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Abstract: Urban green space (UGS) is considered a mitigative intervention for urban heat.
While increasing the UGS coverage is expected to reduce the urban heat, studies on the effects
of UGS configuration have produced inconsistent results. To investigate this inconsistency further,
this study conducted a multi-spatial and multi-temporal resolution analysis in the Addis Ababa city
metropolitan area for assessing the relationship between UGS patterns and land surface temperature
(LST). Landsat images were used to generate land cover and LST maps. Regression models were
developed to investigate whether controlling for the proportion of the green area (PGS), fragmentation,
shape, complexity, and proximity distance can affect surface temperature. Results indicated that the
UGS patches with aggregated, regular and simple shapes and connectivity throughout the urban
landscape were more effective in decreasing the LST as compared to the fragmented and complicated
spatial patterns. This finding highlighted that in addition to increasing the amount of UGS, optimizing
the spatial structure of UGS, could be an effective and useful action to mitigate the urban heat island
(UHI) impacts. Changing the spatial size had a significant influence on the interconnection between
LST and UGS patterns as well. It also noted that the spatial arrangement of UGS was more sensitive
to spatial scales than that of its composition. The relationship between the spatial configuration of
UGS and LST could be changed when applying different statistical methods. This result underlined
the importance of controlling the effects of the share of green spaces when calculating the impacts of
the spatial configuration of UGS on LST. Furthermore, the study highlighted that applying different
statistical approaches, spatial scale, and coverage of UGS can help determine the effectiveness of
the association between LST and UGS patterns. These outcomes provided new insights regarding
the inconsistent findings from earlier studies, which might be a result of the different approaches
considered. Indeed, these findings are expected to be of help more broadly for city planning and
urban heat mitigation.

Keywords: urban green space; land surface temperature; spatial patterns; urbanization; Addis Ababa

1. Introduction

Over half the global population dwells in cities [1]. Urbanization is typically associated with
providing better socio-economic conditions. On the other end, urbanization has also been associated
with environmental and ecological stresses [2–4]. One of the widely recorded and evident impacts
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associated with urbanization is the increased temperature over the cities relative to the adjacent
rural areas, or the urban heat island (UHI) [5,6]. Relative to the rural regions, urban areas have
distinct morphology, geometry, and infrastructure that contributes to the UHI. Changes in land
use and land cover result in an abundance of built impervious surfaces and depletion of green
vegetation covers, causing alterations in the surface energy fluxes [6–9], distribution and composition
of biodiversity [10,11], increasing anthropogenic heat releases [12], and human health [13,14]. As a
result, how to understand and mitigate these adverse impacts has become a key study topic in urban
ecology, geography, and climatology [15–18].

Spatial patterns and intensity of UHI are determined by the size of the population and impervious
surface [4,19–21], land cover types [15,22–25], spatial patterns of green space [16,26–28], urban spatial
structure [2,4,29–32], socioeconomic activities [33,34], and climate conditions [15,35–37]. Broadly,
two major categories of UHI have been identified depending upon the substrate of their influences:
air (atmospheric) and surface. The atmospheric UHI and the surface temperature are highly correlated
to health, though the air UHI impact is reflected to be intimately connected to human health [38].
The in-situ measurement techniques used for atmospheric UHI monitoring [37–40], have the advantages
of better temporal resolution but lack spatial resolution. Whereas the surface land surface temperature
(LST) is typically mapped using satellite data from thermal sensors [41–43]. Thermal remote sensing
makes use of non-contact instruments to sense thermal radiations and estimate surface or skin
temperatures. Nevertheless, thermal remote sensing has its limitation of poor temporal coverage,
coarse spatial resolution, and the requirement for clear weather conditions.

Many studies have estimated LST from medium-resolution remotely sensed satellite data
(e.g., Landsat) for long-term temperature observations from the early 1980s. For instance, the significant
cooling effects of urban green space (UGS) spatial patterns on the urban heat have been widely
demonstrated by previous researches [22,24,35,44–47]. Spatial pattern encompasses composition
(the amounts and diversities of land cover types), as well as configuration (their distribution and
structure). Urban landscapes are composed of several diverse land cover varieties, while built-up
and vegetated cover are two essential features in the UHI formation [48]. Accordingly, it is known
that increasing the amount of green space can significantly reduce the ambient air and land surface
temperature [16,43,44]. This correlation has been reported consistently and follows the first principle
surface radiative flux balance at the surface. Several studies also confirmed that the arrangement
(configuration) of green space had considerable impacts on land surface temperature [2,26,31,49,50].
However, these studies produced contradictory findings. Green space with higher patch density,
for instance, decreased LST in research carried out in the Phoenix metropolitan area, USA [51],
Lagos, Nigeria [39], Shanghai, China [16], regions across Illinois-Indiana-Ohio, USA [19], and Berlin,
Germany [52]. On the other hand, green space density was associated with increased LST in Jakarta,
Indonesia [53], and Nairobi, Kenya [54]. In addition, the edge density of green space had negatively
correlated to LST with several cities [42,43,49,51], and contrarily, it was positively correlated with
others [45,55]. These inconsistencies are likely due to the following reasons. (i) using a single snapshot
data for individual cities with multiple approaches [39,45]; (ii) implementing different images of data
with varied spatial resolutions [21,42,55,56]; (iii) applying a different statistical analysis [2,16,45,53];
and (iv) using a different spatial scale (analytical unit) such as circular plots [26,51,57,58], sub-zones
(16,30,43,45), pixels or grids [59], or city blocks [52].

Although the above-stated factors could be reasons for the inconsistency findings in the prior
studies, such contradictory results could restrict the application of findings for planning and managing
the urban green space. Hence, further investigation is warranted. Moreover, urban regions are complex
systems [20,60]. The phenomenon associated with urban landscape characteristics is scale-dependent.
When the scale of observation is altered, the correlation between pattern and process phenomenon
will change [16,42,45]. Hence, recognizing how the urban green space pattern influences the surface
energy balance and the variability of LST needs, the analytical size exemplifies the characteristic
spatial extent of LST and green space interaction. As noted in previous studies, there are two broad
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methods to accomplish this aim: (1) using a single city study to explore temporal dynamics [43,57],
and (2) a comparative study of multiple cities applying similar approaches [45,53]. The present study
adopts the first approach, to address the following questions: (i) does the spatial pattern of UGS affect
temperatures differently in the city with changes over time? and (ii) do different statistical approaches
or analytical units result in different effects of the spatial configuration of UGS on LST?

To answer these questions, the study analyzed the relationships between the LST and spatial
configuration of UGS by using different statistical methods, and varied spatial configuration across
different periods in the metropolitan area of Addis Ababa, Ethiopia. Landsat images were used to
produce the land cover and LST maps. As cities have mostly limited space for greening [16,29,43],
this study provides empirical results that can improve the understanding of the seemingly contradictory
impacts of the spatial configuration of UGS patterns on LST noted in earlier studies. Such empirical
results can potentially help planners and managers in regulating the spatial arrangement of urban
green space to mitigate UHI. Furthermore, the adopted integrated approaches, multiple statistical,
and landscape metrics analysis at varied analytical units, provide comprehensive and detailed
information for environmental planning issues.

2. Materials and Methods

2.1. Study Area

The study area, presented in Figure 1, includes the city of Addis Ababa and its surrounding
regions, which cover 1711.74 km2. It is located between 8◦54′00” N to 9◦8′00” N and 38◦36′00” E to
38◦54′00” E. The mean altitude of the study site is 2685 m above sea level. Addis Ababa is the capital,
and most important commercial, political, and industrial city of Ethiopia. The city also serves as the
seat of the African Union in addition to the Oromia National, Regional State. The city has a total area of
about 527 km2 and 4.3 million residents in the year 2017 [3], which cover 16.9 percent of the country’s
urban inhabitants and 3 percent of the country’s overall inhabitants. The city’s population is expected
to grow to 5.9 million in 2030 at a mean annual growth rate of 4.1 percent [61]. The climate in the study
site is warm and temperate. Typically, March, April, and May are the warmest months of the year,
with values of 25 ◦C for the mean highest temperatures. November and December are the coldest
months with the lowest average temperature values of 8 ◦C. The rainfall is moderate to heavy during
the summer (June to August) with a mean yearly rainfall of 1143 mm. The dispersed nature of Addis
Ababa city’s spatial growth [3] and the rapid reduction of urban green space [62,63] are likely to have
considerable impacts on spatial patterns of temperature [42,51,64]. Hence, Addis Ababa metropolitan
area was an interesting case study to explore the environmental effects of urbanization.
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2.2. Remote Sensing Data and Processing

Landsat is regularly adopted for computing LST in UHI investigations [43] and is openly available.
Three Landsat images for 1987, 1999, and 2019 acquired during the dry season (February) with clear
atmospheric conditions were used in this study. These images were chosen based on the availability
of the data for the same months. This month (February) was selected based on previous studies
that reported the UHI effects during the dry season were more significant [34,59]. The images were
downloaded from the United States Geological Survey. The details of the data implemented for the
study are shown in Table 1. The multispectral bands were applied for classification of land-use/land
cover (LULC) classes, while the thermal bands were used to calculate satellite brightness temperatures.

Table 1. Remotely sensed data information for the study sites.

Satellite Sensor Path/Row Acquisition Date Season Source

Landsat-5 TM
168/54

1987/02/09
Dry

Landsat-5 TM 1999/02/10 www.earthexplorer.usgs.gov

Landsat-8 OLI/TIRS 2019/02/01

Digital elevation model (DEM) data (30-m spatial resolution)

2.3. Land Cover Mapping

The general idea of remotely sensed data and the methodological method employed for this
investigation are illustrated in Figure 2 flow diagram.
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Satellite data pre-processing, spectral, spatial, and radiometric rectifications were done using
standard remote sensing methods [65–67]. The study then mapped the LULC classes based on
30 m resolution of Landsat images, bands 5-4-3 for Landsat 8 OLI, and bands 4-3-2 for Landsat-5.
Depending on its spectral signature, each pixel in the image was allocated to the category that fits
best. Ancillary data, such as Google Earth images, were used to help in classification. The five
defined categories were: built-up area, bare land, water body, vegetation cover, and grassland.
A supervised classification approach with the support vector machine (SVM) classifier algorithm was
employed. The correctness of land cover classified results was validated by the accuracy assessment
approaches [68–70]. The study further merged the vegetation cover, grasslands, and water body as
UGS to analyze the relationships between the spatial patterns of UGS and land LST.

2.4. Land Surface Temperature Retrieval

Several factors affect LST, including surface emissivity [71,72], elevation [19,73], wind velocity,
time of day, and the phenomena of precipitation [74], clouds [4,43,72], atmospheric situations,
satellite sensor features, and the mathematical approaches used to retrieve LST [75,76]. It is not feasible
to explicitly account for all these components in this study due to the following reasons: (1) the
atmospheric data are not available before January 2000. (2) Though the atmospheric rectification based
on satellite imagery using generic parameters is important, it has been revealed to the result in only a
minor error for LST retrieval [77]. (3) This study implemented LST for the exploration of UGS patterns’
effect on urban land temperatures.

2.4.1. Retrieval of Spectral Radiance

To estimate LST, the study used thermal infrared band 6 (10.40–12.50 µm) for Landsat 5-TM
and band 10 for Landsat-8 OLI (10.3–11.3 µm) with resolutions of 120 m and 100 m, respectively.
As the Landsat images were produced from continuous digital values (digital numbers), to obtain LST,
the digital number of pixels for each thermal image was converted to the top-of-atmosphere (TOA)
radiance using the Equations (1) and (2) [4,30,64,65]. For Landsat 5-TM (TIR band 6), Equation (1) and
for Landsat 8 (TIR band 10), Equation (2) were used as follows:

Lλ =
Lmax − Lmin

QCALmax − QCALmin
× (QCAL− QCALmin) + Lmin (1)

where:

(a) Lλ—TOA Spectral Radiance
(
W/

(
m2
× sr × µm

))
;

(b) LMAXλ—the spectral radiance (QCALMAX (W/(m2
× sr × µm)));

(c) LMINλ—the spectral radiance (QCALMIN
(
W/

(
m2
× sr × µm

))
);

(d) LMINλ = 1.238; LMAXλ = 15.303;
(e) QCAL—the quantized rectified pixel value in Digital Numbers (DN); and
(f) QCALMAX and QCALMIN the—maximum and minimum quantized adjusted pixel values

matching to LMAXλ in DN = 255 and LMINλ in DN = 1, respectively.

Lλ = Mλ × QCALλ + Aλ (2)

where, Mλ and Aλ = Radiance multiplicative and additive scaling factor for the band, respectively,
and QCALλ= the quantized calibrated pixel value in DN. The study then converted the Lλ values to
at-satellite brightness temperature (TB) using (Equation (3)).

TB =
K2

ln
( K1

Lλ
+ 1

) (3)
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where, TB values in Kelvin (K); K1, K2 = Thermal conversion constants for the band.

2.4.2. Estimation of the Land Surface Emissivity

Land surface emissivity (ε) is one of the essential parameters in retrieving LST. Surface materials
have different emissivity due to their different viewing angles, materials, and roughness. Normalized
difference vegetation index (NDVI) is one of the most commonly applied vegetation indexes. NDVI is
calculated from the red (R) and near-infrared (NIR) bands—for Landsat 5, and 8, using Equation (4).

NDVI =
NIR − RED
NIR + RED

(4)

where, RED is a red spectral band, and NIR is a near-infrared spectral band of Landsat images. Hence,
to compute the LSE, the NDVI-based emissivity approach proposed by Van de Griend and Owe [78]
was applied in this study (Equation (5)).

ε = εvPv + εs(1 − Pv) + dε (5)

where, εs and εv denote the emissivity of bare soil pixels and vegetation, respectively. Where Pv

indicates the fraction of vegetation [79], which was calculated using Equation (6):

Pv =

[
NDVI − NDVImin

NDVImax − NDVImin

]2

(6)

In the above, NDVImin and NDVImax are 0.2 and 0.5, respectively in a universal condition [80].
The term dε includes geometrical distribution influence of the internal reflections and natural surface.
As suggested by Valor and Caselles [81], the values of εs and εv are 0.960 and 0.985, respectively,
for vegetation structures and unknown emissivity. The study also applied these emissivity values in the
calculation. Moreover, for rough and heterogeneous surfaces, dε can increase to 2% of emissivity [80]
and the values of dε are calculated as proposed by Sobrino et al. [82], using Equation (7):

dε = (1 − εs)(1 − Pv) × F × εs (7)

where, F is a shape factor with a mean value of 0.55, assuming different types of geometrical
distributions [82]. Finally, the rectified land surface temperature maps (Figure 3) were produced using
the Equation (8) as:

LST =
TB(

1 + λ
( TB

p

)
× ln [ε]

) (8)

where, LST = the Land Surface Temperature in Kelvin (K); p = hc/k (1.438 × 10−2 mk); h = Planck
constant (6.626 × 10−34J s−1), and c = velocity of light (2.998 × 108 ms−1); k = Boltzmann constant
(1.38 × 10−23

− J K−1), and λ = the wavelength of emitted radiance. To obtain the LST values in Celsius
(◦C), 273.15 was subtracted from the original values (K). All steps were carried out by developing a
raster calculator model using ArcGIS version 10.4.1.
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2.5. The Spatial Pattern of Urban Green Space Analysis

Four landscape metrics: (1) Percent cover of green space (PGS) (among composition metrics),
and three configuration metrics: (2) patch density (PD), (3) edge density (ED), and (4) mean
nearest-neighbor distance (MNN) (Table 2) were applied to compute the spatial patterns of UGS.
These metrics denote the main characteristics that can describe the spatial patterns of UGS,
including composition, complexity, configuration, and fragmentation of patches. These metrics were
chosen based on their prevalence in the scientific literature and environmental significance [2,16,39,49,53].
The spatial metrics are sensitive to scales in the spatial pattern explorations [16,45,57]. The dependency
on the scale also impacts on the results of UGS and LST analysis [16,45]. Thus, the study used 9 varied
sizes of analytical units starting from 120 m (which is equal to the pixel size of the TM thermal band) to
1080 m. Accordingly, 120 m × 120 m, 240 m × 240 m, 360 m × 360 m, 480 m × 480 m, 600 m × 600 m,
720 m × 720 m, 840 m × 840 m, 960 m × 960 m, and 1080 m × 1080 m (Figure 4) were applied to
determine the effects of spatial scale and distinguish the optimum spatial size in the UGS and LST
relationship analysis. The study then calculated the chosen metrics and the values over generated grids
using the Patch Analyst extension in ArcGIS. The LST for every analytical unit was computed using the
developed-in Zonal Statistic tool of ArcMap ArcMap 10.4.1.
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Table 2. Chosen landscape metrics implemented from McGarigal [83].

Metric Formula Units Narrative

Percent of urban green
spaces (PGS) (%) PGS = pi=

∑m
j=1 aji(100)

A
Percent

pi = share of the landscape occupied by
patch type (class) i.

A = area of entire landscape (m2).

Patch density (PD) PD = ni
A (10, 000)(100) Number/100 hectares ni = number of patches in the landscape

of patch type (class) i.

Edge density (ED) ED =
∑m

k=1 eik
A (10, 000) Meter/hectare eik = whole length (m) of edge in

landscape containing patch type (class) i.

Mean nearest-neighbor
distance (MNN)

MNN = hij Hectare hij = distance (m) from patch ij to closest
adjoining patch of the same type (class).Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 24 
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2.6. Statistical Analysis

2.6.1. Correlation Analysis

A Pearson correlation matrix was built based on the correlation between LST and the spatial
patterns of the UGS. A partial correlation analysis was performed to assess the configuration metrics
(PD, ED, and MNN) and the LST by controlling for the influence of the PGS. Controlling for the
influence of PGS is important, as it had the highest correlation with the configuration metrics as well
as the LST across the study period in almost all tested spatial scales. Thus, the Pearson correlation
evaluation is reliable to get a spurious connection between configuration metrics and LST.

2.6.2. Regression Analysis

For each of the studied period, multiple regression models were built to select the best model that
describes the highest variance in LST. To avoid redundancy (inter-correlation) within the chosen spatial
metrics [43,84], a multi-collinearity condition number (MCN) coupled with the variance inflation factor
(VIF), for each metric was calculated. The values of MCN and VIF for each independent variable were
less than 30 and 7.5, respectively, which is acceptable for modeling [43].

The study then employed the ordinary least squares (OLS) for every built model, with the
assumption of independent error terms. OLS is usually the initial step for diagnostic and to use
as a benchmark for comparison. This method neglected the issue of spatial autocorrelation [45,53].
Spatial data contains spatial dependence and heterogeneity from spatial autocorrelation, which can
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amplify confounding in the analysis. Spatial clustering in error may come from spatial heterogeneity
or spatial dependence. To address this, spatial auto-regression (SAR) models that incorporated spatial
autocorrelation into the modeling are more suitable to explore the association between spatial patterns
of UGS and LST [43,45,85]. Regarding SAR, the neighborhood interconnection of the response variable
was estimated by a (n × n) framework of spatial weights and was incorporated in the ordinary
multiple linear regression to consider spatial autocorrelation [86]. Accordingly, two spatial regression
approaches: spatial lag and error models were applied to investigate the impacts of the spatial pattern
of UGS on LST. The spatial lag model expects that the spatial autoregressive occurs only in the response
variable [86]. The spatial lag model is expressed in Equation (9).

y = ρWy + βX + ε (9)

where Wy is the spatial lag variable, ρ is a spatial autoregressive coefficient, X is the independent
regression variable, β is the regression coefficients, and ε is the error term vector.

Conversely, the spatial error model considers the spatial impacts that are not wholly defined by
the factors within the error terms and is presented in Equation (10).

y = βX + λWµ + ε (10)

where Wµ is a vector of spatially lagged errors, and λ is a coefficient of spatial autoregressive
The study implemented the Lagrange Multiplier statistics to match the applied modeling methods

for each year. The standard coefficients (beta weights) were used to examine the relative significance of
composition and configuration metrics on estimating LST [43,45]. The regression model was run using
GEODA version 1.8.16 [87].

2.7. Summary of Experimental Steps

Figure 5 illustrates three series of tasks that were conducted to analyze the spatial patterns of
UGS and LST. These are (1) classification of the LULC and validation process; (2) LST analysis; and (3)
examining the effects of UGS patterns on the LST.
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3. Results

3.1. LULC Changes in Addis Ababa Metropolitan Regions

Figure 6 shows the changes in the land use pattern of the Addis Ababa metropolitan regions from
the 1987 to 2019 study period. The area of non-urban areas (vegetation, grass, agriculture, and water)
has rapidly been reduced across the study periods. In contrast, the area of the urban region has
significantly increased over the past 32 years (Figure 6). The overall and kappa coefficients of LULC
classes were 87.8, 88.2, and 89.4 in 1987, 1999, and 2019, respectively. The kappa values were 0.85 for
1987 and 1999, respectively, and 0.88 for 2019. These values indicated that the generated data had
responsibly high accuracy.
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3.2. Space and Time-Based Pattern of UGS in the Addis Ababa Metropolitan Area

Table 3 shows the relative change patterns of UGS and the corresponding landscape metrics.
The proportion of urban green space (PGS) in Addis Ababa metropolitan decreased gradually from
44.3% in 1987 to 33.4% in 1999, followed by a considerable decrease to 26.3% in 2019 (Table 3). In terms
of fragmentation and aggregation, the PD values of the UGS gradually increased between 1987 and
1999, and then sharply increased further in 2019. The result indicated that the UGS was disaggregated
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across the study periods, but UGS patch fragmentation was more significant in 2019, as evidenced by a
sharp rise in the PD values: 7 in 1999 to 27 in 2019. The shape complexity of UGS, which was calculated
by ED, revealed that changes in the overall complexity of the patches became more complex and
irregular patterns from 1987 to 2019. This trend was high during the 1999–2019 periods, as evidenced
by a rapid increase in the ED values, from 111.4 m/ha in 1999 to 2015.1 m/ha in 2019 (Table 3). Whereas,
the connectivity among UGS patches increased notably from 1987 to 2019 and was generally increased
by 41 m during this study period (from 42 m of MNN in 1987 to 91.36 m in 2019) (Table 3).

Table 3. Landscape metrics results from 1987 to 2019.

Metrics Unit 1987 1999 2019

PGS % 44.33 38.36 26.31
PD Number/100 ha 5 7 27
ED m/ha 96.30 111.39 215.14

MNN m 42.00 57.88 91.36

In general, it was inferred that Addis Ababa lost its green space from 1987 to 2019, at about
12% between 1999 and 2019. Concerning the spatial patterns, UGS patches have become smaller,
more complex in shape, and more fragmented overall.

3.3. Effects of Spatial Patterns of UGS on LST

Across the study periods, the Pearson correlation analysis revealed that most metrics were
significant at all analytical units, except MNN at large spatial scales (Table 4). Composition metrics
(PGS) showed a negative correlation with LST, suggesting that the more UGS patches give a higher
cooling effect. Among the configuration metrics, PD revealed a positive correlation with LST,
indicating that the low fragmented UGS patches show a more effective cooling signature. In contrast,
the ED had a negative correlation with LST across all analytical units. In contrast, MNN revealed a
positive, significant correlation with LST only at analytical units of 120 m, 240 m, and 360 m. Similar to
PGS, the intensity of the correlations between the three configuration metrics (PD, ED, and MNN) and
LST also generally decreased with the increase of the analysis scale.

After controlling for the impact of PGS, the correlations (i.e., partial correlations) between LST and
configuration metrics were significantly changed and are shown in Table 4. From the table, four features
were notable: (i) the intensity of the partial correlations, calculated by the correlation coefficients
significantly declined relative to their equivalent Pearson correlation coefficients. (ii) Some configuration
metrics and LST became insignificant (e.g., MNN). (iii) Significantly correlated at only smaller scales
(e.g., ED was significantly correlated to LST at less than or equal to 360 m, and reduced as the spatial
magnitude increased), and (iv) More importantly, the association between some configuration metrics
and LST shifted their directions. For instance, the correlation between MNN and LST were shifted from
positive to negative when the analytical unit was between 360 and 960 m, 360 to 840 m, and 360 to 840 m
in the year 1987, 1999, and 2019, respectively. In addition, the correlation of ED with LST was shifted
from negative to positive across all analytical units except at 1080 m in the year 1987.
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Table 4. Correlation coefficients between Landscape metrics and LST. The bold rows indicate the partial
correlation analysis, where for proportion of urban green space (PGS), the control variables were the
configuration metrics, and for configuration metrics, the control variable was PGS.

Year Variable
Scale

120 m 240 m 360 m 480 m 600 m 720 m 840 m 960 m 1080 m

1987

PGS
−0.658 ** −0.647 ** −0.661 ** −0.610 ** −0.529 ** −0.509 ** −0.449 ** −0.427 ** −0.470 **
−0.465 ** −0.347 ** −0.305 ** −0.300 ** −0.298 ** −0.146 * −0.103 −0.179 * −0.175 *

PD
0.570 ** 0.625 ** 0.631 ** 0.598 ** 0.503 ** 0.552 ** 0.467 ** 0.375 ** 0.429 **
0.259 ** 0.282 ** 0.230 ** 0.267 ** 0.205 ** 0.277 ** 0.219 ** 0.019 0.001

ED
−0.484 ** −0.536 ** −0.586 ** −0.513 ** −0.417 ** −0.447 ** −0.418 ** −0.380 ** −0.410 **
0.209 ** 0.161 * 0.077 0.166 * 0.192 * 0.089 0.077 0.032 −0.018

MNN
0.392 ** 0.350 ** 0.194 ** 0.038 0.119 0.087 0.016 0.020 0.050

0.103 0.105 −0.008 −0.076 −0.078 −0.028 −0.135 −0.022 0.052

1999

PGS
−0.649 ** −0.686 ** −0.606 ** −0.566 ** −0.514 ** −0.555 ** −0.530 ** −0.468 ** −0.420 **
−0.483 ** −0.468 ** −0.376 −0.337 ** −0.305 ** −0.394 ** −0.235 ** −0.289 ** −0.279 **

PD
0.548 ** 0.581 ** 0.519 ** 0.482 ** 0.453 ** 0.449 ** 0.501 ** 0.406 ** 0.352 **
0.282 ** 0.214 ** 0.148 0.129 0.113 * 0.071 0.131 0.021 −0.002

ED
−0.414 ** −0.492 ** −0.466 ** −0.457 ** −0.397 ** −0.405 ** −0.450 ** −0.346 ** −0.325 **
0.194 ** 0.183 ** 0.126 0.112 * 0.143 * 0.188 * 0.104 0.108 0.133

MNN
0.262 ** 0.398 ** 0.142 * 0.111 * 0.146 * 0.055 0.067 0.104 −0.004

0.023 0.144 * −0.045 −0.079 −0.001 −0.102 −0.042 0.006 −0.042

2019

PGS
−0.797 ** −0.823 ** −0.769 ** −0.708 ** −0.733 ** −0.652 ** −0.613 ** −0.551 ** −0.490 **
−0.613 ** −0.580 ** −0.487 ** −0.410 ** −0.400 ** −0.246 ** −0.249 ** −0.253 ** −0.098

PD
0.740 ** 0.708 ** 0.649 ** 0.612 ** 0.649 ** 0.598 ** 0.580 ** 0.504 ** 0.494 **
0.466 ** 0.245 ** 0.172 * 0.177 * 0.195 * 0.122 * 0.195 * 0.058 0.111

ED
−0.623 ** −0.673 ** −0.645 ** −0.587 ** −0.624 ** −0.550 ** −0.562 ** −0.477 ** −0.436 **

0.118 * 0.053 0.002 0.037 0.054 0.065 0.126 0.045 −0.004

MNN
0.294 ** 0.308 ** 0.139 ** 0.209 ** 0.120 * 0.098 −0.069 0.054 0.053

0.026 0.050 −0.023 −0.030 −0.018 −0.064 −0.019 0.022 0.027

** p < 0.01, * p < 0.05.

3.4. Influences of UGS Spatial Size Pattern on LST

The correlation between the implemented landscape metrics and LST appears to be regularly
decreasing with spatial size (Table 4). Whereas, some configuration metrics can influence on LST
separately of the composition metrics at smaller scales. For example, the correlation of PD continued to
be significant with LST at analytical units between 120 m to 600 m. This tendency is also noted when
considering the influence of PGS across the study periods. The results imply that the patch density has
a more prominent effect on LST than the other configuration metrics at smaller scales. It is noted that
the optimum spatial scale of UGS for exploring the relationship between LST and spatial metrics could
be between 120–600 m.

Indeed, this study did not find nor does it seem feasible to precisely identify a scale at which
the correlation between LST and metrics converge. However, most metrics were generally more
predictable at 240 m. For instance, after controlling for the impact of composition metrics (PGS),
connectivity between the green spaces revealed a significant positive effect on LST only on the spatial
scale of 240 m, as evidenced by MNN values in Table 4. Thus, 240 m × 240 m was applied as the
optimum size for further analysis.

3.5. The Relative Significance of Composition and Configuration of UGS on LST

Table 5 shows that the results from spatial error, Lag, and OLS linear regression models, the PGS
had significant negative impacts on LST, across all the study periods. Additionally, PGS was the most
significant indicator of LST, playing a considerably more significant role in forecasting LST relative to
the other spatial configuration factors (Table 5). Among the three configuration metrics, PD played a
much more significant and positive effect in estimating LST (Table 5). Other metrics, ED and MNN
had positively significant effects on LST in the years 1985 and 1999.
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Table 5. Results for regression modeling. The Z-value shows the relative implication of each variable
in the model. R2 (coefficient of determination) and AIC (Akaike info criterion) reveal the general
enactment of each model.

Year Model Variable Coefficient R2 Z-Value AIC

1987

Spatial error

PGS −2.814 ** 0.482 −4.620 831.739
ED 3.589 ** 2.833
PD 0.203 ** 3.809

MNN 0.001 * 2.259

Spatial LAG

PGS −2.822 ** 0.480 −4.572 831.379
ED 3.409 ** 2.833
PD 0.217 ** 4.061

MNN 0.001 * 2.172

OLS

PGS −3.197 ** 0.463 −5.157 835.587
ED 3.252 ** 2.499
PD 0.196 ** 3.565

MNN 0.001 * 2.054

1999

Spatial error

PGS −4.226 ** 0.584 −8.091 829.129
ED 4.654 ** 3.929
PD 0.152 ** 3.783

MNN 0.001 1.372

Spatial LAG

PGS −3.916 ** 0.565 −7.432 836.386
ED 4.187 ** 3.558
PD 0.145 ** 3.419

MNN 0.001 1.564

OLS

PGS −0.188 ** 0.507 −7.494 854.861
ED 3.131 * 2.471
PD 0.125 ** 2.726

MNN 0.001 1.627

2019

Spatial error

PGS −4.517 ** 0.661 −7.571 530.529
PD 0.121 ** 2.914
ED 0.442 0.472

MNN 0.0003 0.7335

Spatial LAG

PGS −4.481 ** 0.655 −7.460 531.278
PD 0.121 ** 2.928
ED 0.640 0.667

MNN 0.0002 0.5667

OLS

PGS −4.468 * 0.634 −7.081 536.774
PD 0.118 ** 2.705
ED 0.201 0.203

MNN 0.0002 0.6108

** p < 0.01, * p < 0.05.

The results indicated that composition, fragmentation, and shape complexity characteristics
of UGS spatial patterns affected LST. Moreover, the results showed that the spatial error model
outperformed its correspondent Lag, and OLS models, for each of the periods. This was evidenced by
the higher R2 values and the lower AIC of the spatial error model compared to the other two models
(Table 5).

4. Discussion

The relative importance of both spatial composition and configuration of UGS on LST was almost
similar across the study periods. PGS was the critical factor in estimating LST. This is consistent with
prior studies that suggested that the amount of green space plays a more important role in the cooling
effects of the city than their configurations [42,45,46,85]. The overall results suggest that the fraction of
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green patches, their geometrics shape, degree of aggregation and fragmentation, and the proximity
distance of patches to each other, are the main determinants of LST in urban regions. In other words,
for the greater cooling effect, more patches of UGS distribution and a reasonable spatial configuration
are important considerations to impact LST and reduce the urban heat.

4.1. Scale-Dependence of UGS Spatial Patterns and LST Relationships

The association between PGS and LST was negative at all spatial scales, across the study periods.
This is consistent with the past results that showed that the amount of vegetation cover is a significant
feature in mitigating UHI effects [32,45,53]. The study also found that increasing the spatial scale,
the relationship between landscape metrics and LST, including both composition and configuration,
becomes weaker, highlighting a scale effect. The results are consistent with the recent studies found
elsewhere [46]. Furthermore, a nonlinear relation is noted between LST and vegetation cover- the LST
reduction by enhancing the amount of vegetation cover was relatively lower at larger scales (Table 6).
This is likely due to higher diversity in green features of land covers and complex combinations
typically occurring with the higher green cover than for small scales. Hence, smaller green fractions
are likely less sensitive to the effect of changes in the proportion of vegetation cover on LST.

Table 6. Results from OLS linear regression. The effects of UGS on LST was predicted by PGS.

Year
Scale

120 m 240 m 360 m 480 m 600 m 720 m 840 m 960 m 1080 m

1987
Coef. −0.894 ** −0.508 ** −0.507 ** −0.573 ** −0.605 ** −0.307 * −0.230 * −0.469 * −0.428 *

R2 0.486 0.475 0.467 0.419 0.303 0.320 0.241 0.184 0.225

1999
Coef. −0.602 ** −0.633 ** −0.621 ** −5.133 ** −4.158 ** −4.158 ** −2.996 ** −0.660 ** −0.728 **

R2 0.470 0.510 0.384 0.335 0.286 0.333 0.298 0.237 0.195

2019
Coef. −0.585 ** −0.219 ** −0.640 ** −0.599 ** −0.626 ** −0.587 ** −0.647 ** −0.507 * −0.268 *

R2 0.726 0.707 0.606 0.518 0.556 0.441 0.401 0.312 0.258

** p < 0.01, * p < 0.05.

As noted, while the study did not find the exact spatial scale at which the greatest correlation
has occurred, but it appeared that most metrics became more predictable at 240 m. This could be
a robust feature considering the following three reasons, as demonstrated in this study. Primarily,
after controlling for the effects of PGS, patch density of UGS revealed significant positive impacts on
LST at the spatial extents between 120 m and 600 m in each studied period (see Table 4). Secondly,
after controlling for the impact of composition metrics, connectivity between the green spaces revealed
a significant positive effect on LST only on the spatial scale of 240 m in the year 1999, as evidenced by
MNN values in Table 4. Third, such spatial scales were also suggested in earlier studies [28,43,57,58],
though varied data used and approaches applied. Together this suggests that a spatial scale around
240 m could be an optimal spatial size to investigate the connection between UGS spatial patterns
and LST.

The study results also revealed that spatial autocorrelation affected the association between LST
and landscape metrics. Results from the spatial error and spatial lag models were higher than OLS in
terms of R2, regression coefficients, and AIC values. This indicated that temperature in a specific region
was affected by and affected the temperature in its surrounding samples (via advection). A similar
finding was also suggested by [45,85]. The findings indicated that the LST at a location was not
only dependent on the spatial arrangement of UGS in that region but also broader distribution in
nearby areas.

4.2. The Spatial Composition and Configuration of UGS Effects on LST

While the amount of urban green space was the critical reason for cooling urban LST, urban greens
arrangement was also associated with LST distributions. Arrangement of green space, including patch
density, patches connectivity, shape complexity, and edge density, revealed positive effects on LST.



Remote Sens. 2020, 12, 2876 15 of 24

These spatial configurations of urban green spaces’ effects on LST; however, varied with the earlier
studies in terms of significance, direction, and magnitude. The positive association between PD and
LST in this study, for instance, is consistent with studies [42,53,85], suggesting aggregated greenspace
is better than a fragmented greenspace in reducing LST, while others reported the opposite [16,49,51].
This study found that all analytical units revealed a positive correlation of the green space patch
density with LST. In addition, after controlling for the effects of a green space percent, the PD was
positively significant to LST within 120–600 m across the study periods. Similarly, the contradictory
results of UGS configuration effects on the LST in different cities were documented by several studies.
Edge density of UGS, for instance, was found to be negatively associated with LST in Kansas, USA [42],
Baltimore, USA [45], and Berlin, Germany [52], but positive in Singapore [53]. Rising of the edge
density may potentially result in a rise of shade offered by vegetation to adjoining surfaces [51,85].
It may also increase energy flow and coupling between vegetation and their neighboring areas [56].
Thereby, taking into account only the process of shading, rising edge density will result in lower LST.
Conversely, high edge density is mostly a result of more disaggregated UGS. As small and dispersed
UGS has a higher temperature than that of aggregated and larger patches [43,53], which can decrease
the effectiveness of surface albedo and evapotranspiration. This study also highlighted that the edge
density of UGS had positive effects on LST across the study periods, suggesting that the complex shape
and irregular patches of green spaces, the higher in LST. In other words, the UGS with simpler and
regular patches leads to reduced LST.

The inconsistent results of configuration metrics reported by different researchers are likely due to
the amount of UGS considered in the studies. For instance, in 1987, the amount of UGS was 44.3%.
This figure reduced to 38.4% in 1999 and finally reached 26.3% in 2019 (see Table 3). At the same time,
the effects of configuration metrics were changed in terms of direction, significance, and magnitude.
For instance, the average nearest distances among each patch of UGS had a positive impact on LST in
1987 (see Table 4). However, in the case of data for 2019, it revealed insignificant, even changed its
direction to negative at larger scales (see Table 4). This suggests that the amounts of green spaces can
decide the effectiveness of configuration metrics to predict the relationship between LST and UGS
patterns. Simultaneously, high fragmentation, complex shape pattern, and decreasing the connectivity
among each patch observed in 2019 than the other periods. This may suggest that when patches are
highly complicated and disconnected, the configuration’s role could be declined. These outcomes can
improve the understanding of the irregularity impacts of the spatial configuration of UGS on LST from
earlier studies.

Furthermore, the irregularity impacts of configuration metrics on LST could be due to the spatial
scale effects. The effects of configuration metrics were variable across the study periods. The average
nearest distance between patches (MNN) was, for instance, notable in scale dependence with LST,
where the relationships of MNN shifted from positive at a smaller spatial size to negative at the larger
spatial size (see Table 4). That is, the correlation between configuration patterns of UGS and LST
was sensitive to the spatial scales. The multi-scale analysis can assist resolve these inconsistencies.
By exploring the relationship between UGS and LST pattern metrics under various analytical units,
the insight into the impacts of UGS patterns on LST can be enhanced.

In general, considering the significant impacts of spatial size [16,28,43,45], the satellite image
resolution [42,55], and the choice of statistical approach [51,57], comparing the UGS and LST
relations across the studies could be challenging. This multi-scale and multi-year analysis with
medium-resolution thermal data assists the interpretation and extension of prior that considered a
single snapshot data in multiple cities, e.g., [39,45]. This could have the potential to identify the spatial
composition and configuration relationships with LST due to its multiple periods in the same area to
confirm its consistency.
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4.3. Methodological Implications for Urban Greenspace Spatial Pattern Analysis

The study findings emphasize the need for controlling the influences of the percentage of green
spaces when analyzing the spatial arrangement of UGS impacts on LST. For each studied period,
after controlling for the influences of PGS, the association between LST and configuration metrics
radically shifted, related to outcomes from the Pearson correlation analysis. The correlation between
edge density and LTS, for instance, changed from negative to positive at all scales across the study
periods. Additionally, the correlation between LTS and average nearest neighbor patch distance has
shifted from positive to negative after or equal to 480 m. This is due to most of the configuration factors
naturally correlated to PGS (Table A1; [45,85]). For instance, edge density had a significant negative
connection with LST as per Pearson correlation analysis (r = −0.54, −0.49, and −0.67, p < 0.01 Table 3) in
1987, 1999, and 2019, respectively at the scale of 240 m. The correlation was due to the highly significant
positive association between edge density and PGS (r = 0.83, 0.77, and 0.74, p < 0.01 Table A1) in 1987,
1999, and 2019, respectively. After controlling for the influences of PGS, edge density indeed had a
significant positive connection with LST. Thus, it is important to apply a statistical approach such as
multiple regression models and partial correlation, instead of Pearson correlation, to assess the relative
contributions configuration and percent cover of green spaces to the LST. Applying Pearson correlation
analysis alone could produce distorted results.

This research also suggested that the spatial pattern of UGS in Addis Ababa can be efficiently
computed using only two metrics: PD and PGS, which represent configuration and composition
features of spatial patterns. Each of these two metrics is the most important metrics related to their
matching element, as distinguished by OLS, Lag, and Spatial error models. These metrics could be
steadily applied to describe the temporal dynamics in LST distributions. These findings can help by
minimizing the need to measure the redundant metrics as well as interpreting multiple metrics.

Furthermore, statistical methods, such as structural equation modeling and patch analysis, have
been increasingly applied to detect the complexity and nested associations among social situations,
land cover, landscape patterns, and surface temperatures [42,88]. Such assessments potentially assist
in detecting the direct or indirect influences of the spatial structure of UGS on LST. Among the
demonstrated spatial regression approaches, the spatial error model was more convenient than OLS
in predicting LST, based on the pattern of UGS, as evidenced by their regression coefficient, R2,
and AIC, across the study periods. This is especially relevant considering that the spatial patterns
of UGS and LST are more likely to invalidate the assumption of independence among each patch,
which did not occur in the frequently used statistical approaches such as OLS and Pearson correlation
analysis. This study, therefore, again highlights that for spatial datasets, including the exploration
of UGS spatial pattern effects on LST, the spatial regression approaches offer more robust evidence
by incorporating spatial autocorrelation into the modeling to overcome the spatial clustering error
from spatial dependence. These findings thus underlined the results of earlier studies [43,85] that the
importance of the spatial regression model can overcome the concerns of spatial autocorrelation when
exploring LST-UGS pattern relationships, which cannot be considered by OLS.

5. Conclusions

Urban green space has considerable cooling potential in mitigating urban heat. It is well-understood
that increasing the amount of UGS can reduce the temperature of the city, but studies on the effects of UGS
configuration have revealed inconsistent results. This study conducted multi-temporal, multiple statistical
assessments, and varied scales to examine the connection between LST and green space patterns in
Addis Ababa metropolitan area and further investigate the reasons for the inconsistency in prior
studies. Landsat images were used to generate the LST and land cover maps. The main findings are
summarized here.
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(1) The UGS patches with aggregated, regular and simple shape and connectivity across the
urban landscape are more effective in decreasing the LST than that of fragmented and complicated
shape patterns. Thus, in addition to simply increasing the amount of UGS, optimizing the spatial
structure of UGS, can be an effective and useful action to mitigate the UHI impacts. (2) The study also
confirmed that the spatial pattern of UGS (in Addis Ababa) could be efficiently computed using only
two metrics: PGS and PD, which represent, composition and configuration characteristics of spatial
patterns. (3) Changing the spatial size had a considerable influence on the association between LST and
UGS patterns. As the spatial scale increased, the influences of landscape metrics on LST, including both
composition and configuration, become weaker, indicating spatial scale effects. (4) It is also noted that
the configuration metrics (PD, ED, and MNN) are more sensitive to spatial scale than composition
metrics (PGS). (5) The relationships between configuration metrics and LST could be changed when
applying different statistical methods. This result underlines the importance of controlling the effects of
PGS when calculating the impacts of the spatial configuration of UGS on LST. These outcomes provide
additional understanding of the varying findings from earlier studies, likely confounded by the different
approaches used (e.g., Partial correlation analysis versus Pearson correlation). (6) The relationships
between LST and landscape metrics could be affected by spatial autocorrelation. In general, the study
highlighted that applying different statistical approaches, spatial scale, and abundance of UGS can
appropriately determine the effectiveness of configuration metrics to predict the association between
LST and UGS patterns.

Urban heat island reduction is a potential mitigative strategy to decrease heat stress.
Urban planning can increase the resilience of urban regions through enhancements to the green
infrastructure and built environments. The findings of this study have potential implications for urban
planners, suggesting more green space distribution with careful consideration of spatial configuration
is important for effectively achieving the reduction in urban heating. Green infrastructure planning
needs to consider both composition and configuration analyses for scenario planning. However, this
study did not calculate the intensity of UHI, and future studies can incorporate it.
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Appendix A

Table A1. Expressive statistics of landscape metrics of UGS and LST.

Scale Variables
1987 1999 2019

MNN ED PD PGS MNN ED PD PGS MNN ED PD PGS

120 m

MNN 1 1 1
ED −0.488 ** 1 −0.452 ** 1 −0.372 ** 1
PD 0.503 ** −0.738 ** 1 0.317 ** −0.686 ** 1 0.381 ** −0.734 ** 1

PGS −0.458 ** 0.788 ** −0.683 ** 1 −0.413 ** 0.703 ** −0.647 ** 1 −0.261 ** 0.689 ** −0.647 ** 1

240 m

MNN 1 1 1
ED −0.385 ** 1 −0.421 ** 1 −0.265 ** 1
PD 0.402 ** −0.824 ** 1 0.401 ** −0.743 ** 1 0.335 ** −0.727 ** 1

PGS −0.394 ** 0.830 ** −0.780 ** 1 −0.443 ** 0.773 ** −0.724 ** 1 −0.311 ** 0.739 ** −0.716 ** 1

360 m

MNN 1 1 1
ED −0.177 ** 1 −0.103 1 0.001 1
PD 0.226 ** −0.837 ** 1 0.158 ** −0.779 ** 1 0.135 ** −0.762 ** 1

PGS −0.293 ** 0.866 ** −0.808 ** 1 −0.270 ** 0.818 ** −0.765 ** 1 −0.204 ** 0.795 ** −0.737 ** 1

480 m

MNN 1 1 1
ED 0.156 * 1 −0.048 1 −0.074 1
PD −0.005 −0.824 ** 1 0.296 ** −0.775 ** 1 0.335 ** −0.731 ** 1

PGS −0.098 * 0.868 ** −0.813 ** 1 −0.228 ** 0.848 −0.774 ** 1 −0.277 ** 0.811 ** −0.747 ** 1

600 m

MNN 1 1
ED 0.022 * 1 0.052 * 0.140 * 1
PD 0.237 ** −0.820 ** 1 0.198 ** −0.835 ** 0.218 ** −0.747 ** 1

PGS −0.169 * 0.877 ** −0.829 ** 1 −0.147 .0874 ** −0.827 ** 1 −0.115 0.848 ** −0.768 ** 1

720 m

MNN 1 1 1
ED 0.169 * 1 0.173 ** 1 0.125 1
PD 0.146 * −0.795 ** 1 0.207 ** −0.776 ** 1 0.318 ** −0.754 ** 1

PGS −0.047 0.889 ** −0.822 ** 1 −0.090 0.853 ** −0.819 ** 1 −0.141 * 0.859 ** −0.832 ** 1
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Table A1. Cont.

Scale Variables
1987 1999 2019

MNN ED PD PGS MNN ED PD PGS MNN ED PD PGS

840 m

MNN 1 1 1
ED 0.074 1 0.174 * 1 0.316 ** 1
PD 0.279 ** −0.828 ** 1 0.217 ** −0.808 ** 1 −0.332 ** −0.907 ** 1

PGS −0.104 0.893 ** −0.858 ** 1 −0.029 0.900 ** −0.852 ** 1 0.071 0.922 ** −0.841 ** 1

960 m

MNN 1 1 1
ED 0.146 * 1 0.215 ** 1 0.226 ** 1
PD 0.252 ** −0.820 ** 1 0.264 ** −0.794 ** 1 0.166 * −0.851 ** 1

PGS −0.050 0.909 ** −0.872 ** 1 −0.039 0.874 ** −0.859 ** 1 0.041 0.899 ** −0.859 ** 1

1080 m

MNN 1 1 1
ED 0.271 ** 1 0.174 * 1 0.317 ** 1
PD 0.203 * −0.801 ** 1 0.122 * −0.863 ** 1 0.161 * −0.790 ** 1

PGS 0.019 0.888 ** −0.877 ** 1 0.021 0.905 ** −0.898 ** 1 0.068 0.909 ** −0.881 ** 1

** p < 0.01, * p < 0.05.
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