 0.195 * | 0.058 | 0.111 | ||
ED | −0.623 ** | −0.673 ** | −0.645 ** | −0.587 ** | −0.624 ** | −0.550 ** | −0.562 ** | −0.477 ** | −0.436 ** | |
0.118 * | 0.053 | 0.002 | 0.037 | 0.054 | 0.065 | 0.126 | 0.045 | −0.004 | ||
MNN | 0.294 ** | 0.308 ** | 0.139 ** | 0.209 ** | 0.120 * | 0.098 | −0.069 | 0.054 | 0.053 | |
0.026 | 0.050 | −0.023 | −0.030 | −0.018 | −0.064 | −0.019 | 0.022 | 0.027 |
Year | Model | Variable | Coefficient | R2 | Z-Value | AIC |
---|---|---|---|---|---|---|
1987 | Spatial error | PGS | −2.814 ** | 0.482 | −4.620 | 831.739 |
ED | 3.589 ** | 2.833 | ||||
PD | 0.203 ** | 3.809 | ||||
MNN | 0.001 * | 2.259 | ||||
Spatial LAG | PGS | −2.822 ** | 0.480 | −4.572 | 831.379 | |
ED | 3.409 ** | 2.833 | ||||
PD | 0.217 ** | 4.061 | ||||
MNN | 0.001 * | 2.172 | ||||
OLS | PGS | −3.197 ** | 0.463 | −5.157 | 835.587 | |
ED | 3.252 ** | 2.499 | ||||
PD | 0.196 ** | 3.565 | ||||
MNN | 0.001 * | 2.054 | ||||
1999 | Spatial error | PGS | −4.226 ** | 0.584 | −8.091 | 829.129 |
ED | 4.654 ** | 3.929 | ||||
PD | 0.152 ** | 3.783 | ||||
MNN | 0.001 | 1.372 | ||||
Spatial LAG | PGS | −3.916 ** | 0.565 | −7.432 | 836.386 | |
ED | 4.187 ** | 3.558 | ||||
PD | 0.145 ** | 3.419 | ||||
MNN | 0.001 | 1.564 | ||||
OLS | PGS | −0.188 ** | 0.507 | −7.494 | 854.861 | |
ED | 3.131 * | 2.471 | ||||
PD | 0.125 ** | 2.726 | ||||
MNN | 0.001 | 1.627 | ||||
2019 | Spatial error | PGS | −4.517 ** | 0.661 | −7.571 | 530.529 |
PD | 0.121 ** | 2.914 | ||||
ED | 0.442 | 0.472 | ||||
MNN | 0.0003 | 0.7335 | ||||
Spatial LAG | PGS | −4.481 ** | 0.655 | −7.460 | 531.278 | |
PD | 0.121 ** | 2.928 | ||||
ED | 0.640 | 0.667 | ||||
MNN | 0.0002 | 0.5667 | ||||
OLS | PGS | −4.468 * | 0.634 | −7.081 | 536.774 | |
PD | 0.118 ** | 2.705 | ||||
ED | 0.201 | 0.203 | ||||
MNN | 0.0002 | 0.6108 |
Year | Scale | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
120 m | 240 m | 360 m | 480 m | 600 m | 720 m | 840 m | 960 m | 1080 m | ||
1987 | Coef. | −0.894 ** | −0.508 ** | −0.507 ** | −0.573 ** | −0.605 ** | −0.307 * | −0.230 * | −0.469 * | −0.428 * |
R2 | 0.486 | 0.475 | 0.467 | 0.419 | 0.303 | 0.320 | 0.241 | 0.184 | 0.225 | |
1999 | Coef. | −0.602 ** | −0.633 ** | −0.621 ** | −5.133 ** | −4.158 ** | −4.158 ** | −2.996 ** | −0.660 ** | −0.728 ** |
R2 | 0.470 | 0.510 | 0.384 | 0.335 | 0.286 | 0.333 | 0.298 | 0.237 | 0.195 | |
2019 | Coef. | −0.585 ** | −0.219 ** | −0.640 ** | −0.599 ** | −0.626 ** | −0.587 ** | −0.647 ** | −0.507 * | −0.268 * |
R2 | 0.726 | 0.707 | 0.606 | 0.518 | 0.556 | 0.441 | 0.401 | 0.312 | 0.258 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terfa, B.K.; Chen, N.; Zhang, X.; Niyogi, D. Spatial Configuration and Extent Explains the Urban Heat Mitigation Potential due to Green Spaces: Analysis over Addis Ababa, Ethiopia. Remote Sens. 2020, 12, 2876. https://doi.org/10.3390/rs12182876
Terfa BK, Chen N, Zhang X, Niyogi D. Spatial Configuration and Extent Explains the Urban Heat Mitigation Potential due to Green Spaces: Analysis over Addis Ababa, Ethiopia. Remote Sensing. 2020; 12(18):2876. https://doi.org/10.3390/rs12182876
Chicago/Turabian StyleTerfa, Berhanu Keno, Nengcheng Chen, Xiang Zhang, and Dev Niyogi. 2020. "Spatial Configuration and Extent Explains the Urban Heat Mitigation Potential due to Green Spaces: Analysis over Addis Ababa, Ethiopia" Remote Sensing 12, no. 18: 2876. https://doi.org/10.3390/rs12182876
APA StyleTerfa, B. K., Chen, N., Zhang, X., & Niyogi, D. (2020). Spatial Configuration and Extent Explains the Urban Heat Mitigation Potential due to Green Spaces: Analysis over Addis Ababa, Ethiopia. Remote Sensing, 12(18), 2876. https://doi.org/10.3390/rs12182876