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Abstract: The relationship between urban landscape pattern and land surface temperature (LST)
is one of the core issues in urban thermal environment research. Although previous studies have
shown a significant correlation between LST and landscape pattern, most were conducted at a single
scale and rarely involve multi-scale effects of the landscape pattern. Wavelet coherence can relate the
correlation between LST and landscape pattern to spatial scale and location, which is an effective
multi-scale correlation method. In this paper, we applied wavelet coherence and Pearson correlation
coefficient to analyze the multi-scale correlations between landscape pattern and LST, and analyzed
the spatial pattern of the urban thermal environment during the urbanization of Beijing from 2004
to 2017 by distribution index of high-temperature center (HTC). The results indicated that the HTC
of Beijing gradually expands from the main urban zone and urban function extended zone to the
new urban development zone and far suburb zone, and develops from monocentric to polycentric
spatial pattern. Land cover types, such as impervious surfaces and bare land, have a positive
contribution to LST, while water and vegetation play a role in mitigating LST. The wavelet coherence
and Pearson correlation coefficients showed that landscape composition and spatial configuration
have significant effects on LST, but landscape composition has a greater effect on LST in Beijing
metropolitan area. Landscape composition indexes (NDBI and NDVI) showed significant multi-scale
characteristics with LST, especially at larger scales, which has a strong correlation on the whole
transect. There was no significant correlation between the spatial configuration indexes (CONTAG,
DIVISION, and LSI) and LST at smaller scales, only at larger scales near the urban area has a
significant correlation. With the increase of the scale, Pearson correlation coefficient calculated by
spatial rectangle sampling and wavelet coherence coefficient have the same trend, although it had
some fluctuations in several locations. However, the wavelet coherence coefficient diagram was
smoother and less affected by position and rectangle size, which more conducive to describe the
correlation between landscape pattern index and LST at different scales and locations. In general,
wavelet coherence provides a multi-scale method to analyze the relationship between landscape
pattern and LST, helping to understand urban planning and land management to mitigate the factors
affecting urban thermal environment.
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Remote Sens. 2019, 11, 3021; doi:10.3390/rs11243021 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://dx.doi.org/10.3390/rs11243021
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/11/24/3021?type=check_update&version=2


Remote Sens. 2019, 11, 3021 2 of 21

1. Introduction

Rapid urbanization has tremendously changed the urban landscape pattern, which is one of
the most remarkable human land surface activities since the 20th century [1–3]. As the process
of transforming natural landscapes (such as water, vegetation, and cultivated land) into artificial
impervious surfaces, urbanization has a profound impact on urban ecosystems, including biodiversity,
energy flows, biogeochemical cycles, local regional climates, and human health [4–7]. Land surface
temperature (LST) is one of the direct manifestations of urban thermal environment impacted by land
cover or land use types and landscape pattern [8,9]. The spatial distribution of LST, especially excessive
concentration of high-temperature centers (HTC), may bring a lot of disadvantages to the health of
urban residents and the living environment of animal and vegetable life [10]. Identification of the
spatial pattern dynamics of urban temperature and the relationship between landscape pattern and
LST are important for urban planning and management [11,12].

Landscape pattern has two fundamental aspects: landscape composition and spatial configuration,
and significantly affect the urban LST [10,13,14]. Landscape composition refers to the richness and
diversity of patches, usually described by different types of land cover and their proportion [15,16].
Landscape configuration focuses on describing the spatial combination and morphology of landscape
patches [9,15]. Previous studies have focused on the effects of landscape composition (mainly land
cover types) on LST, and different land cover types have unique radiation and specific heat capacity
with various effects on LST [17,18]. Impervious surface and bare land have a relative highly radiation
and lower specific heat capacity, which are generally considered to increase urban LST, while the low
radiation and transpiration of water and vegetation with the appositive radiative characteristics can
mitigate urban LST [19,20]. With the acceleration of urbanization, the changes of urban land cover
types have intensified, and the effects of landscape space configuration on LST has received increasing
attention, especially the identification of relationship between the fragmentation, aggregation, and
spatial morphology of landscape patches and LST [13,21–23].

The major models to quantify the relationship between landscape pattern and LST include
correlation coefficient, regression analysis, principal component regression analysis, and spatial
analysis [10,24,25]. Most of these models analyzed the effects of landscape pattern metrics on LST
at a single scale, and the hierarchical structure and scale dependence of landscape patterns were
usually ignored [26,27]. In order to solve these issues, researchers have selected some analysis scales
and calculated the correlation between LST and landscape metrics at the corresponding scales to
reveal their multi-scale characteristics [10,11,28,29]. However, the scale of artificial selection is usually
subjective, with the disadvantages to ensure accuracy and fineness, and may cause the correlation
loss between adjacent scales. Wavelet analysis is a multi-scale analysis method, which can associate
landscape pattern with scale and location, and has shown better scale continuity [30–32]. Wavelet
coherent analysis examines the multi-scale correlated characteristics within time-frequency localization,
and has the advantages to solve complex ecological correlations among large number of ecological
indices [33–35]. Grinsted et al. analyzed the relationship between the Baltic maximum sea ice extent
and the Arctic Oscillation index used wavelet coherence, revealed the multi-scale correlation and
periodicity [33]. Biswas applied wavelet coherence to study the multi-scale correlation between soil
depths and spatial patterns of soil water storage, demonstrating that wavelet coherence can be used
to determine the correlation between different ecological factors at a given scales and location [36].
Landscape pattern has scale dependence, and multi-scale effects need to be considered when studying
its effects on LST [10]. Therefore, wavelet coherence may be an effective method to identify the
multi-scale correlation between LST and landscape pattern [35–37]. Additionally, this paper may be
the first work to date that deals with multi-scale correlation analysis between landscape patterns and
LST using wavelet coherence.

Beijing has experienced rapid urbanization since the 1980s, and the built-up area has increased from
490 km2 (2004) to 1401 km2 (2016), and population increased from 14.92 million to 21.73 million [38,39].
In order to provide more habitats, the green space and rural cultivated land around the urban area were
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tremendously occupied, and land cover types and spatial pattern have undergone tremendous changes,
which have seriously affected the urban thermal environment [9,10]. The purpose of this study is
to quantify the multi-scale relationship between LST and landscape pattern in Beijing metropolitan
areas. Specifically, the study aims were to (1) quantify the dynamic of LST spatial pattern in Beijing
from 2004 to 2017 by distribution index; (2) identify the multi-scale correlation between landscape
pattern (landscape composition and spatial configuration index) and LST using wavelet coherence; (3)
calculate the Pearson correlation coefficient between landscape indexes and LST by spatial rectangle
sampling method and compared with wavelet coherence; (4) summarize the performance of wavelet
coherence for the multi-scale correlation analysis of landscape pattern and the factors affected by them.

2. Materials and Methods

2.1. Study Area

Beijing is situated at 115.7◦–117.4◦ E and 39.4◦–41.6◦ N, with an area of 16,410.54 km2. It includes
16 administrative areas, the northern and western regions are mainly mountainous areas, and the
urban area is distributed in the southern plain area [38–40]. According to Beijing’s urban master
plan (2004–2020), Beijing can be divided into four functional zones (Figure 1): the main urban zone
(MUZ), urban function extended zone (UFEZ), new urban development zone (NUDZ), and far suburb
zone (FSZ). The main urban zone includes Dongcheng, Xicheng, Xuanwu, and Chongwen (after 2010,
Xuanwu District was merged into Xicheng District and Chongwen District was merged into Dongcheng
District); the urban function extended zone includes Haidian, Chaoyang, Shijingshan, and Fengtai; the
new urban development zone includes Fangshan, Daxing, Tongzhou, Shunyi, and Changping; the far
suburb zone includes Yanqing, Huairou, Miyun, Pinggu, and Mentougou.
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2.2. Data and Preprocessing

Two remote sensing images obtained in late summer (September) with highly clear atmospheric
conditions (cloud amount less than 5%) were used in this study (Table 1), and both the two remote
sensing images were downloaded from the official website of USGS (https://earthexplorer.usgs.gov/).
The two Landsat data sets in 2004 and 2017 are basically in accordance with the start year of Beijing
Master Plan (2004–2020) and the start year of Beijing Master Plan (2016–2035) released by the government
with detailed land-use types, which are very helpful for the validation of the land use classification
from the two Landsat data sets. The climate of Beijing has the characteristics of the semi-humid
continental monsoon climate in the north temperature zone. The weather is cold and dry in winter,
with short duration in spring and autumn. Peng et al. studied the spatial pattern of Beijing’s urban
thermal environment, and testified that urban heat island effects of summertime are more significant
than that of other seasons, which can be considered as the reasonable season to study the urban thermal
environment [9].

Table 1. The experimental data collected in this study.

Sensor Scene ID Acquisition Data Season

Landsat-5 TM LT51230322004252BJC00 8 September 2004 Summer
Landste-8 OLI/TIRS LC81230322017255LGN00 12 September 2017 Summer

The land surface temperature was retrieved based on the single window algorithm after
preprocessing including geometric correction, radiation correction, and atmospheric correction. Land
cover maps were obtained by supervised classification and visual interpretation with a resolution of
30 m (Figure 2), which were classified into six classed including impervious surface (built-up land,
roads, parking lots and other artificial impervious areas), urban green space (urban grass and park),
water (rivers, lakes, and reservoirs), forest land (forest and shrubs), cultivated land and bare land
(cradled and sand land). In order to improve the classification quality and solve misclassification
error or salt-and-pepper noises generated by spectral confusion, Sieve Classes of ENVI was applied to
remove the isolated points (the parameters were set as minimum threshold 2 pixels, window size 8
pixels), and visual interpretation of the classified maps and manual correction was conducted according
to the existing two periods land use data (2004 and 2017) of Beijing Master Plan (2004–2020). To verify
the classification accuracy, 34,596 points was randomly selected based on the proportion of each land,
and the existing two periods land use data (2004 and 2017) of Beijing Master Plan (2004–2020) and
historical images of Google Earth were referenced to make judgments and statistics on the classification
accuracy of the sample points. The classification confusion matrix calculated from the samples and the
classification accuracy of each land cover type are shown in Table 2, where the overall accuracy (OA)
of the land cover maps were 83.84% (2004) and 84.87% (2017), and the kappa coefficients were 0.737
(2004) and 0.770 (2017), respectively.

https://earthexplorer.usgs.gov/
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Figure 2. Land cover maps with a spatial resolution of 30 m. (a) Land cover map for 2004; (b) land cover
map for 2017; (c) selected transect (black rectangular zone) for wavelet coherence analysis. The transect
spanned the central axis of Beijing from north to south with all land cover types and complex landscape
patterns to scrutinize the fine correlation between landscape index and land surface temperature (LST).

Table 2. The classification confusion matrix and accuracy.

Types Bare Land Water Urban Green
Space

Cultivated
Land

Forest
Land

Impervious
Surface

User’s
Accuracy

2004
Bare land 285 0 0 7 47 8 82.13%

Water 0 719 7 16 117 23 81.53%
Urban green space 0 8 563 23 86 17 80.77%

Cultivated land 19 9 13 7513 1836 49 79.60%
Forest land 30 76 43 1525 16,077 580 87.70%

Impervious surface 9 15 6 76 947 3847 78.51%
Producer’s accuracy 83.09% 86.94% 89.08% 82.02% 84.13% 85.04%

OA: 83.84% Kappa coefficient: 0.737

2017
Bare land 535 0 5 6 83 16 82.95%

Water 0 590 9 10 96 24 80.93%
Urban green space 0 3 747 37 117 13 81.46%

Cultivated land 56 55 15 5193 963 69 81.77%
Forest land 34 31 43 668 14,452 1144 88.27%

Impervious surface 23 24 17 192 1483 7843 81.85%
Producer’s accuracy 82.56% 83.93% 89.35% 85.05% 84.05% 86.10%

OA: 84.87% Kappa coefficient: 0.770

2.3. Land Surface Temperature Retrieval

The LST was retrieved from thermal infrared band of remote sensing images based on the single
window algorithm [9,35]. The steps are as follows: (1) converting the digital number values of the
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thermal infrared band to surface-leaving radiance; (2) converting the surface-leaving radiance to
at-sensor brightness temperature; (3) converting the at-sensor brightness temperature to LST [41,42].

First, the digital number (DN) of the thermal infrared band was converted to sensor radiance
values (Lλ) using Equation (1) [43].

Lλ =
LMAXλ − LMINµ

Qcalmax −Qcalmin
× (Qcal −Qcalmin), (1)

where Qcalmin is the minimum quantized calibration digital number, Qcalmax is the maximum quantized
calibration digital number, LMINµ and LMAXλ are the ratios of spectral irradiance to Qcalmin and
Qcalmax, respectively.

Then the sensor radiance values can be converted to surface-leaving radiance through an
atmospheric correction process using Equation (2).

LT =
Lλ − Lµ − τ(1− ε)Ld

τε
, (2)

where LT is the surface leaving radiance, Lµ and Lλ are the upwelling radiance and downwelling
radiance, respectively. τ and ε are the atmospheric transmission and emissivity of the surface,
respectively. Lµ, Ld, and τ were calculated using the web-based atmospheric correction tool [42]. ε can
be obtained by Equation (3):

ε = εvPv + εu(1− Pv) + dε, (3)

where εv and εu are the emissivity of vegetation and urban surface, respectively. According to previous
studies, the εv and εu are typically 0.99 and 0.92 [9,42]. dε includes the geographical distribution of the
natural surface and internal reflection, and Pv is the vegetation fraction. Pv and dε can be obtained by
the following Equations:

PV =

(
NDVI −NDVImin

NDVImax −NDVImin

)2

, (4)

NDIV =
RNIV −RRED

RNIV + RRED
, (5)

dε = (1− εu)(1− Fv)Fεv, (6)

where NDVImin and NDVImax are the minimum and maximum values of the normalized difference
vegetation index, respectively. RNIR and RRED are the near-infrared and infrared bands of remote
sensing images, respectively. F is the shape factor (usually the mean value is 0.55).

Second, assuming that the Earth’s surface is a black body, and converting the surface-leaving
radiance to at-sensor brightness temperature (TB) using Equation (7) [44].

TB =
K2

ln
(K1

LT
+ 1

) , (7)

where K1 and K2 are pre-launch calibration constants. For Landsat 5 TM, K1 = 607.76 W m2 sr−1 µm−1

and K2 = 1260.56 K; and for Landsat 8 OLI, K1 = 774.8853 W m2 sr−1 µm−1 and K2 = 1321.0789 K [21].
Finally, the at-sensor brightness temperature was converted to LST using Equation (8) [45].

LST =
TB

1 +
(
λTB
ρ

)
ln ε
− 273, (8)

where λ is wavelength of the emitted radiation (11.457 µm for Landsat 5 TM band 6; 10.8 µm,
for Landsat-8 band 10). The coefficient ρ = hc/b = 0.01438 mK, h = 6.626 × 10−34 Js is the Planck
constant, c = 2.998 × 108 m/s is the speed of light, b = 1.38 × 10−23 J/K is the Boltzmann constant.
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Then, the calculated LST value was converted (Kelvin) to degrees Celsius (◦C) by subtracting the
constant 273.

2.4. High Temperature Center and Landscape Metrics

The meteorological conditions and acquisition time were not exactly the same for the two images
with different temperature ranges of LST. The Jenks natural breaks classification method was applied
to perform the cluster analysis on the data to minimize the intra-class differences and maximize the
inter-class differences [9]. The LST was divided into four categories: low temperature (<23 ◦C), sub-low
temperature (23–28 ◦C), sub-high temperature (28–32 ◦C), high-temperature (>32 ◦C), according to the
natural discontinuity points obtained by the natural fracture method of ArcGIS. The high-temperature
level was defined as the high-temperature center (HTC). The spatial pattern of LST was studied by
calculating the proportion of HTC and distribution index (DI) of different administrative regions and
land cover types [9,46]. The equation for calculating the distribution index is as follows:

DI =
Shi/Sh
Si/S

, (9)

where Sh and Si were the total area of the HTC and space unit, respectively. S is the total area, and Shi
is the area of the HTC in this spatial unit. DI = 1 indicates the distribution of the HTC in the entire
research area. If DI < 1, it means that the HTC distribution in the space unit is lower than the entire
research area, has a negative contribution to the LST, which contributes to cooling. If DI > 1, the HTC
distribution in the space unit is higher than the entire research area, has a positive contribution to the
LST, which contributes to warming.

To study the multi-scale relationship between urban landscape metrics and LST, the following
landscape composition and configuration metrics were selected (Table 2): Normalized Difference
Built-up Index (NDBI) and Normalized Difference Vegetation Index (NDVI) were selected to describe
the spatial distribution of urban impervious surface and vegetation, respectively; Shannon’s diversity
index (SHDI) was selected to describe landscape Diversity; Contagion Index (CONTAG) was selected
to describe the degree of agglomeration or extension of the landscape; Landscape Division Index
(DIVISION) was selected to describe the dispersion of the landscape; Landscape Shape Index (LSI) was
selected to describe the spatial form of the landscape [26,47,48]. These landscape metrics are calculated
at the landscape level of 1 km window size. Table 3 lists the calculation equations and descriptions of
the selected landscape metrics.

Table 3. The formulas and interpretation of selected landscape metrics in this study.

Type Metrics Formula Instructions

Landscape Composition

Normalized Difference
Built-up Index (NDBI)

RMIR−RNIR
RMIR+RNIR

A measure of the abundance of built-up area in the
landscape. Band 4 and 5 of Landsat TM sensor, Band 5 and
6 of Landsat OIL sensor.

Normalized Difference
Vegetation Index (NDVI)

RNIR−RRED
RNIR+RRED

A measure of the abundance of vegetation in the
landscape. Band 3 and 4 of Landsat TM sensor, Band 4 and
5 of Landsat OIL sensor.

Shannon Diversity Index
(SHDI)

−

m∑
i=1

(Pi × ln Pi)
A measure of the diversity of land covers. Pi equals the
plane area of class i, divided by the landscape area.

Landscape Spatial
Configuration

Contagion Index
(CONTAG)

1 +
∑m

i=1
∑m

k=1

[
Pi

(
gik∑m

k=1
gik

)]
×

[
ln Pi

(
gik∑m

k=1
gik

)]
2 ln m

× 100

The contagion index refers to the non-random or
aggregation degree of patch types in the landscape.
Additionally, a larger metric value means larger
aggregation degree, conversely lower.

Landscape Division
Index (DIVISION)

1−
m∑

j=1

( ai j

Ai

)2 A measure of the fragmentation of land covers. DIVISION
deals with the degree to which the landscape is broken up
into separate patches.

Landscape Shape Index
(LSI)

0.25
∑n

j=1 ei j
√

A

Landscape shape index refers to the deviation degree
between the real shape of patch and the circle or square
with the same area, indicating the complexity of landscape.

RMIR, Short Wave Infrared; RNIR, Near Infrared; RRED, Red Infrared; Pi, proportion of the district i occupied by land
cover i; gik, is the number of adjacencies between pixels of patch types i and k based on the double-count method; m
is the number of patch types present in the landscape; Ai, area of district i; ei j, is the total length of edge for class i
and patch j.
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2.5. Wavelet Transform and Coherency Analysis

2.5.1. Continuous Wavelet Transform

Wavelet transform is derived from Fourier transform and is an improvement of the Windowed
Fourier transform. It has good localization properties in the time and frequency domain [49]. The
multi-scale characteristics of a signal can be obtained by stretching and shifting the mother wavelet,
where Haar wavelet, Mexican Hat wavelet, Meyer wavelet, Daubechies wavelet, and Morlet wavelet
are commonly used [37]. This paper used the Morlet wavelet, which is defined as follows:

ϕ0(η) = π−1/4eiω0ηe−η
2/2, (10)

where ω0 and η are dimensionless spatial parameters and frequency, respectively. To follow the
convergence condition ω0 = 6 [50]. Continuous wavelet transform is defined as the convolution
between the original function and the mother wavelet function, as follows:

Wn(s) =
N−1∑

n′
Xn′ψ ∗

[
(n′ − n)δt

s

]
, (11)

where s and n denote the scale parameter and translation parameter, respectively. The amplitude
characteristics of the original data at different scales and locations can be obtained by changing s and n.
Calculating the wavelet transform in the Fourier frequency domain can improve the calculation speed.
The Fourier transform of the discrete data sequence Xn is defined as:

x̂k =
1
N

N−1∑
n=0

Xne−2πikn/N , k = 0, . . . , N − 1. (12)

Equation (11) can be expressed as:

Wn(s) =
N−1∑
k=0

x̂kψ̂ ∗ (sωk)eiωknδt . (13)

The wavelet power spectrum is defined as
∣∣∣Wn(s)

∣∣∣2. Since the data length of the original transect is
limited, it is necessary to consider the error caused by the edge effect. This can be solved by introducing
the influence of the cone, padding the edges of data with zeros before the wavelet transform, and then
eliminating them afterwards [33,51].

2.5.2. Wavelet Coherency Analysis

Similar to the traditional Pearson correlation method, wavelet coherence is used to analyze the
correlation between two spatial series X and Y at a given spatial scale and location. Multi-scale wavelet
coherence analysis can more reliably reveal the correlation between the two factors than the single-scale
Pearson correlation coefficient [33,35]. Wavelet coherent analysis is defined as follows [33]:

R2
n(s) =

∣∣∣∣S(s−1WXY
n (s)

)∣∣∣∣2
S
(
s−1

∣∣∣WX
n (s)

∣∣∣2)·(s−1
∣∣∣WY

n (s)
∣∣∣2) , (14)

where WXY
n (s) = WX

n (s)WY
n (s) represents the cross wavelet transform. S is a smoothing operator and

defined as:
S(W) = Sscale

(
Sspace(Wn(s))

)
, (15)
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where Sscale indicates smoothing along the scale and Sspace indicates smoothing along the spatial location.
The formula is defined as follows:

Sspace(W(s, τ)) =
N−1∑
k=0

W(s, τ)
1

s
√

2π
exp

− (τ− xk)
2

2s2

∣∣∣∣∣∣
s
, (16)

Sscale(W(s,χ)) =
1

2m + 1

N−1∑
k=0

(
Sspace

(
W

(
s j,χ

))
·

∏(
0.6s j

))∣∣∣∣∣∣∣χ, (17)

where
∏

denotes rectangular function and 0.6 is the empirical value of the scale decorrelation length
based on the Morlet wavelet [52].

In this paper, the Monte Carlo method was used to test the significance level of coherencies, and
the wavelet coherence image showed the correlation and intensity between landscape metrics and LST
at different scales and locations. Wavelet transform, coherence analysis, and Monte Carlo significance
test were performed using MATLAB code [33].

2.6. Pearson Correlation Coefficient

The traditional Pearson correlation coefficient can be used to evaluate the linear relationship of
the entire transect [28]:

r =
N

∑
xiyi −

∑
xi

∑
yi√

N
∑

x2
i − (

∑
xi)

2
√

N
∑

y2
i − (

∑
yi)

2
, (18)

where x and y are represented LST and landscape metrics. r indicates the degree of correlation, the
value is between −1 and 1, a higher value of r indicates a greater correlation.

In order to make the Pearson correlation coefficient represent the correlation at different scales
and positions, the spatial rectangle sampling method was used to calculate the correlation coefficient,
and the rectangle size was the scale obtained by the wavelet transform. The correlation of the center
position of the rectangle was represented by the Pearson coefficient calculated over the entire rectangle
range, and then moved the rectangle along the cell size to calculate the correlation of the next location,
finally, the correlation coefficient of the whole transect at different scales and locations was obtained.
It was compared with wavelet coherence and the advantages and disadvantages of two multi-scale
analysis methods was analyzed.

3. Results

3.1. Urban Land Surface Temperature Dynamics

In 2004, the temperature range of Beijing LST was 19.41–40.98 ◦C, with an average temperature of
26.12 ◦C. In 2017 the temperature range of Beijing LST was 13.62–49.65 ◦C, with an average temperature
of 27.88 ◦C (Figure 3). Figure 4 illustrates the spatial pattern of Beijing’s surface temperature in 2004
and 2017, an obvious high-temperature area appeared in the main urban zone and urban function
extended zone, which showed a monocentric spatial pattern. By 2017, there was still an obvious
high-temperature area in the main urban zone and urban functional extended zone, and the HTCs had
spread to the far suburb zone and new urban development zone, which was related to the process of
urban expansion, and showed a significant polycentric spatial pattern.
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3.1.1. High Temperature Center Variation of Different Administrative Zones

Table 4 lists the results of distribution index (DI) and proportion of high-temperature centers
(HTC) in different administrative zones in 2004 and 2017. The proportion of HTCs in Beijing was
12.34% (2004) and 13.72% (2017), and the average temperature was 26.12 ◦C (2004) and 27.88 ◦C
(2017). In 2004, Beijing’s HTCs were mainly concentrated in the main urban zone (85.19%) and urban
functional extended zone (58.12%). Spatially, the distribution of HTCs tended to decrease from the
main urban zone to the suburbs. In 2017, the proportion of HTCs the main urban zone (84.7%) and
urban function extended zone (49.94%) were relatively reduced, while the new urban development
zone and far suburb zone increased to 20.03% and 3.07%, respectively. The variations of HTC indicated
a significant outward spread tendency, which was consistent with the direction of urban (impervious
surface) expansion (Figure 2), and the DI value gradually decreased from the main urban zone to the
far suburb zone. In 2017, the DI value of the new urban development zone and the far suburb zone
increased, while the main urban zone and the urban functional extended zone relatively reduced,
which revealed the trend of the HTC gradually expanding to the surrounding zone of urban. Among
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the four functional zones, only the far suburbs have a DI value of less than 1, indicating that the HTC
distribution is lower than the mean level of Beijing and has a cooling effect on urban LST.

Table 4. Mean land surface temperature, percentage of high-temperature center, and distribution index
in four functional zones between 2004 and 2017.

Zone 1 Year Mean LST (◦C) Percentage of HTC DI

MUZ
2004 34.92 85.91% 6.96
2017 34.13 84.70% 6.17

UFEZ
2004 31.61 58.12% 4.71
2017 32.01 49.94% 3.64

NUDZ
2004 28.23 17.49% 1.42
2017 29.86 20.03% 1.46

FSZ
2004 24.35 1.96% 0.16
2017 26.32 3.07% 0.22

Beijing 2004 26.21 12.34% -
2017 27.88 13.72% -

1 MUZ, UFEZ, NUDZ, and FSZ represent the main urban zone, urban function extended zone, new urban
development zone, and far suburb zone, respectively.

3.1.2. High Temperature Center Variation of Different Land Cover Types

Table 5 lists the results of distribution index (DI) and proportion of HTCs in different land cover
types. The mean LST of impervious surface was the highest (31.08 ◦C in 2004 and 31.84 ◦C in 2017),
while the lowest in forest land (24.29 ◦C in 2004 and 25.68 ◦C in 2017). The DI values of impervious
surface and bare land were higher than 1 (4.35, 1.92 in 2004 and 3.45, 1.26 in 2017, respectively), which
have a positive contribution to urban LST. The DI values of forest land, water, and cultivated land were
less than or close to 1 (0.19, 0.86, 1.03 in 2004 and 0.07, 0.38, 0.87 in 2017, respectively), which have a
cooling effect on urban LST. The DI values of water and cultivated land were higher than that of forest
land, mainly because water has a higher specific heat capacity and radiation relative to forest land,
and is easily affected by the surrounding impervious surface; soil was exposed to the air after crop
harvested, which increased the LST of cultivated land. Generally, an obvious cooling effect should
exist in the urban green space, and a DI value less than 1, however, the actual value was 1.95 in 2004
and 1.17 in 2017, mainly because Beijing’s green space patches are relatively small and scattered, when
the high-temperature air of the impervious surface flows to the green space, after the green space
absorbed the surrounding heat, the temperature gradually rises, and the DI value was higher than 1.

Table 5. Mean land surface temperature, percentage of high-temperature center, and distribution index
for each landscape type between 2004 and 2017.

Landscape Type Year Mean LST (◦C) Percentage of HTC DI

Impervious surface 2004 31.08 53.74% 4.35
2017 31.84 47.39% 3.45

Bare land
2004 28.36 12.30% 1.92
2017 27.74 9.71% 1.26

Cultivated land
2004 27.66 12.67% 1.03
2017 29.21 11.96% 0.87

Urban green space 2004 28.74 24.04% 1.95
2017 28.19 7.79% 1.17

Water
2004 26.64 12.34% 0.86
2017 27.09 5.22% 0.38

Forest
2004 24.29 23.08% 0.19
2017 25.68 1.01% 0.07
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3.2. Wavelet Coherency Analysis of Landscape Metrics and Land Surface Temperature

3.2.1. The Wavelet Coherencies between Landscape Composition and Land Surface Temperature

The correlations between NDBI and LST exhibited significant multi-scale characteristics (Figure 5).
In 2004, there was no significant correlation between NDBI and LST at smaller scales (less than 0.24 km).
With the increase of scales, several regions with a strong correlation began to appear at the scale of
0.24–4.82 km (mainly concentrated in areas with large NDBI values) and varied with spatial location.
The correlation was relatively low around 30 and 45 km of the transect, mainly due to the existence
of large area urban green space and water in this zone. When the scale exceeds 4.82 km, NDBI was
positively correlated with LST on the whole transect, which has a warming effect on LST. In 2017,
at smaller scales, the correlation of NDBI and LST tended to increase compared with that in 2004. The
correlation mainly distributed at 0–30 km and 45–75 km as the scale increased to 0.48–7.68 km. At the
scales over 10.86 km, the whole transects showed a strong positive correlation between NDBI and
LST. The scale of low correlation near urban areas increased in 2017, mainly because the increase of
impervious surface makes the distribution of urban green space and water more fragmented, which
increased the scale where NDBI and LST showed a significant positive correlation in the whole transect.

There showed a strong multi-scale correlation between NDVI and LST (Figure 5). In 2004, NDVI
and LST showed a weak correlation at small scales (less than 0.24 km). At the scale of 0.24–0.96 km,
a strong correlation begins to appear at several locations. At the scale of 0.96–7.68 km, there was a
strong negative correlation in the range of 0–30 km and 50–75 km of the transect, while there was no
significant correlation between 30 and 50 km (urban area), probably because the area of vegetation
patches in the urban area was small and scattered, which made the NDVI value relatively low and
the impact on LST was not obvious. When the scale exceeds 10.68 km, NDVI was negatively related
to LST significantly on the whole transect, and has a cooling effect on LST. In 2017, the correlation
between NDVI and LST on the scale of 0.96–10.68 km showed the same distribution characteristics as
that in 2004. The difference is that when the scale is less than 0.96 km, the whole transects showed a
strong negative correlation except several locations. It shows that at larger scales, the vegetation in the
two-stage transect data has similar spatial distribution characteristics. The large difference below 0.96
km was probably because the government has built some recreational facilities, green belts, and parks
to reduce the impact of urban heat islands on the living environment (for example, in order to host the
2008 Beijing Olympics, the government built the Olympic Park and some green belts to increase urban
green space). These urban green space patches are small and scattered in the city, and have a large
impact on the land surface temperature at small scales.

The multi-scale correlation between SHDI and LST was weaker than the other two landscape
composition indices (Figure 5). At scales less than 3.84 km, wavelet coherent diagrams in 2004 and
2017 have significant correlations only at several locations. At scales of 3.84–15.36 km, there was a
significant negative correlation in the urban area. In 2017, the correlation between SHDI and LST
showed similar distribution characteristics to that of 2004, although the correlation area and location
have expanded. Affected by the patch size of land cover types, the diversity increases first and then
decreases with the change of scales. At the scale of 3.84–15.36 km, land cover types in urban areas
presented higher diversity, and different land surface radiation within different land use types caused
the various temperature distributions in these lands. The unbalanced distribution of LST in space
accelerated the flow of land surface air and reduced the LST, which caused a significant negative
correlation between SHDI and LST.
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Figure 5. The wavelet coherency diagram of landscape composition indexes and land surface
temperatures for 2004 and 2017. In the wavelet coherence diagram, the X-axis represents the spatial
position; the Y-axis represents the scale obtained from the correlation period; the solid black line
represents the influence cone (COI); the thick black line represents the 95% confidence level; the arrow
direction indicates the type of correlation, the arrow to the left indicates a negative correlation, while
the arrow to the right indicates a positive correlation.

3.2.2. The Wavelet Coherencies between Landscape Configuration and Land Surface Temperature

There was no significant correlation between landscape configuration indexes and LST at smaller
scales, while at larger scales there was a strong correlation in the urban area (Figure 6). In 2004,
the wavelet coherent diagram between CONTAG index and LST showed a strong positive correlation
in the urban area at scales of 3.84–15.36 km, mainly because the impervious surfaces were the dominant
patches, with high density and connectivity, the CONTAG index was larger in the urban area, and
the large area of the impervious surface reduced the diffusion speed of LST. In 2017, the regions
with strong positive correlations at these scales expand to both sides, which was the same trend as
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urban impervious surface expansion. For the DIVISION index, in 2004, there was a strong negative
correlation in the urban area at the scales of 7.68–15.36 km. In 2017, the region with strong negative
correlation expanded and the scale range increased to 3.84–15.36 km, probably because the urban
land cover can be divided into several patches, which increased the diversity, and contributes to the
diffusion of LST. For the LSI index, in 2004, a strong negative correlation was identified in the urban
area at scales of 3.84–15.36 km. In 2017, the region with strong positive correlation expanded, mainly
due to the expansion of the impervious surface, and the degree of fragmentation of the landscape
and the complexity of the land type increased, conducive to spreading LST. In general, the influence
of landscape configuration metrics on LST at small and medium scales were more complicated, and
the opposite correlation characteristics may occur due to location. With the increase of scales, the
correlation was more stable and significant.Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 22 
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3.3. Pearson Correlation Coefficient on Different Analysis Scales

Figures 7 and 8 show the Pearson correlation coefficient and wavelet coherence coefficient between
landscape metrics and LST at multi-scales. The Pearson coefficient was calculated by the spatial
rectangle sampling method, the rectangle size was set to the scale of the Y-axis of the wavelet coherence
diagram (eight main scales were selected as an example), and the correlation coefficients at different
scales was obtained by spatial the rectangle on the whole transect. At small scales, the rectangle used in
calculating the Pearson coefficient was smaller, so that the correlation coefficient at different positions
had large fluctuations, but the wavelet coherence coefficient was relatively smooth due to the smoothing
operator of scale and position. With the increase of the scale, the Pearson correlation coefficient and
the wavelet coherence coefficient have the same trend, although they had some fluctuations in several
locations. The Pearson correlation coefficient still has jagged fluctuations at larger scales, while the
wavelet coherence coefficient was smoother and closer to a straight line, which better reflected the
true correlation between landscape metrics and LST. In general, at large scales, the correlation trends
obtained by the two methods were similar, but the Pearson correlation coefficient calculated by the
spatial rectangle sampling method was easily affected by the rectangle size and position, while the
wavelet coherence was less affected by these factors. Wavelet coherence can better reveal the correlation
between LST and landscape metrics at different scales and locations.
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Figure 7. (a) The Pearson correlation coefficient and wavelet coherence coefficient between NDBI and
LST. (b) The Pearson correlation coefficient and wavelet coherence coefficient between NDVI and LST.
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Figure 8. (a) The Pearson correlation coefficient and wavelet coherence coefficient between DIVISION
and LST. (b) The Pearson correlation coefficient and wavelet coherence coefficient between LSI and LST.

4. Discussion

In the past few decades, the accelerated urbanization of Beijing has rapidly increased the
impervious surfaces such as roads, squares, and built-up land, which has dramatically changed the
urban thermal environment [53]. To mitigate these problems, the satellite city development plans were
proposed by government and urban planners to form a polycentric spatial pattern [9], as reflected
in the land cover and LST maps of 2004–2017. In 2004, the high-temperature center of Beijing was
concentrated in the main urban zone and urban function extended zone. In 2017, the high-temperature
center was gradually spread to the peripheral urban zone, which made the thermal environment of
the main urban zone improve apparently. In addition, according to the Beijing Urban Master Plan
2004–2020, the government has built some parks and green belts around the urban area to increase
the urban green space and ameliorate the LST in the urban area [39]. NDVI and LSI showed a strong
negative correlation at small scales in 2017, which also revealed the phenomenon of increased urban
green space. However, with the in-filling development pattern between urban polycentric, most lands
between the satellite city and the main urban zone were used for commercial finance and residential,
and only smaller and scattered land were used for urban green space. The impervious surface was
gradually connected, which may have an adverse effect on the urban thermal environment.
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The significant impact of urban local thermal environment on urban ecology made it an obligation
to understand the changes in land cover and spatial pattern of LST [54]. Previous studies have shown
that LST were affected by a variety of factors, such as urban structure, land cover types, geographic
location, and population [13,55,56]. Land cover type is one of the main factors affecting LST, compared
to areas with abundant land cover types (especially the land types which could adjust the LST, such as
water and vegetation), the single and continuous impervious surface contributes more to the urban LST.
The water and vegetation in the Beijing urban zone are smaller and fragmented, showed a negative
correlation with LST at small and medium scales, and have a cooling effect. While at large scales, the
impermeable surface is the dominant patch with a significant positive correlation with LST, which
reduced the cooling effect of water and vegetation. The spatial configuration indexes of the main urban
area have a strong correlation with LST at large scales. Urbanization has increased the fragmentation
of the Beijing landscape, and the urban land cover types have become more diverse and complex,
which may be helpful to mitigate the LST in urban areas [29,38]. In addition, LST images obtained at
different times are also affected by atmospheric radiation, solar radiation, wind speed, humidity, etc.
The LST data obtained in 2004 and 2017 may not have been stable, which will have a certain effect
on the analysis of the spatial pattern distribution characteristics of LST [57]. In this paper, the two
LST data were selected at the beginning and end of Beijing’s urban master plan (2004–2020), which
represented the process of urban development of Beijing cities during a completed master plan period.
The two periods of data sets provide the vision to investigate the process of land use change and the
correlation of the corresponding temperature gradient during the pursuit of the 2004–2017 master
plan. In addition, this paper focuses on the multi-scale correlation between landscape index (landscape
composition and spatial configuration) and the land surface temperature, and the two periods of
data for subsequent wavelet coherent analysis are also helpful for the scale variation between the
two periods.

The Pearson correlation diagram obtained by the spatial rectangle sampling at different locations
and scales showed a similar trend to wavelet coherence, and the undulated tendency was mainly
caused by the calculation of rectangle size and pixel size. In contrast, the wavelet coherent diagram was
relatively smooth and less affected by the above factors, which was consistent with the real situation
of the impact of landscape metrics on LST, and proved the effectiveness and adaptability of wavelet
coherence in the multi-scale analysis. Although wavelet coherence provides a new perspective for
multi-scale identification of the correlation between LST and landscape pattern, several deficiencies still
existed. For example, the window size selected when calculating various types of landscape indices at
the landscape level, and the transect selected when analyzing the correlation between the landscape
index and the LST, these factors will inevitably affect the analysis results. Moreover, the ecological
interpretation of wavelet coherent diagram is complex, and the scale needs to be more accurately
and finely divided. Considering the diurnal and seasonal variation of temperature, the sensitivity of
different indexes to the LST, as well as the impact of more time-series of LST images on the analysis
results, more LST images, more effective landscape indexes, and precise scales may be applied in the
future to study the LST dynamic and the correlation between urban landscape pattern and LST.

5. Conclusions

This study applied wavelet coherence and Pearson correlation coefficient to analyze the multi-scale
correlations between landscape pattern and LST, and analyzed the spatial pattern of the urban thermal
environment during the urbanization of the Beijing from 2004 to 2017 using the distribution index of
high-temperature centers. According to the experimental results, we drew the following conclusions:

• The HTC of Beijing has a tendency to spread outwards from 2004 to 2017. In 2004, it mainly
concentrated in the main urban zone and urban function extended zone, forming a spatial pattern
of monocenter distribution. In 2017, the HTC gradually expanded to the new urban development
zone and far suburb zone, with a spatial pattern of polycentric distribution, and gradually
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connected to the main urban zone and urban function extended zone, which has an adverse effect
on urban LST.

• Land cover types have a significant impact on the spatial pattern of LST. The mean LST and HTC
distribution of the impervious surface were the highest, while the forest land and water body were
lower. Urban green space has a cooling effect on the LST, but due to its small area and scattered
distribution, easily affected by the large-area impervious surface, causing the mean temperature
and HTC distribution to be higher than forest land and water body.

• Wavelet coherent analysis showed that the correlation between landscape pattern metrics
(landscape composition and configuration) and LST has significant multi-scale effects. The
landscape composition indices NDBI and NDVI showed a correlation with LST at all scales,
especially at large scales, which showed a strong positive correlation and negative correlation,
respectively. The space configuration indices CONTAG, DIVISION, and LSI have no significant
correlation with LST at smaller scales. With the increase of scale, it showed a strong correlation
around the urban area.

• The wavelet coherence and Pearson correlation coefficients showed that the landscape composition
and spatial configuration have significant effects on the LST, but the landscape composition has a
greater impact on the LST in the Beijing metropolitan area.

• Totally, compared with Pearson correlation coefficient calculated by spatial rectangle sampling,
the wavelet coherence diagram is smoother and less affected by the location and rectangle size,
which is more conducive to describing the correlation between landscape pattern index and LST
at different scales and locations.
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