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Abstract: Automatic extraction of ground objects is fundamental for many applications of remote
sensing. It is valuable to extract different kinds of ground objects effectively by using a general
method. We propose such a method, JointNet, which is a novel neural network to meet extraction
requirements for both roads and buildings. The proposed method makes three contributions to road
and building extraction: (1) in addition to the accurate extraction of small objects, it can extract large
objects with a wide receptive field. By switching the loss function, the network can effectively extract
multi-type ground objects, from road centerlines to large-scale buildings. (2) This network module
combines the dense connectivity with the atrous convolution layers, maintaining the efficiency of the
dense connection connectivity pattern and reaching a large receptive field. (3) The proposed method
utilizes the focal loss function to improve road extraction. The proposed method is designed to be
effective on both road and building extraction tasks. Experimental results on three datasets verified
the effectiveness of JointNet in information extraction of road and building objects.
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1. Introduction

Automatic extraction of ground objects based on remote sensing images is an essential step in
many applications, including urban planning, map services, automated driving services, business
planning, change detection, etc. In these applications, the two most valuable parts are road and building
information. However, there are many differences in image features between road and building objects.
The shape of buildings is mostly blocky, while the shape of roads is linear. Buildings show differences
in their color, shape and texture features due to differences in their function, design, and materials.
In spite of the small difference in the texture of road area, material differences still exist in the roads
of different regions, so there are differences in road colors. In addition, the shadows created by tall
buildings or trees can significantly alter the texture features of ground objects, making them difficult to
be distinguished. Therefore, it is difficult to design a general-purpose algorithm to extract all types of
ground objects effectively based only on texture features and colors of images.

In recent years, convolution neural networks (CNN) have made great progress in image
classification tasks [1–4]. Semantic segmentation neural networks perform well not only in object
extraction of natural pictures [5,6] but also in ground object extraction of remote sensing images [7,8].
In remote sensing images, there are some different types of information for ground object detection.
Part of the information includes the segmentation surface of the targets, which is a portion of the
local image feature and often closely connected in the image. This information is the segmentation
information of the target. Another part of the information, the context information of the target,
is logically interrelated but distributed within a certain range in the spatial space of the image.
To recognize blocky and large size targets, such as buildings, the network with small receptive fields
cannot cover the target, so only the networks with large enough receptive fields to cover context
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information can effectively identify such targets. Whether the segmentation surface and corners of a
blocky target is accurate has a limited impact on the overall extraction accuracy. However, to extract
a linear shape target, such as a road centerline, if the extracted segmentation surface or corner is
not accurate, the overall extraction accuracy will be affected. Therefore, there are two essential
requirements for a neural network of universal ground object extraction: the network should have a
large receptive field suitable for long-range context information. The network can accurately extract
segmentation surfaces or corners from segmentation information.

This paper proposes a novel neural network that satisfies both of these requirements and achieves
high-grade results in the extraction of building and road information. Experiments on three road
and building datasets have evaluated the effectiveness of the proposed method, which had excellent
performance on many metrics. This work has the following main contributions.

(1) A novel neural network was proposed for road and building information extraction. The network
can accurately extract information on both the linear shape and the large-scale objects.

(2) A novel network module, dense atrous convolution block, was proposed. The module overcame
the problem of the small receptive field of dense connectivity pattern by effectively organizing its
atrous convolution layers with crafted rate settings. The module not only maintained the feature
propagation efficiency of dense connectivity but also achieved a larger receptive field.

(3) By utilizing the focal loss [9] function, the imbalance problem between the road centerline target
and its background was solved. Through the improvement on the loss function, the network
improved the correctness of road extraction and enhanced the ability to find unlabeled roads.

(4) By replacing the batch normalization [10] (BN) layer in the network with the group
normalization [11] (GN) layer, the problem that network performance was affected by small
training batch size was solved. The neural network generally uses the BN as a standard
normalization method to improve the network training. However, when the batch size is too
small, the performance of the BN decreases significantly. By using GN as a normalization method,
the training results of the proposed network were no longer affected by the batch size, and the
neural network model itself can become larger with more modules to achieve better performance.

The rest of this article is organized as follows: the second section is the review of relevant
topics, including road and building extraction networks, and the essential structures and important
components of semantic segmentation neural networks. The third section provides the specific details
of the proposed method in this paper, including the network’s basic components, the network’s
framework, and other components. In the fourth section, the experiment is presented, together with
the introduction of databases, comparison methods, data augmentation methods, and the results’
comparison on the datasets. The discussion of the paper is given in the fifth section, which analyzes the
difference between extracting road and building targets, and how the neural network could effectively
extract information from these two kinds of targets. The last section is the conclusion of this paper.

2. Related Works

In recent years, the progress of neural networks has first come from the exploration of the
Restricted Boltzmann Machine (RBM) [12–14]. Mnih et al. [7,15] proposed an automatic road extraction
method based on RBM, which requires pre-processing and post-processing steps. The three-channel
remote sensing image patches are extracted as principal component features through the pre-processing
step. The features are processed by the RBM network to obtain the basic extracted road results.
At this step, there are some problems such as discontinuities in the basic extracted road results.
Based on the basic result, the final road extraction result is obtained through a post-processing network.
Saito et al. [16,17] proposed a convolution neural network framework to extract roads and buildings
simultaneously. This method no longer requires a pre-processing step and can directly extract building
and road objects. Zhang et al. [18] improved the U-Net [19] by adding the residual information module,
and the improved network can be trained easily and achieves better results in road extraction tasks.
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Given that buildings and road objects have different characteristics in image textures, shapes,
and colors, the previous OBIA-based methods [20–22] are unable to extract both building and road
objects simultaneously using only one general model. Therefore, the application of convolution neural
networks is important for ground object extraction. The RBM-based method proposed by Mnih et al. [7]
has achieved valid results on the building database. Maggiori et al. [23] proposed a modified
Alex-Net [1] structure network which up-samples the output through a deconvolution operation.
The resolution of the network output is consistent with that of the input image. Saito et al. [17]
proposed a model based on the CNN structure with the fully-connection layer as its output. In order to
improve its performance on both road and building extractions, this method introduces Channel-wise
Inhibited Softmax (CIS) as its loss function. Marcu and leordeanu [8] proposed a two-stream neural
network model. The front end of the network consists of two sub-networks with different input image
sizes, which are modified from the Alex-Net [1] and VGG [2] models, respectively. In the latter part of
the network, the output feature vectors of the two sub-networks are merged through the three-levels
fully connection layer to generate the prediction result. Marcu et al. [24] proposed a neural network
based on the U-Net structure. The bridging portion of the network expands the receptive field by
cascading atrous convolution layers with gradually increased rate setting and merging the feature
vectors through skip-connection.

Among all types of neural networks, the most applicable in ground object extraction of remote
sensing is the semantic segmentation network. Different from the traditional image segmentation
algorithm that relies on image grayscale [25] or color space difference [26], each pixel from the output of
the semantic segmentation network has its independent class property. This function allows semantic
segmentation networks to directly extract pixel-level attributes of specific types of ground objects
from remote sensing images, such as the road centerline, the outline of buildings, etc. Since the
proposal of Fully Convolutional Networks (FCN) [27], and after many works for different types of
targets on different datasets, semantic segmentation neural networks have gradually developed some
typical frameworks and modules. According to the framework structure, the semantic segmentation
network can be roughly divided into three categories: the image pyramid, encoder-decoder and atrous
convolution pooling network.

The image pyramid neural network includes multiple sub-networks for extracting all scale features
from different sizes input images. Small-scale images are used to extract the long-range image semantics
context, and large-scale images are used to extract the detail context. The end of the network merges
different scale features to produce the global prediction output. Eigen et al. [28] and Pinheiro et al. [29]
sequentially input images at different scales for feature extraction from coarse to fine. Methods by
Lin et al. [30] and Chen et al. [31] first extracted different scale features by directly resizing the input image
into different scales, and then fusing all scale feature-maps from different sub-networks.

The encoder-decoder neural network includes an encoding path and a decoding path.
Some models even contain a network bridge. As the size of the network feature-maps gradually
reduces layer by layer in the encoding path, the receptive field of the network becomes larger and
larger. In the decoding path, as the network feature map recovers layer by layer, the network finally
outputs the prediction result. SegNet [32] uses a pooling layer to connect the encoding and decoding
paths. U-Net [19] utilizes the skip connection to directly transmit the feature map from encoding path
layers to their corresponding layers in the decoding path, which improves the recognition accuracy.

The atrous convolution pooling network utilizes the atrous convolution layer and spatial pyramid
pooling module to capture the context of several different scaled images. Comparing with the standard
convolutional layer, the atrous convolutional layer can effectively increase the network’s receptive field
without increasing calculation. It is sufficient to expand the network’s receptive field by cascading
multiple atrous convolution layers. The spatial pyramid pooling module extracts the context at several
ranges through multi pooling layers in different scales. Deeplabv2 [33] proposed an atrous spatial
pyramid pooling module (ASPP), which consists of multi atrous convolution layers at different rates
with a pooling layer to capture multi-range context information. The Pyramid Scene Parsing Net



Remote Sens. 2019, 11, 696 4 of 22

(PSPNet) [34] performs well in multiple semantic segmentation databases. This study also proposed a
useful module, Pyramid Pooling Module (PPM), which consists of multi-parallel pooling layers in
different grid scales.

3. Methodology

We propose a novel neural network, JointNet, as an effective extraction method for both roads
and buildings. This network is an encoder-decoder neural network with dense atrous convolution
blocks as its basic modules. By switching the loss function, the network can simultaneously meet the
performance requirements for both road and building extractions. In this section, we introduce the
proposed network and some related components that affect the network performance.

3.1. Dense Atrous Convolution Blocks

A convolution neural network consists of many modules, each of which implements a non-linear
transformation Hl(.), where l indexes the layer. A module is a composite of operations, including
convolutional layers, rectified linear units (ReLU), pooling layers and normalization layers, etc.
We denote the input of the convolutional network as x0 and the output of the level lth module
as xl . The input of the (l + 1)th level module is the output of the level lth module, which follows the
transformation xl = Hl(xl−1). Based on traditional network component structures such as Alex-Net [1]
and VGG [2], the residual block of ResNet [3] adds a skip connection as identity mapping [35] to
bypass network residual information. This method effectively improves the information flow in a
multi-layer network. The network trained easily and performed well on many datasets. Equation (1)
shows how this identity mapping works:

xl = Hl(xl−1) + xl−1. (1)

By directly connecting from any convolution layer of the block with all subsequent layers,
the dense connectivity block of DenseNet [4] improves the information flow more effectively than
the residual block of ResNet. [x0, x1, . . . , xl−1] denotes the output concatenation of the 1st to (l − 1)th

convolution layers of the module. This concatenation is used as the input of the lth convolution layer
of the module. DenseNet can provide better classification accuracy of image classification tasks than
other networks such as ResNet [3,35] and InceptionNet [36–38] which have been proven on several
large datasets. Equation (2) shows how each convolution layer works within the DenseNet block:

xl = Hl([x0, x1, . . . , xl−1]). (2)

However, due to the repeated concatenation, the DenseNet’s memory occupation is quite
inefficient. A direct result of this inefficiency is that the network depth of DenseNet is lower than that of
ResNet in the same size memory environment. Consequently, when the convolution kernel and stride
setting of DenseNet are the same as those of ResNet, the final receptive field of DenseNet is smaller
than that of ResNet. For better performance in semantic segmentation, it is necessary to increase
the network’s receptive field as much as possible. Our proposed network module, the dense atrous
convolution block, replaces the standard convolution in the dense connectivity module by atrous
convolution layers with a crafted rate setting. This replacement effectively increases the module’s
receptive field without increasing the calculation and number of layers.

Compared with the standard convolution, although atrous convolution enlarges the receptive field
more efficiency, its sampling points are still discontinuous. It is necessary to avoid any form of holes or
missing edges in the final receptive fields of the network module deploying atrous convolution layers.
Inspired by Hybrid Dilated Convolution (HDC) [39], our proposed dense atrous convolution block
contains two atrous convolution groups which consist of a three-level atrous convolution function
module. The rate settings of atrous convolution modules in one group are set to (1,2,5). Each atrous
convolution function module includes an atrous convolution, a group normalization, and a ReLU layer.
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In a dense atrous convolution block, the receptive fields of each convolutional module increase
significantly as the level increases. As Figure 1a shows, the receptive field of the first level atrous
convolution module only covers a 3 × 3 space. In Figure 1b,c, the sampling points of the second level
atrous convolution module are not continuous. However, the module receptive fields cover a 7 ×
7 space after the module’s result is combined with the result of the first level module. In Figure 2,
the receptive fields of the third level atrous convolution module cover a 17 × 17 spatial space.
The receptive fields of a dense atrous convolution block cover a 33 × 33 spatial space. Each atrous
convolution module in the dense atrous convolution block has a certain output k feature-maps. This size
of feature-maps is known as the block’s growth rate. The lth level convolution module of the dense
atrous convolution block has a α + (l − 1)× k input feature-maps, where α denotes the block’s input.Remote Sens. 2019, 11, 696 5 of 22 
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Figure 1. The receptive field of the first two level modules of the atrous convolution group: (a) Receptive
field of the first level of the group, a 3 × 3 kernel atrous convolution function module rated 1.
(b) Receptive fields of the second level of the group, a 3 × 3 kernel atrous convolution module
rated 2. (c) Receptive field of the first and second level modules combined.
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Figure 2. The receptive field of the last level of the atrous convolution group: (a) Receptive fields of the
last level of the group, the atrous convolution module rated 5. (b) Receptive fields of the group’s last
two level atrous convolution modules rated 2 and 5. (c) Receptive field of the group’s first, second and
third level modules combined.

As the information loss caused by down-sampling cannot be recovered by up-sampling [40],
the semantic information of high-level encoders in the encoder-decoder network cannot be fully
recovered by multi-layer decoders. This shortcoming affects the extraction of some morphologically
sensitive ground object information, such as the road centerline. As shown in Figure 3, to solve
this problem better, our proposed module designs two information branches: one is the residual
information branch for information flow between coders and decoders at different levels of
encoding/decoding paths, and the other one is the dense information branch for information flow from
the encoders to their corresponding level decoders with the same scale feature-maps. The residual
information branch uses the module input to fuse the output k feature-maps of the last layer atrous
convolution as residual information output of the module. The dense information branch uses a 1 ×
1 convolution layer to compress the module’s context into 4k feature-maps. The k denotes the module
growth rate. The parameters of each convolutional layer of the module are shown in Table 1.
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Figure 3. Dense atrous convolution blocks for JointNet.

Table 1. Dense atrous convolution block structure.

Layers Input Kernel Size Growth Rate Atrous Conv Rate Output

Atrous Conv 1 α 3 × 3 k 1 k
Atrous Conv 2 α + k 3 × 3 k 2 k
Atrous Conv 3 α + 2k 3 × 3 k 5 k
Atrous Conv 4 α + 3k 3 × 3 k 1 k
Atrous Conv 5 α + 4k 3 × 3 k 2 k
Atrous Conv 6 α + 5k 3 × 3 k 5 k

Conv RB(1) α 1 × 1 None 1 k

Conv RB(2) α + 6k 1 × 1 None 1 4k
(1) RB: Residual Information Branch. (2) DB: Dense Information Branch.

3.2. JointNet Architecture

JointNet consists of an encoding path, a decoding path, a network bridge module, and a
classification layer. The encoding path consists of three level upper-to-down encoders with different
size feature-maps. The decoding path includes three corresponding decoders. All encoders, decoders,
and network bridge modules in the network are dense atrous convolution blocks. The classification
layer of the network is a 1× 1 convolution layer.

As Figure 4 shows, the residual information feature-maps of the encoder at each level are used
as the input of the downside level encoder or network bridge module. The dense information
feature-maps of the encoder is passed to the corresponding level decoder. The decoder uses the
concatenation of the dense feature-maps and amplified residual feature-maps from the downside level
decoder as its input feature-maps. The parameters of each module of the network are shown in Table 2.
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Table 2. JointNet Architecture.

Name Module Type Spatial Size Input Stride GR(1) RO(2) DO(3)

Encoder Level 1 DACB(4) 256× 256 3 1 32 32 128
Encoder Level 2 DACB 128× 128 32 2 64 64 256
Encoder Level 3 DACB 64× 64 64 2 128 128 512

Network Bridge DACB 32× 32 128 2 256 256 None

Decoder Level 3 DACB 64× 64 768 1 128 128 None
Decoder Level 2 DACB 128× 128 384 1 64 64 None
Decoder Level 1 DACB 256× 256 192 1 32 32 128

Classification layer 1 × 1 Conv 256× 256 128 1 None Class number None
(1) GR: Growth Rate. (2) RO: Residual Output. (3) DO: Dense Information Output. (4) DACB: Dense Atrous
Convolution Blocks.

3.3. Group Normalization and Focal loss

3.3.1. Group Normalization

Compared with the image classification networks [1–3,37,41], the semantics segmentation
networks [6,19] cost more memory space. For this reason, the training batch size of the semantics
segmentation networks is usually smaller than that of image classification networks in the same
hardware environment. Since the batch size is small, the training error of the networks’ batch
normalization (BN) [10] layers increase rapidly which costs poor performance of the network’s training
result. Therefore, the semantic segmentation networks with BN layers need to find a balance between
the smaller network model with a larger batch size and a larger model with a smaller batch size.

Group normalization (GN) [11] is a newly proposed normalization method which is barely affected
by batch size. The feature allows the network to use larger models for better results which makes GN
more suitable for semantic segmentation networks than other comparison normalization methods.

The BN, layer normalization (LN) [42], instance normalization (IN) [43] and GN layer share the
same computation:

x̂i =
1
σi
(xi − µi). (3)

In Equation (3), x is the feature-map in a neural network layer with the index i. In the
two-dimensional fully convolution network, the feature-maps of each layer is a four-dimensional
vector denoted as (N, C, H, W). N is the batch size. C is the channel size. H and W are the height
and width sizes of the feature-maps, respectively. The µ and σ are denoted as the running mean and
standard deviation (std) of the normalization layer, respectively:

µi =
1
m ∑

k∈Si

xk, σi =

√
1
m ∑

k∈Si

(xk − µi)
2 + ε. (4)

In Equation (4), the Si denotes the subset of feature-maps where the running mean and std are
computed. In BN, this set is defined as follows:

Si = {k|kC = iC}. (5)

The iC and the kC denote the sub-indexes i and k along the C axis, respectively. In the BN layer,
the running mean and std are computed in one training batch. In the case of a high memory costs
neural network model, the batch size must be small. The running mean and std of the BN layer
fluctuate highly, resulting in a high training error which affects the network’s training result. The GN
layer overcomes the batch size problem by defining its computing set of feature-maps Si as below:

Si =

{
k

∣∣∣∣∣kN = iN , b kC
C
G
c = b iC

C
G
c
}

. (6)
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In Equation (6), hyper-parameter G is the number of groups. C
G is the number of channels per

group. b kC
C
G
c = b iC

C
G
cmeans that the indexes k and i are in the same group of channels. GN computes

its running mean and std along these groups of channels which are not affected by batch sizes.

3.3.2. Focal Loss

The focal loss [9] is proposed to address the dense object detection issue. This loss function is more
sensitive than the cross-entropy loss (CE) in the foreground-background imbalance case. We found
however that the focal loss is suitable for the detection of both dense objects and linear shape objects,
such as the road centerline, the outside shape of buildings and some medical images. Among these
tasks, the objectives that need to be classified are extremely unbalanced. By changing the loss function,
the same neural network structure can achieve significant improvement.

Cross-entropy loss (CE) is an essential method for multi-classes classification; below is the CE
function for binary classification:

CE(p, y) =

{
− log(p) i f y = 1,

− log(1− p) otherwise,
. (7)

In Equation (7), p ∈ [0, 1] is the estimated probability in specific class labeled with y = 1.
For convenience, here we define the probability pt as:

pt =

{
p i f y = 1,

1− p otherwise,
. (8)

There is an improved modification of CE known as balanced cross entropy loss (Balanced CE) to
address the class imbalance issues. This loss function introduces a class weight factor α ∈ [0, 1] for class 1
and (1− α) for class otherwise. In practice, this class weight factor is a non-differentiable hyperparameter
which can only set by cross-validation. We use αt to replace α and (1− α) in the definition equation:

Balanced CE(pt, y) = −αt log(pt), at =

{
a i f y = 1,

1− a otherwise,
pt =

{
p i f y = 1,

1− p otherwise,
. (9)

The weight factor α cannot be differentiable, so the balanced CE cannot feedback the essential
balance rate between the easy/hard negatives in the foreground-background imbalance condition.
As such, a large number of easy negatives occupy a major part of the loss and guide the gradient.
To focus the loss on the hard negatives, the focal loss function uses (1− pt)

γ to replace α. This factor
introduces γ ≥ 0 as the focusing parameter. In Equation (10), there is the equation for the focal loss (FL):

FL(pt) = −(1− pt)
γ log(pt). (10)

The focal loss has two properties: (1) when an example is misclassified, the loss is close to CE
and the weights factor gets rare effects ( pt → 0 , the weight factor (1− pt)

γ → 1); when pt → 1 ,
the weights factor (1− pt)

γ → 0 pulls down the weight of easily classified samples. (2) The focusing
parameter is used to adjust the down-weighted rate of easy samples. When γ→ 0 , FL is equal to CE.
The down-weighted effect of easy samples is increased since γ gets bigger.

4. Experiment and Analysis

We verified the effectiveness of the proposed method on three datasets: Massachusetts road
and building datasets [7], and National Laboratory of Pattern Recognition (NLPR) road dataset [44].
The proposed JointNet is compared with the other CNN architectures which have been verified
on these datasets. This section describes the experimental datasets, data augmentation methods,
compared methods, metrics, and results.
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4.1. DataSets

4.1.1. Massachusetts Road and Building Datasets

Massachusetts dataset was built by Mnih et al. [7], consisting of two sub-databases, roads and
buildings. It is the first publicly opened dataset for CNN training. Each image of the dataset is
1500 × 1500 pixels with spatial resolution at 1 m per pixel. The Massachusetts road datasets were
generated from centerline data from the OpenStreetMap [45] project. The road line thickness was set as
7 pixels, consisting of 1108 trainings, 14 validations and 49 testing images. The Massachusetts building
sub-datasets consist of 151 aerial images of the Boston area, including 137 trainings, 4 validations,
and 10 testing images. The ground truth of the building dataset was transformed from building
footprints of the OpenStreetMap project. This database contains buildings of all sizes, including factory
floors, residences, gas stations and shopping malls.

4.1.2. National Laboratory of Pattern Recognition (NLPR) Road Datasets

NLPR road datasets were built by Cheng et al. [44], consisting of 224 images. The ground truth of
these datasets includes road area segmentation and centerline. In our experiment, we evaluated the
methods on the segmentation dataset. We used the 1st ~ 180th images of the dataset as the training set,
the 181th ~ 194th images as the validation set, and the 195th ~ 224th images as the testing set.

4.2. Data Augmentation

In the above experimental datasets, we use some data augmentation methods to generalize the limited
data. These methods have two levels of data augmentation: morphological and image transformation.

The implementation methods for morphological transformation, the first level data augmentation,
are elastic deformation [46] and random flip. Both methods are synchronous morphological changes
of the image and of its ground truth. Elastic deformation generates a random displacement field at
first. Based on the displacement field, the method performs affine transformation synchronously on
the image and its ground truth. Image random flip is a method which synchronously and randomly
flips an image and its ground truth. Figure 5 shows the effect of the two data enhancement methods,
elastic deformation and random flip, on the image and its ground truth.
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Figure 5. Morphological change methods of data augmentation: (a) Original image and its ground
truth. (b) Image and its ground truth after the random flip process. (c) Image and its ground truth after
the elastic deformations process.

The second level of data augmentation is image transformation, which includes contrast stretching,
gamma correction, histogram equalization, adaptive histogram equalization and random noise.
The image transformation method does not involve morphological changes, so the image’s ground
truth does not change. Contrast stretching is a linear transformation that stretches an arbitrary
interval of the image intensities and fits it to another interval. Histogram equalization is a nonlinear
transformation that stretches the area of the color histogram with high abundance intensities and
compresses the area with low abundance intensities. Adaptive histogram equalization is an improved
version of histogram equalization. The method transforms each pixel using histogram equalization
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from the pixel’s neighborhood region. Color Space Convert is the transformation that changes the
color space of one image. Gamma correction is a nonlinear transformation that encodes and decodes
luminance or tristimulus values of the image. In our practice, we used gamma = 0.7 and gamma = 1.5 to
change the image’s luminance. Adding Random Noise is the image brightness or color transformation
by adding a random matrix. In our practice, random noise methods include Gaussian noise, salt and
pepper noise, Poisson noise and speckle noise.

Figure 6 shows the effect of the six data enhancement methods, contrast stretching, histogram
equalization, adaptive histogram equalization, color space convert, gamma correction and random noise.
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Figure 6. Image transformation methods of data augmentation: (a) Original image. (b) Image after
contrast stretching. (c) Image after histogram equalization. (d) Image after adaptive histogram
equalization. (e) Image after color space change. (f) Image after gamma correction (gamma = 0.7).
(g) Image after gamma correction (gamma = 1.5). (h) Image after added random noise.

4.3. Baseline Methods

The method by Mnih et al. [7] is a Restricted Boltzmann Machines (RBM) framework with
pre-processing and post-processing methods. The RBM framework contains 4096 input units,
4096 hidden units, and 256 output units. The input of this method is a three-channel color image
sized 64 × 64 and its corresponding center position ground truth sized 16 × 16. The method by
Saito et al. [17] is a CNN method without the pre-processing step. It consists of three convolutional
layers, one pooling layer, and two fully connection layers. The network’s input image and output
ground truth are the same as those of the method by Mnih et al. The CasNet by Cheng et al. [44]
contains a road detection network and a centerline extraction network. Both of them are the
encoder-decoder structure CNN’s method, the state-of-the-art method on NLPR dataset. The U-Net
by Ronneberger et al. [19] is an encoder-decoder structure CNN method. This network improves
its performance by transmitting the feature-maps generated in the encoder to the corresponding
decoder. The Res-U-Net by Zhang et al. [18] is an improved method based on U-Net. By adding
a residual transfer module, this network improves the accuracy of segmentation. This method is
the state-of-the-art method on the Massachusetts road dataset. The D-LinkNet by Zhou et al. [47] is
the winner of the DeepGlobe 2018 [48] road challenge. The Multi-Stage Multi-Task Neural Network
(MTMS) by Marcu et al. [24] is an encoder-decoder structure CNN network, the state-of-the-art method
on the Massachusetts building dataset. The TernausNetV2 by Iglovikov et al. [49] is an encoder-decoder
structure CNN network method.

4.4. Experimental Metrics

The experimental metrics of this work include correctness, completeness, quality, precision/recall
(PR) plot and relaxed precision/recall (PR) plot. Correctness and completeness are also called as
precision and recall, respectively, in computer science literature.
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In the binary classification, if the positive/negative recognizable object is labeled as 1, 0 respectively,
the range of predicted results of the training model will be [0, 1]. When calculating correctness, completeness,
and quality, a threshold should be set in advance which is typically 0.5. The samples whose prediction
value is greater than or equal to the threshold are positive, and those whose prediction value is less than
the threshold are negative. According to the combination of ground truth (GT) and prediction results,
all samples were divided into true positive (TP), false positive (FP), true negative (TN) and false negative
(FN). Where the correctness/precision, completeness/recall are defined as follows:

Correctness(Precision) =
TP

TP + FP
, Completeness(Recall) =

TP
TP + FN

. (11)

It is not enough to verify the accuracy of the binary classification model only by correctness and
completeness rates, because once the threshold changes, the correctness and completeness rates will
change accordingly. Therefore, to further measure the effect of the classifier, we use quality, which
evaluates the harmonic average of completeness and correctness in remote sensing literature.

Quality =
TP

TP + FN + FP
. (12)

Different from precision and recall, the precision/recall plot is not only two values but a
systematical evaluation result. The plot is formed by a series of connected vertices. Each vertex
is measured by setting the positive/negative thresholds to a sequence of equal difference from 0.0 to
1.0. The values of correctness and completeness correspond to a point on the plot if and only if the
threshold is equal to 0.5. In the precision/recall plot measurement, if the plot of one method can
completely enclose the plot of the other method, which means the former method achieve better
precision/recall result in every threshold condition, it can be concluded that the performance of the
former method is better than the latter. The break-even point of the plot is an important but incomplete
measurement of binary classification. However, compared with the measurement based on one single
threshold, the precision/recall plot shows a complete test scenario in every threshold standard.

Considering the difficulty in accurately labeling recognizing objects in large-scale remote sensing
images, Mnih et al. [7] introduced the relaxed precision/recall plot [50] as a practical metric on these
datasets. The relaxed precision/recall introduces a buffer range of $. Within the range of $ pixels from
any positively labeled pixel of the ground truth, each pixel predicted as positive is considered to be
correctly classified.

4.5. Results

4.5.1. Experimental Result on the Massachusetts Road Dataset

In the Massachusetts road dataset evaluation, the baseline methods include U-Net [19], Res-U-Net [18],
CasNet [44], D-LinkNet [47], and early results from Mnih et al. [7] and Saito et al. [17]. In our experiment,
as Figure 7 shows, the U-Net and the Res-U-Net models were implemented using Keras [51]. These two
models were trained with an image block sized 224× 224. The two models used Adam [52] as their
optimization method with an initial learning rate at 0.0001. The loss function for these two baseline models
was mean squared error (MSE). The CasNet, the U-Net+DA, the Res-U-Net+DA and the D-LinkNet+DA
models were implemented using Pytorch [53] and trained with a data-augmented image block sized
256× 256. The loss function for these three baseline models was binary cross-entropy (BCE). The two
JointNet models were then implemented using Pytorch and trained with a data-augmented image block
sized 256× 256. The JointNet+DA+BCE model used the BCE as its loss function. The JointNet+DA+FL
model used focal loss [9] (FL) as its loss function. All the models implemented with Pytorch used Adam [52]
as their optimization method with an initial learning rate at 0.0001.

From the precision/recall plots in Figure 7 and evaluation results listed in Table 3, we can
see that our proposed method, JointNet, set the new state-of-the-art on this dataset. The proposed
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method reached the best performance result on the break-even point of standard precision/recall plot,
the break-even point of relaxed precision/recall plot and quality metrics among all the comparison
methods. Note that the proposed method is a convolutional neural network method without
any post-processing steps which can improve model performance. The CasNet reached the best
performance on correctness and the D-LinkNet reached the best performance on completeness metrics.

As shown in Figure 8, the image areas are labeled by red dotted frames which are correctly marked
but poorly recognized road targets. Here, we call these targets the first category targets. The image
areas are labeled by yellow dotted frames which contain suspicious unmarked roads in the ground
truth. We call these targets the second category targets.
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Table 3. Evaluation results on Massachusetts road datasets

Methods BEP(1) Relaxed (ρ = 3) BEP COR(2) COM(3) QUA(4)

Mnih-RBM(5) [7] −−− 0.8873 −−− −−− −−−
Mnih-RBM+Post-processing [7] −−− 0.9006 −−− −−− −−−

Saito et al. [17] −−− 0.9047 −−− −−− −−−
U-Net (Keras, MSE(6)) [19] 0.7628 0.9053 0.8269 0.6980 0.6102

Res-U-Net (Keras, MSE) [18] 0.7867 0.9187 0.8376 0.7279 0.6386
CasNet (Pytorch, DA(7), BCE) [44] 0.7720 0.9186 0.8545 0.6583 0.5917
U-Net (Pytorch, DA, BCE(8)) [19] 0.7807 0.9202 0.8489 0.6953 0.6185

Res-U-Net (Pytorch, DA, BCE) [18] 0.7793 0.9235 0.8514 0.6869 0.6140
DLinkNet101 (Pytorch, DA, BCE) [47] 0.7762 0.9132 0.8235 0.7333 0.6342

Ours (Pytorch, DA, BCE) 0.7874 0.9274 0.8438 0.7232 0.6385
Ours (Pytorch, DA, FL(9)) 0.7935 0.9301 0.8536 0.7190 0.6400

(1) BEP: Break-Even Point. (2) COR: Correctness. (3) COM: Completeness. (4) QUA: Quality. (5) RBM: Restricted
Boltzmann Machines. (6) MSE: Mean Squared Error Loss. (7) DA: Data Augmentation. (8) BCE: Binary Cross-Entropy
Loss. (9) FL: Focal Loss.

In the first step, we compared the differences between the results of different network models.
In Figure 8, the columns b, c, d, e, and f were the testing results of CasNet, U-Net, Res-U-Net,
D-linkNet101, and JointNet models, respectively. These models were trained with the same data
and the binary cross-entropy loss function. CasNet performed well in some parts, such as the 2nd,
4th and 7th rows. In other places, the result’s error rate was very high, such as the 1st, 6th, 8th,
9th and 10th rows. Some identified road targets from the results of U-Net and Res-U-Net models
were obviously discontinuous, such as the 7th, 8th and 9th rows. The evaluation results showed that
D-linkNet101 performed best in terms of completeness rate. The method performed best among all
the methods of comparison in the 1st, 3rd, 5th and 8th rows. However, the method also had obvious
errors in the 7th and 10th rows. This method showed good robustness for identifying roads with
insignificant features such as the 3rd and 4th rows. Through the evaluation of the precision/recall plot
and the quality item, our proposed model, JointNet, performed best among all methods of comparison.
The road extracted by this method has no obvious error. The continuity and consistency of the road
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extracted by this method are good. In the recognition of the second category targets, JointNet has no
obvious advantage over the baseline methods.

In the second step, we compared the differences between the two JointNet models trained with
the BCE and FL functions, respectively. In Figure 8, the columns f and g are the testing results of
the two models, respectively. Comparing one model with the other on the recognition of the first
category targets, the model trained with FL performed better in every row than the one trained with
BCE. For the second category targets recognition, from the 3rd, 4th and 10th rows, the model trained
with FL produced better results than the model trained with BCE.

The above two steps and evaluation results showed that the proposed neural network, JointNet,
reached higher accuracy in the road centerline extraction task than other networks. The proposed
method had the advantage in the continuity of road extraction result. The focal loss function improved
road centerline extraction accuracy in our proposed method.
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Figure 8. Comparison of road extraction results on Massachusetts road datasets: (a) Input Image.
(b) Result from CasNet. (c) Result from U-Net. (d) Result from Res-U-Net. (e) Result from D-linkNet101.
(f) Result from JointNet+Binary Cross-entropy (BCE). (g) Result from JointNet+Focal Loss (FC).
(h) Ground truth.



Remote Sens. 2019, 11, 696 14 of 22

4.5.2. Experimental Result on the NLPR Road Dataset

In the NLPR road dataset evaluation, the baseline methods include CasNet [44], U-Net [19],
and Res-U-Net [18]. The proposed method, JointNet, and all baseline methods were implemented
using Pytorch [53]. The baseline networks were trained with a data-augmented image block sized
256× 256, and the loss function was binary cross-entropy (BCE). The two JointNet models were also
trained with a data-augmented image block sized 256× 256. The JointNet+BCE model used the BCE
as loss function, and the JointNet+FL model used focal loss [9] (FL) as loss function. All the models
used Adam [52] as their optimization method with an initial learning rate at 0.0001.

The precision/recall plots in Figure 9 and evaluation results listed in Table 4 show that
our proposed method, JointNet, reached better performance results than the baseline methods.
The proposed method produced a better result than baseline methods on all metrics, including the
break-even point of standard precision/recall plot, the break-even point of relaxed precision/recall plot,
correctness, completeness and quality. Between the two models of our proposed method, the model
trained with focal loss performed better in the break-even point of standard precision/recall plot and
correctness. The model trained with binary cross-entropy loss performs better in the break-even point
of relaxed precision/recall, completeness and quality metrics.
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Table 4. Evaluation results on NLPR road datasets.

Methods BEP(1) Relaxed (ρ = 3) BEP COR(2) COM(3) QUA(4)

CasNet (Pytorch, DA(5), BCE) [44] 0.8971 0.9745 0.9821 0.7210 0.7111
U-Net (Pytorch, DA, BCE(6)) [19] 0.8878 0.9767 0.9803 0.7417 0.7304

Res-U-Net (Pytorch, DA, BCE) [18] 0.8980 0.9775 0.9854 0.7313 0.7230
Ours (Pytorch, DA, BCE) 0.9064 0.9839 0.9856 0.7542 0.7458

Ours (Pytorch, DA, BCE(7)) 0.9069 0.9824 0.9886 0.7418 0.7352
(1) BEP: Break-Even Point. (2) COR: Correctness. (3) COM: Completeness. (4) QUA: Quality. (5) DA: Data
Augmentation. (6) BCE: Binary Cross-Entropy Loss. (7) FL: Focal Loss.

As shown in Figure 10, the overall performance of JointNet was the best and most stable.
The testing result of the proposed method reached the lowest error rate in the road area nearby trees
and shadows. Note that the CasNet is the only network in comparison without the skip-connection
module. This model performed unexpectedly well in the 1st, and 3rd rows, but weak in the area
nearby shades, such as the 2nd, 4th and 6th rows. The Res-U-Net model has a limitation on the size of
its receptive field. In the 5th row, there are forks in front of the house beside the road. The Res-U-Net
model produced many errors in the environment. However, JointNet, which has a larger receptive
field than the Res-U-Net model, reached a low error rate under the same condition.

The above analysis and testing results showed that the proposed neural network, JointNet,
reached higher road segmentation recognition accuracy than the baseline methods. The proposed
method which has larger sized receptive fields than that of the baseline methods recognized a wider
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range of context information and obtained more accurate results. In addition, there was no evidence
that the network model trained with the focal loss function was superior to the model trained with the
binary cross-entropy loss function on the road segmentation extraction task.
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4.5.3. Experimental Results on Massachusetts Building Dataset

In the Massachusetts building database evaluation, the comparison methods include MTMS [24],
U-Net [19], and Res-U-Net [18]. The current state-of-the-art method, the MTMS, was implemented
using Keras. In order to compare the state-of-the-art method with the proposed method, all network
models tested in this evaluation were implemented using Keras. The baseline network models were
trained with the image block sized 224× 224. The experimental results showed that there was little
difference between the results of MTMS reported and our MTMS implementation. The results of our
MTMS implementation were slightly better than those of MTMS reported in standard precision/recall
and slightly lower in the relaxed precision/recall. To better evaluate the effectiveness of the proposed
method, the TernausNetv2 by Iglovikov et al. [49] was added to the baseline methods. The method is
an encoder-decoder network utilizing the pre-trained residual network to reach a better classification
accuracy. Our proposed method, JointNet, used two different loss functions, mean-square error
(MSE) and binary cross-entropy (BCE). Two JointNet models were trained with the image block sized
224× 224. Another JointNet model was trained with the large image blocks sized 448× 448 using
BCE as loss function. All these models used Adam [52] as their optimization method with an initial
learning rate at 0.0001.

According to the precision/recall plots in Figure 11 and results listed in Table 5,
the TernausNetV2 performed well on the break-even point of standard precision/recall plot,
completeness and quality. Our proposed method performed well on the break-even point of relaxed
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precision/recall plot and correctness. Between the two models of our proposed method which
were trained with image blocks sized 224 × 224, the model trained with BCE performed slightly
better in standard precision/recall and the model trained with MSE performed better in the relaxed
precision/recall. Surprisingly, the model trained with larger size image blocks (448× 448) did not
achieve better results than the model trained with smaller blocks.
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Table 5. Evaluation results on Massachusetts building datasets

Methods BEP(1) Relaxed (ρ = 3) BEP COR(2) COM(3) QUA(4)

Mnih et al. [7] −−− 0.9150 −−− −−− −−−
Saito et al. [17] −−− 0.9426 −−− −−− −−−

Hamaguchi et al. [54] −−− 0.9430 −−− −−− −−−
U-Net (Keras, BCE(5)) [19] 0.8145 0.9475 0.8382 0.7687 0.6698

Res-U-Net (Keras, BCE) [18] 0.8384 0.9621 0.8621 0.8026 0.7114
MTMS-Stage-1 (report) [24] 0.8339 0.9604 −−− −−− −−−

MTMS-Stage-1(Keras, BCE) [24] 0.8345 0.9595 0.8673 0.7870 0.7020
TernausNetV2 (Keras, BCE) [49] 0.8481 0.9643 0.8596 0.8199 0.7234

Ours (Keras, BCE) 0.8458 0.9622 0.8621 0.8129 0.7199
Ours (Keras, MSE(7)) 0.8433 0.9633 0.8690 0.7979 0.7125

Ours (Keras, @448 × 448, BCE) 0.8461 0.9644 0.8572 0.8120 0.7161
(1) BEP: Break-Even Point. (2) COR: Correctness. (3) COM: Completeness. (4) QUA: Quality. (5) BCE: Binary
Cross-Entropy Loss. (7) MSE: Mean Squared Error Loss.

As shown in Figure 12, in the 1st, 2nd and 3rd rows, there was little difference in the extraction of
small size building targets among the methods in comparison. In the 3rd row, the two models, U-Net
and MTMS, had no normalization module but provided more details of building separation. From the
results in the 4th, 5th, 6th and 7th rows, the size of the network’s receptive field played a very important
role. In the 4th row, the building was marked with a red dotted frame whose color and texture were
similar to those of road surface. The result of the Res-U-Net model showed discontinuity in the
central area of the building. The main reason for the discontinuity of the center of the large building
extraction results was that the receptive field of the network was too small to cover the building.
The discontinuity also happened in the MTMS model’s results. The TernausNetV2 and the JointNet
models achieved better recognition results than that of the MTMS. In the 5th row, the boundary of the
building was clear from the image. The U-Net, the Res-U-Net, the TernausNetV2, and the JointNet
models extracted better results of the building boundary than that of the MTMS. The Res-U-Net
distinctly extracted the outline of all buildings in the shadow environment, while the U-Net and the
TernausNetV2 performed poorly in the shadow environment. The JointNet model trained with the
large size image block was also less effective than the model trained with smaller sized image blocks in
building extraction in shaded environments. In the 6th row, the U-Net model did not extract large-scale
buildings well. The Res-U-Net model performed well on the building boundary but poorly in the
central area of the building. Due to the size of the model’s receptive fields, there was a discontinuity in
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the central area of the building. The TernausNetV2 model, a network that also used the residual block
as its main component, had a good result because of its deeper network layers which had a larger
receptive field than that of the Res-U-Net model. The MTMS model performed well on one simple
shaped building and poorly on the other one which has a complex shape and texture. The JointNet
and the TernausNetV2 models performed well on both large-scale buildings. The JointNet and the
TernausNetV2 models were less likely to cause discontinuity in the central area of extracted large-scale
buildings than the other baseline methods.
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The above analysis and evaluation results revealed that the proposed method, JointNet, had the
best performance on the correctness metrics. Compared with the TennausNetV2 method, the proposed
method had advantages in the correctness and the break-even point of relaxed precision/recall plot.
Compared with the U-Net, the Res-U-Net, and the MTMS methods, the proposed method had a larger
receptive field and was less likely to cause discontinuity in the central area of extracted large-scale
building targets. In addition, based on the evaluation of the proposed method, the binary cross-entropy
loss function had no obvious advantage over mean-square error function on the building extraction
task and the model trained with the larger size image blocks had limited improvement compared with
the one trained with smaller size image blocks in the building extraction task.

5. Discussion

Buildings and roads are two kinds of objects which differ greatly in morphology, but these two
kinds of objects are also the two most important man-made objects in remote sensing images of
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built-up areas. Many specific applications are based on information about them. Therefore, a common
method that can effectively extract information from two kinds of objects has good practical value.
Before convolutional neural networks were widely used in remote sensing, OBIA-based methods
could not effectively extract these two types of objects in a unified framework. Mnih et al. [7] proposed
the first RBM-based method for both building and road objects extraction. Since then, Saito et al. [17]
and Alshehhl et al. [55] have proposed CNN-based methods that can be applied to the two kinds of
ground objects.

As these two kinds of objects have their own characteristics, there are different requirements for
the network which can effectively recognize these two types of ground objects.

(1) In the road extraction task, the ground truth of road is a linear shape target. As the width of the
target is very limited, only a few pixels, if the prediction results differ from the target location, even
if by only a few pixels, the evaluation results can show a big difference. Therefore, the extraction
accuracy of such targets depends on the consistency of the shape and position of the prediction
results with the target. In the high-level features of convolutional networks, the spatial location
information of the target becomes unstable after several rescale operations. At this time, the reuse
of the low-level features becomes key, because the low-level features have not been rescaled,
the spatial location information in the low-level feature is more accurate than that of the high-level
feature. For this reason, the encoder-decoder network, which reuses the low-level feature by skip
connection, played an important role in the road extraction task.

(2) In the building extraction, the key to the building extraction network is to have a large receptive
field. Accurate building extraction depends on the acquisition of the complete edge information
of the building, which is distributed in a certain range in remote sensing images. A network with
a large receptive field which covers the range can extract the context information of the building
such as its edge. As shown in the evaluation results, if the size of the receptive field of the network
is too small to cover the building target, one of the typical problems caused by this issue would
be the discontinuity in the central area of the extracted large-size building target. The semantic
information of the high-level features of the network covers a wider range of receptive fields than
that of the low-level features, so for building extraction, the high-level features of the network are
more critical than that of the low-level features.

The neural network which can be a common method for both road and building extraction must
satisfy the requirements of these two kind targets at the same time. Based on the requirement of
effective road extraction, the network framework needs to be in the encoder-decoder mode. Based on
the encoder-decoder network, there are several ways which can effectively increase the receptive field
of the network. First, by effectively organizing the atrous convolution layers, the receptive field can be
enlarged within certain network depth. This method is just like the network proposed in this paper.
Second, using the high-level features of the deep network to achieve a wide range of receptive fields,
and collecting the low-level features of the network as the reusable information for road extraction
task. A typical example of such structure networks is the TernausNetV2 [49]. Third, using pyramid
pooling module (PPM), atrous spatial pyramid pooling module (ASPP), or other methods to achieve a
large size receptive field.

6. Conclusions

In this paper, we propose a neural network module based on the combination of dense connectivity
and atrous convolution, which fully utilizes the information flow efficiency of the dense connectivity
pattern and the large receptive field of atrous convolution layer. By carefully designing the atrous
convolution rate settings, the module’s receptive field uniformly covers a large area without any
loopholes. Based on this module, we propose an encoder-decoder network, which can meet the
performance requirements for extracting road and building information.
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The evaluation results of experiments showed that the proposed method achieved higher accuracy
on a road centerline extraction dataset and a road segmentation extraction dataset. The proposed
method also reached high correctness on a building extraction dataset. The ground truth of these
three different datasets diversifies greatly. For the ground objects of different categories, our proposed
method satisfies the requirements by only changing the essential loss function. The large size receptive
field of the proposed method shows different advantages in different extraction ground objects: for the
extraction of the road centerline, JointNet has the advantage in the continuity of the road extraction
result over the baseline methods; for the road segmentation extraction task, JointNet can recognize a
larger range of the context information than that of the baseline methods and obtains more accurate
results; for the building extraction tasks, the proposed method which has larger sized receptive fields
was less likely to cause discontinuity in the central area of extracted large-scale building targets than
the baseline methods.

It is worth noting that the training epochs of our model are rather small since our training machine
only has a single graphics card at the home level. In spite of this drawback, our proposed method has
achieved favorable results. It is thus believed that the model proposed will be much better after a long
training time with much stronger machines.
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