DA-CapsUNet: A Dual-Attention Capsule U-Net for Road Extraction from Remote Sensing Imagery
Abstract
:1. Introduction
- A deep capsule U-Net architecture is constructed to extract and aggregate multilevel and multiscale high-order capsule features to provide a high-resolution and semantically strong feature representation to improve the pixel-wise road extraction accuracy;
- A multiscale context-augmentation module is designed to comprehensively exploit and consider the multiscale contextual information with different-size receptive fields at a high-resolution perspective, which behaves positively in enhancing the feature representation capability;
- A channel feature attention module and a spatial feature attention module are proposed to force the network to emphasize the channel-wise informative and salient features and to concentrate on the favorable spatial features tightly associated with the road regions, thereby effectively suppressing the impacts of the background and providing a high-quality, robust, and class-specific feature representation.
2. Methodology
2.1. Capsule Network
2.2. Dual-Attention Capsule U-Net
3. Results
3.1. Dataset
3.2. Network Training
3.3. Road Extraction
3.4. Comparative Studies
3.5. Ablation Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Cheng, G.; Xie, X.; Han, J.; Guo, L.; Xia, G.S. Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3735–3756. [Google Scholar] [CrossRef]
- Abdollahi, A.; Pradhan, B.; Shukla, N.; Chakraborty, S.; Alamri, A. Deep learning approaches applied to remote sensing datasets for road extraction: A state-of-the-art review. Remote Sens. 2020, 12, 1444. [Google Scholar] [CrossRef]
- Dai, J.; Du, Y.; Zhu, T.; Wang, Y.; Gao, L. Multiscale residual convolution neural network and sector descriptor-based road detection method. IEEE Access 2019, 7, 173377–173392. [Google Scholar] [CrossRef]
- Eerapu, K.K.; Ashwath, B.; Lal, S.; Dell’Acqua, F.; Dhan, A.V.N. Dense refinement residual network for road extraction from aerial imagery data. IEEE Access 2019, 7, 151764–151782. [Google Scholar] [CrossRef]
- Li, Y.; Guo, L.; Rao, J.; Xu, L.; Jin, S. Road segmentation based on hybrid convolutional network for high-resolution visible remote sensing image. IEEE Geosci. Remote Sens. Lett. 2019, 16, 613–617. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, J.; Lu, X.; Xia, M.; Wang, X.; Liu, Y. RoadNet: Learning to comprehensively analyze road networks in complex urban scenes from high-resolution remotely sensed images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2043–2056. [Google Scholar] [CrossRef]
- Tao, C.; Qi, J.; Li, Y.; Wang, H.; Li, H. Spatial information inference net: Road extraction using road-specific contextual information. ISPRS J. Photogramm. Remote Sens. 2019, 158, 155–166. [Google Scholar] [CrossRef]
- Senthilnath, J.; Varia, N.; Dokania, A.; Anand, G.; Benediktsson, J.A. Deep TEC: Deep transfer learning with ensemble classifier for road extraction from UAV imagery. Remote Sens. 2020, 12, 245. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Sun, X.; Zhang, Y.; Yan, M.; Xu, G.; Sun, H.; Jiao, J.; Fu, K. An end-to-end neural network for road extraction from remote sensing imagery by multiple feature pyramid network. IEEE Access 2018, 6, 39401–39414. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, W.; Li, C.; Wu, J.; Tang, X.; Jiao, L. Fully convolutional network-based ensemble method for road extraction from aerial images. IEEE Geosci. Remote Sens. Lett. 2019. [Google Scholar] [CrossRef]
- He, H.; Yang, D.; Wang, S.; Wang, S.; Li, Y. Road extraction by using atrous spatial pyramid pooling integrated encoder-decoder network and structural similarity loss. Remote Sens. 2019, 11, 1015. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.; Xiao, Z.; Wan, Q.; Shao, W. Scale sensitive neural network for road segmentation in high-resolution remote sensing images. IEEE Geosci. Remote Sens. Lett. 2020. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y. JointNet: A common neural network for road and building extraction. Remote Sens. 2019, 11, 696. [Google Scholar] [CrossRef] [Green Version]
- Xin, J.; Zhang, X.; Zhang, Z.; Fang, W. Road extraction of high-resolution remote sensing images derived from DenseUNet. Remote Sens. 2019, 11, 2499. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Li, X.; Ye, Y.; Lau, R.Y.K.; Zhang, X.; Huang, X. Road detection and centerline extraction via deep recurrent convolutional neural network U-Net. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7209–7220. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, Z.; Zang, Y.; Wang, C.; Li, J.; Li, X. Topology-aware road network extraction via multi-supervised generative adversarial networks. Remote Sens. 2019, 11, 1017. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Han, X.; Li, C.; Tang, X.; Zhou, H.; Jiao, L. Aerial image road extraction based on an improved generative adversarial network. Remote Sens. 2019, 11, 930. [Google Scholar] [CrossRef] [Green Version]
- Lian, R.; Huang, L. DeepWindow: Sliding window based on deep learning for road extraction from remote sensing images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1905–1916. [Google Scholar] [CrossRef]
- Wang, S.; Yang, H.; Wu, Q.; Zheng, Z.; Wu, Y.; Li, J. An improved method for road extraction from high-resolution remote-sensing images that enhances boundary information. Sensors 2020, 20, 2064. [Google Scholar] [CrossRef] [Green Version]
- Hinton, G.E.; Krizhevsky, A.; Wang, S.D. Transforming auto-encoders. In Lecture Notes in Computer Science, Proceedings of the International Conference on Artificial Neural Networks – ICANN 2011, Espoo, Finland, 14–17 June 2011; Springer: Berlin/Heidelberg, German, 2011; pp. 44–51. [Google Scholar]
- Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic routing between capsules. In Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–10 December 2017; pp. 1–11. [Google Scholar]
- Yu, Y.; Gu, T.; Guan, H.; Li, D.; Jin, S. Vehicle detection from high-resolution remote sensing imagery using convolutional capsule networks. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1894–1898. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, F.; Dong, J.; Li, H.C. SAR image change detection based on multiscale capsule network. IEEE Geosci. Remote Sens. Lett. 2020. [Google Scholar] [CrossRef]
- Ma, L.; Li, Y.; Li, J.; Yu, Y.; Junior, J.M.; Gonçalves, W.N.; Chapman, M.A. Capsule-based networks for road marking extraction and classification from mobile LiDAR point clouds. IEEE Trans. Intell. Transp. Syst. 2020. [Google Scholar] [CrossRef]
- Guan, H.; Yu, Y.; Peng, D.; Zang, Y.; Lu, J.; Li, A.; Li, J. A convolutional capsule network for traffic-sign recognition using mobile LiDAR data with digital images. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1067–1071. [Google Scholar] [CrossRef]
- Paoletti, M.E.; Haut, J.M.; Fernandez-Beltran, R.; Plaza, J.; Plaza, A.; Li, J.; Pla, F. Capsule networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2145–2160. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, D.Y.; Luo, B. Faster multiscale capsule network with octave convolution for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2020. [Google Scholar] [CrossRef]
- Yu, Y.; Guan, H.; Li, D.; Gu, T.; Wang, L.; Ma, L.; Li, J. A hybrid capsule network for land cover classification using multispectral LiDAR data. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1263–1267. [Google Scholar] [CrossRef]
- LaLonde, R.; Bagci, U. Capsules for object segmentation. In Proceedings of the 1st Conference on Medical Imaging with Deep Learning, Amsterdam, The Netherlands, 4–6 July 2018; pp. 1–9. [Google Scholar]
- Yu, Y.; Ren, Y.; Guan, H.; Li, D.; Yu, C.; Jin, S.; Wang, L. Capsule feature pyramid network for building footprint extraction from high-resolution aerial imagery. IEEE Geosci. Remote Sens. Lett. 2020. [Google Scholar] [CrossRef]
- Li, S.; Li, M.; Xu, Y.; Bao, Z.; Fu, L.; Zhu, Y. Capsules based Chinese word segmentation for ancient Chinese medical books. IEEE Access 2018, 6, 70874–70883. [Google Scholar] [CrossRef]
- Ma, X.; Zhong, H.; Li, Y.; Ma, J.; Cui, Z.; Wang, Y. Forecasting transportation network speed using deep capsule networks with nested LSTM models. IEEE Trans. Intell. Transp. Syst. 2020. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Lin, H.; Yang, L.; Xu, B.; Wen, D. Multi-element hierarchical attention capsule network for stock prediction. IEEE Access 2020, 8, 143114–143123. [Google Scholar] [CrossRef]
- Hsu, J.T.; Kuo, C.H.; Chen, D.W. Image super-resolution using capsule neural networks. IEEE Access 2020, 8, 9751–9759. [Google Scholar] [CrossRef]
- Dong, Y.; Fu, Y.; Wang, L.; Chen, Y.; Dong, Y.; Li, J. A sentiment analysis method of capsule network based on BiLSTM. IEEE Access 2020, 8, 37014–37020. [Google Scholar] [CrossRef]
- Huang, R.; Li, J.; Wang, S.; Li, G.; Li, W. A robust weight-shared capsule network for intelligent machinery fault diagnosis. IEEE Trans. Indust. Inform. 2020, 16, 6466–6475. [Google Scholar] [CrossRef]
- Rajasegaran, J.; Jayasundara, V.; Jayasekara, S.; Jayasekara, H.; Seneviratne, S.; Rodrigo, R. DeepCaps: Going deeper with capsule networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 10725–10733. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kollinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef] [Green Version]
Method | Precision | Recall | F-Score | McNemar Test (α = 0.05) |
---|---|---|---|---|
DA-CapsUNet | 0.9523 | 0.9486 | 0.9504 | - |
MDRCNN [4] | 0.8968 | 0.8872 | 0.8920 | 0.0015 |
HCN [6] | 0.9373 | 0.9366 | 0.9369 | 0.0441 |
SII-Net [8] | 0.9392 | 0.9381 | 0.9386 | 0.0474 |
MFPN [10] | 0.9274 | 0.9255 | 0.9264 | 0.0227 |
SC-FCN [11] | 0.9261 | 0.9214 | 0.9237 | 0.0159 |
SS-CNN [13] | 0.9335 | 0.9286 | 0.9310 | 0.0351 |
DenseUNet [15] | 0.9124 | 0.9012 | 0.9068 | 0.0032 |
GAN [18] | 0.9251 | 0.9203 | 0.9227 | 0.0118 |
DA-CapsUNet-CTA | 0.9346 | 0.9319 | 0.9332 | 0.0382 |
DA-CapsUNet-CFA | 0.9223 | 0.9186 | 0.9204 | 0.0096 |
DA-CapsUNet-SFA | 0.9388 | 0.9375 | 0.9381 | 0.0462 |
CapsUNet | 0.9182 | 0.9079 | 0.9130 | 0.0041 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Yu, Y.; Guan, H. DA-CapsUNet: A Dual-Attention Capsule U-Net for Road Extraction from Remote Sensing Imagery. Remote Sens. 2020, 12, 2866. https://doi.org/10.3390/rs12182866
Ren Y, Yu Y, Guan H. DA-CapsUNet: A Dual-Attention Capsule U-Net for Road Extraction from Remote Sensing Imagery. Remote Sensing. 2020; 12(18):2866. https://doi.org/10.3390/rs12182866
Chicago/Turabian StyleRen, Yongfeng, Yongtao Yu, and Haiyan Guan. 2020. "DA-CapsUNet: A Dual-Attention Capsule U-Net for Road Extraction from Remote Sensing Imagery" Remote Sensing 12, no. 18: 2866. https://doi.org/10.3390/rs12182866
APA StyleRen, Y., Yu, Y., & Guan, H. (2020). DA-CapsUNet: A Dual-Attention Capsule U-Net for Road Extraction from Remote Sensing Imagery. Remote Sensing, 12(18), 2866. https://doi.org/10.3390/rs12182866