Biases Characteristics Assessment of the Advanced Geosynchronous Radiation Imager (AGRI) Measurement on Board Fengyun–4A Geostationary Satellite
Abstract
:1. Introduction
2. Materials and Methods
2.1. AGRI Instrument
2.2. AGRI Data
2.3. Methodology
3. Results
3.1. AGRI Data Biases Distribution over Ocean and Land
3.2. Bias of Scan Angle Dependence over Ocean and Land
3.3. Bias of Scene Temperature Dependence over Ocean and Land
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yumimoto, K.; Nagao, T.M.; Kikuchi, M.; Sekiyama, T.T.; Murakami, H.; Tanaka, T.Y.; Ogi, A.; Irie, H.; Khatri, P.; Okumura, H.; et al. Aerosol data assimilation using data from Himawari-8, a next-generation geostationary meteorological satellite. Geophys. Res. Lett. 2016, 43, 5886–5894. [Google Scholar] [CrossRef]
- Yang, L.; Gao, X.; Li, Z.; Jia, D.; Jiang, J. Nowcasting of Surface Solar Irradiance Using FengYun-4 Satellite Observations over China. Remote Sens. 2019, 11, 1984. [Google Scholar] [CrossRef] [Green Version]
- Hui, W.; Huang, F.; Liu, R. Characteristics of lightning signals over the Tibetan Plateau and the capability of FY-4A LMI lightning detection in the Plateau. Int. J. Remote Sens. 2020, 41, 4605–4625. [Google Scholar] [CrossRef]
- Jiang, X.; Li, J.; Li, Z.; Xue, Y.; Di, D.; Wang, P.; Li, J. Evaluation of Environmental Moisture from NWP Models with Measurements from Advanced Geostationary Satellite Imager—A Case Study. Remote Sens. 2020, 12, 670. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yu, Z.; Han, W.; He, J.; Chen, M. Case Study of a Retrieval Method of 3D Proxy Reflectivity from FY-4A Lightning Data and Its Impact on the Assimilation and Forecasting for Severe Rainfall Storms. Remote Sens. 2020, 12, 1165. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhang, Z.; Wei, C.; Lu, F.; Guo, Q. Introducing the New Generation of Chinese Geostationary Weather Satellites, Fengyun-4. B. Am. Meteorol. Soc. 2017, 98, 1637–1659. [Google Scholar] [CrossRef]
- Wang, G.; Wang, D.; Han, W.; Yin, J. Typhoon Cloud System Identification and Forecasting Using the Feng-Yun 4A/Advanced Geosynchronous Radiation Imager Based on an Improved Fuzzy Clustering and Optical Flow Method. Adv. Meteorol. 2019, 2019, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Wang, K.; Han, W.; Wang, D.; Qiu, X. Typhoon Maria Precipitation Retrieval and Evolution Based on the Infrared Brightness Temperature of the Feng-Yun 4A/Advanced Geosynchronous Radiation Imager. Adv. Meteorol. 2020, 2020, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Yin, Q.; Jiong, S. Channel selection of atmosphere vertical sounder (GIIRS) onboard the FY-4A geostationary satellite. J. Infrared Millim. 2018, 37, 545–552. [Google Scholar]
- Di, D.; Li, J.; Han, W.; Bai, W.; Wu, C.; Menzel, W.P. Enhancing the Fast Radiative Transfer Model for FengYun-4 GIIRS by Using Local Training Profiles. J. Geophys. Res. 2018, 123, 12–583. [Google Scholar] [CrossRef]
- Liu, R.-X.; Liu, J.; Pessi, A.; Hui, W.; Cheng, W. Preliminary Study on the Influence of FY-4 Lightning Data Assimilation on Precipitation Predicitions. J. Trop. Meteorol. 2019, 25, 528–541. [Google Scholar]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9 Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. 2016, 94, 151–183. [Google Scholar] [CrossRef] [Green Version]
- Schmit, T.J.; Lindstrom, S.S.; Gerth, J.J.; Gunshor, M.M. Applications of the 16 spectral bands on the Advanced Baseline Imager (ABI). J. Oper. Meteorol. 2018, 06, 33–46. [Google Scholar] [CrossRef]
- Lavigne, H.; Ruddick, K. The potential use of geostationary MTG/FCI to retrieve chlorophyll-a concentration at high temporal resolution for the open oceans. Int. J. Remote Sens. 2018, 39, 2399–2420. [Google Scholar] [CrossRef]
- Mecikalski, J.R.; Bedka, K.M.; Paech, S.J.; Litten, L.A. A Statistical Evaluation of GOES Cloud-Top Properties for Nowcasting Convective Initiation. Mon. Weather Rev. 2008, 136, 4899–4914. [Google Scholar] [CrossRef] [Green Version]
- Letu, H.; Nagao, T.M.; Nakajima, T.Y.; Riedi, J.; Ishimoto, H.; Baran, A.J.; Shang, H.; Sekiguchi, M.; Kikuchi, M. Ice Cloud Properties From Himawari-8/AHI Next-Generation Geostationary Satellite: Capability of the AHI to Monitor the DC Cloud Generation Process. IEEE Trans. Geosci. Remote 2019, 57, 3229–3239. [Google Scholar] [CrossRef]
- Kühnlein, M.; Appelhans, T.; Thies, B.; Nauss, T. Improving the accuracy of rainfall rates from optical satellite sensors with machine learning—A random forests-based approach applied to MSG SEVIRI. Remote Sens. Environ. 2014, 141, 129–143. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Han, D.; Ahn, M.; Im, J.; Lee, S.J. Retrieval of Total Precipitable Water from Himawari-8 AHI Data: A Comparison of Random Forest, Extreme Gradient Boosting, and Deep Neural Network. Remote Sens. 2019, 11, 1741. [Google Scholar] [CrossRef] [Green Version]
- Min, M.; Bai, C.; Guo, J.; Sun, F.; Liu, C.; Wang, F.; Xu, H.; Tang, S.; Li, B.; Di, D.; et al. Estimating Summertime Precipitation from Himawari-8 and Global Forecast System Based on Machine Learning. IEEE Trans. Geosci. Remote 2019, 57, 2557–2570. [Google Scholar] [CrossRef]
- Han, D.; Lee, J.; Im, J.; Sim, S.; Lee, S.; Han, H. A Novel Framework of Detecting Convective Initiation Combining Automated Sampling, Machine Learning, and Repeated Model Tuning from Geostationary Satellite Data. Remote Sens. 2019, 11, 1454. [Google Scholar] [CrossRef] [Green Version]
- Shou, Y.; Lu, F.; Shou, S. High-Resolution Fengyun-4 Satellite Measurements of Dynamical Tropopause Structure and Variability. Remote Sens. 2020, 12, 1600. [Google Scholar] [CrossRef]
- Otkin, J.A. Assimilation of water vapor sensitive infrared brightness temperature observations during a high impact weather event. J. Geophys. Res. 2012, 117, D19203. [Google Scholar] [CrossRef]
- Yang, C.; Liu, Z.; Gao, F.; Childs, P.P.; Min, J. Impact of assimilating GOES imager clear-sky radiance with a rapid refresh assimilation system for convection-permitting forecast over Mexico. J. Geophys. Res. 2017, 122, 5472–5490. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.; Qin, Z.; Zheng, Y. Improved Tropical Storm Forecasts with GOES-13/15 Imager Radiance Assimilation and Asymmetric Vortex Initialization in HWRF. Mon. Weather Rev. 2015, 143, 2485–2505. [Google Scholar] [CrossRef]
- Jones, T.A.; Wang, X.; Skinner, P.; Johnson, A.; Wang, Y. Assimilation of GOES-13 Imager Clear-Sky Water Vapor (6.5 μm) Radiances into a Warn-on-Forecast System. Mon. Weather Rev. 2018, 146, 1077–1107. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Yang, S.; Min, J.; Chen, L.; Chen, Y.; Zhang, T. Added Value of Assimilating Himawari-8 AHI Water Vapor Radiances on Analyses and Forecasts for “7.19” Severe Storm Over North China. J. Geophys. Res. 2018, 123, 3374–3394. [Google Scholar] [CrossRef]
- Minamide, M.; Zhang, F. Assimilation of All-Sky Infrared Radiances from Himawari-8 and Impacts of Moisture and Hydrometer Initialization on Convection-Permitting Tropical Cyclone Prediction. Mon. Weather Rev. 2018, 146, 3241–3258. [Google Scholar] [CrossRef]
- Honda, T.; Kotsuki, S.; Lien, G.Y.; Maejima, Y.; Okamoto, K.; Miyoshi, T. Assimilation of Himawari-8 All-Sky Radiances Every 10 Minutes: Impact on Precipitation and Flood Risk Prediction. J. Geophys. Res. 2018, 123, 965–976. [Google Scholar] [CrossRef]
- Dee, D.P. Bias and data assimilation. Q. J. R. Meteor. Soc. 2005, 131, 3323–3343. [Google Scholar] [CrossRef] [Green Version]
- Auligné, T.; McNally, A.P.; Dee, D.P. Adaptive bias correction for satellite data in a numerical weather prediction system. Q. J. R. Meteor. Soc. 2007, 133, 631–642. [Google Scholar] [CrossRef]
- Liang, X.; Ignatov, A.; Kihai, Y. Implementation of the Community Radiative Transfer Model in Advanced Clear-Sky Processor for Oceans and validation against nighttime AVHRR radiances. J. Geophys. Res. 2009, 114, 112. [Google Scholar] [CrossRef]
- Wang, X.; Zou, X.; Weng, F.; You, R. An Assessment of the FY-3A Microwave Temperature Sounder Using the NCEP Numerical Weather Prediction Model. IEEE Trans. Geosci. Remote 2012, 50, 4860–4874. [Google Scholar] [CrossRef]
- Liu, Q.; Boukabara, S. Community Radiative Transfer Model (CRTM) applications in supporting the Suomi National Polar-orbiting Partnership (SNPP) mission validation and verification. Remote Sens. Environ. 2014, 140, 744–754. [Google Scholar] [CrossRef]
- Newman, S.; Carminati, F.; Lawrence, H.; Bormann, N.; Salonen, K.; Bell, W. Assessment of New Satellite Missions within the Framework of Numerical Weather Prediction. Remote Sens. 2020, 12, 1580. [Google Scholar] [CrossRef]
- Geng, X.; Min, J.; Yang, C.; Wang, Y.; Xu, D. Analysis of FY-4A AGRI bias characteristics and correction experiment. Chin. J. Atmos. Sci. 2020, 44, 679–694. [Google Scholar]
- Wang, X.; Min, M.; Wang, F.; Guo, J.; Li, B.; Tang, S. Intercomparisons of Cloud Mask Products Among Fengyun-4A, Himawari-8, and MODIS. IEEE Trans. Geosci. Remote. 2019, 57, 8827–8839. [Google Scholar] [CrossRef]
- Zou, X.; Zhuge, X.; Weng, F. Characterization of Bias of Advanced Himawari Imager Infrared Observations from NWP Background Simulations Using CRTM and RTTOV. J. Atmos. Ocean. Tech. 2016, 33, 2553–2567. [Google Scholar] [CrossRef]
- Ren, L. A case study of GOES-15 imager bias characterization with a numerical weather prediction model. Front. Earth Sci. 2016, 10, 409–418. [Google Scholar] [CrossRef]
- Eyre, J. A fast radiative transfer model for satellite sounding systems. ECMWF Tech. Memo. 1991, 176. [Google Scholar] [CrossRef]
- Saunders, R.; Matricardi, M.; Brunel, P. An improved fast radiative transfer model for assimilation of satellite radiance observations. Q. J. R. Meteorol. Soc. 1999, 125, 1407–1425. [Google Scholar] [CrossRef]
- Matricardi, M.; Chevallier, F.; Kelly, G.; Thépaut, J. An improved general fast radiative transfer model for the assimilation of radiance observations. Q. J. R. Meteor. Soc. 2004, 130, 153–173. [Google Scholar] [CrossRef]
- Da, C. Preliminary assessment of the Advanced Himawari Imager (AHI) measurement onboard Himawari-8 geostationary satellite. Remote Sens. Lett. 2015, 6, 637–646. [Google Scholar] [CrossRef]
- Li, X.; Zou, X.; Zeng, M. An Alternative Bias Correction Scheme for CrIS Data Assimilation in a Regional Model. Mon. Weather Rev. 2019, 147, 809–839. [Google Scholar] [CrossRef]
- Vogel, R.L.; Liu, Q.; Han, Y.; Weng, F. Evaluating a satellite-derived global infrared land surface emissivity data set for use in radiative transfer modeling. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Saunders, R.W.; Blackmore, T.A.; Candy, B.; Francis, P.N.; Hewison, T.J. Monitoring Satellite Radiance Biases Using NWP Models. IEEE Trans. Geosci. Remote 2013, 51, 1124–1138. [Google Scholar] [CrossRef]
- Lu, Q.; Bell, W.; Bauer, P.; Bormann, N.; Peubey, C. Characterizing the FY-3A Microwave Temperature Sounder Using the ECMWF Model. J. Atmos. Ocean. Tech. 2011, 28, 1373–1389. [Google Scholar] [CrossRef]
- Saunders, R.; Hocking, J.; Turner, E.; Rayer, P.; Rundle, D.; Brunel, P.; Vidot, J.; Roquet, P.; Matricardi, M.; Geer, A.; et al. An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev. 2018, 11, 2717–2737. [Google Scholar] [CrossRef] [Green Version]
Channel | No. | Wavelength Range (um) | Spatial Resolution (km) | SNR or NEdT | Primary Application |
---|---|---|---|---|---|
VIS and NIR | 1 | 0.45–0.49 | 1 | ≥70 (ρ = 100%) | Aerosol, visibility |
2 | 0.55–0.75 | 0.5 | ≥200 (ρ = 100%) | Fog, clouds | |
3 | 0.75–0.90 | 1 | ≥5 (ρ = 100%) | Aerosol, vegetation | |
4 | 1.36–1.39 | 2 | ≥200 (ρ = 100%) | Cirrus | |
5 | 1.58–1.64 | 2 | ≥5 (ρ = 100%) | Cloud, snow | |
6 | 2.1–2.35 | 2 | Cloud phase, aerosol, vegetation | ||
Mid-wave IR | 7 | 3.5–4.0 | 2 | ≤0.7 K (300 K) | Clouds, fire, moisture, snow |
8 | 3.5–4.0 | 4 | ≤0.2 K (300 K) | Land surface | |
Water vapor | 9 | 5.8–6.7 | 4 | ≤0.3 K (260 K) | Upper-level WV |
10 | 6.9–7.3 | 4 | ≤0.3 K (260 K) | Midlevel WV | |
Long-wave IR | 11 | 8.0–9.0 | 4 | ≤0.2 K (300 K) | Volcanic ash, cloud-top phase |
12 | 10.3–11.3 | 4 | ≤0.2 K (300 K) | SST, LST | |
13 | 11.5–12.5 | 4 | ≤0.2 K (300 K) | Clouds, low-level WV | |
14 | 13.2–13.8 | 4 | ≤0.5 K (300 K) | Clouds, air temperature |
Category | Parameter | Unit | Data Resource |
---|---|---|---|
Atmosphere profiles | Pressure | hPa | ECMWF ERA-Interim analysis |
Temperature | K | ||
Specific humidity | kg/kg | ||
Surface variables | Surface temperature | K | ECMWF ERA-Interim analysis |
Surface pressure | hPa | ||
2-m temperature | K | ||
2-m specific humidity | kg/kg | ||
10-m u wind component | ms-1 | ||
10-m v wind component | ms-1 | ||
Water type | - | 0 for land and 1 for sea | |
Surface type | - | 0 for land and 1 for sea | |
Geometry | Latitude | Degrees | Satellite |
Longitude | Degrees | ||
Satellite zenith angle | Degrees | ||
Satellite azimuth angle | Degrees | ||
Solar zenith angle | Degrees | ||
Solar azimuth angle | Degrees | ||
Terrestrial elevation | m | 0 for sea surface, WPS geogrid interpretation for land |
Channel | Fitting Coefficient | |
---|---|---|
Ocean | Land | |
8 | 0.0194 | 0.0787 |
9 | 0.004 | 0.0195 |
10 | 0.0073 | 0.0503 |
11 | 0.0007 | −0.0292 |
12 | 0.0036 | 0.0073 |
13 | 0.0042 | 0.0286 |
14 | −0.0226 | −0.0362 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Shu, J.; Guo, W. Biases Characteristics Assessment of the Advanced Geosynchronous Radiation Imager (AGRI) Measurement on Board Fengyun–4A Geostationary Satellite. Remote Sens. 2020, 12, 2871. https://doi.org/10.3390/rs12182871
Zhu J, Shu J, Guo W. Biases Characteristics Assessment of the Advanced Geosynchronous Radiation Imager (AGRI) Measurement on Board Fengyun–4A Geostationary Satellite. Remote Sensing. 2020; 12(18):2871. https://doi.org/10.3390/rs12182871
Chicago/Turabian StyleZhu, Jia, Jiong Shu, and Wei Guo. 2020. "Biases Characteristics Assessment of the Advanced Geosynchronous Radiation Imager (AGRI) Measurement on Board Fengyun–4A Geostationary Satellite" Remote Sensing 12, no. 18: 2871. https://doi.org/10.3390/rs12182871
APA StyleZhu, J., Shu, J., & Guo, W. (2020). Biases Characteristics Assessment of the Advanced Geosynchronous Radiation Imager (AGRI) Measurement on Board Fengyun–4A Geostationary Satellite. Remote Sensing, 12(18), 2871. https://doi.org/10.3390/rs12182871