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Abstract: The technology used for road extraction from remote sensing images plays an important
role in urban planning, traffic management, navigation, and other geographic applications. Although
deep learning methods have greatly enhanced the development of road extractions in recent
years, this technology is still in its infancy. Because the characteristics of road targets are complex,
the accuracy of road extractions is still limited. In addition, the ambiguous prediction of semantic
segmentation methods also makes the road extraction result blurry. In this study, we improved the
performance of the road extraction network by integrating atrous spatial pyramid pooling (ASPP)
with an Encoder-Decoder network. The proposed approach takes advantage of ASPP’s ability to
extract multiscale features and the Encoder-Decoder network’s ability to extract detailed features.
Therefore, it can achieve accurate and detailed road extraction results. For the first time, we utilized
the structural similarity (SSIM) as a loss function for road extraction. Therefore, the ambiguous
predictions in the extraction results can be removed, and the image quality of the extracted roads can
be improved. The experimental results using the Massachusetts Road dataset show that our method
achieves an F1-score of 83.5% and an SSIM of 0.893. Compared with the normal U-net, our method
improves the F1-score by 2.6% and the SSIM by 0.18. Therefore, it is demonstrated that the proposed
approach can extract roads from remote sensing images more effectively and clearly than the other
compared methods.

Keywords: deep learning; remote sensing; road extraction; semantic segmentation; structural similarity

1. Introduction

Road extraction from remote sensing images is an important problem with a wide range of uses,
such as urban planning, traffic management, and geographic information systems (GIS). The massive
growth in satellite observation data has enabled researchers to acquire more information from remote
sensing images. Therefore, automatic road extraction technology is in high demand. However,
despite decades of research, automatic road extraction is far from perfect. Roads have highly diverse
characteristics, such as road material, structure, illumination, and background disturbance, and such
substantial variation makes road extraction challenging.

Traditional methods usually involve leveraging heuristic knowledge and extracting road targets
by designing manual features, such as linear shapes [1,2] and intersections [3–5]. Methods based on
statistical features, curve evolution techniques [6], conditional random fields (CRF) [7], and other
methods are also used for road extraction. The main problem with these traditional methods is their

Remote Sens. 2019, 11, 1015; doi:10.3390/rs11091015 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-2051-7843
https://orcid.org/0000-0002-4948-4056
http://www.mdpi.com/2072-4292/11/9/1015?type=check_update&version=1
http://dx.doi.org/10.3390/rs11091015
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2019, 11, 1015 2 of 16

weak generalization ability. The performance of these methods relies on threshold parameters that
require elaborate calculations, and these parameters can vary in different images [8].

With the rapid growth in available data and computing power, the use of deep learning
technology has led to great achievements in the computer vision field. As a subset of the semantic
segmentation problem, road segmentation has greatly advanced. Early in 2013, Mnih et al. [9] aimed to
segment roads and buildings by using deep convolutional neural network (CNN) methods and
established a corresponding large-scale dataset, namely the Massachusetts roads and buildings dataset.
Wang et al. [10] proposed a neural dynamic framework to extract a road network from satellite and
aerial images. The framework utilizes a deep neural network and sliding window approach to predict
the road samples, and then, it tracks the road by using a finite state machine (FSM). Alshehhi et al. [11]
proposed a modified patch-based CNN architecture. It predicts each pixel by using the sliding window
approach to simultaneously extract roads and buildings from remote sensing images. CNN-based
methods achieve state-of-the-art solutions to the road extraction problem; however, because of the
inefficiency of the sliding window approach, the framework of the “patch-based” CNN is still not
optimal for the road segmentation task.

The fully convolutional network (FCN) [12] solves image extraction problems by replacing
fully connected layers with convolutional layers so that the output retains the spatial information
of the contextual features. The FCN abandons the patch-based approach and realizes the semantic
segmentation of the whole image by using a single forward propagation, which greatly improves
efficiency. Using the architecture of the FCN, Zhong et al. [13] estimated the influence of different
hyperparameters on road and building segmentations of remote sensing images, and they determined
the optimal hyperparameter configuration that led to the best experimental results. Wei et al. [14]
proposed a road structure refined CNN (RSRCNN) approach to road extraction using aerial images.
The technique incorporates the road structure in the learning phase of the FCN model by constraining
the road structure to the loss function. They obtained an F1-score of 66.2% with the Massachusetts
road dataset using this method.

Normal FCNs fail to restore the resolution of the input image and perform poorly in segmenting
small details, while Encoder-Decoder network models, such as U-net [15], can solve this problem
effectively. Cheng et al. [16] proposed a cascaded Encoder-Decoder network to detect roads and their
centerlines from remote sensing imagery. Panboonyuen et al. [17] involved SegNet [18] and exponential
linear unit (ELU) activations [19] in road segmentation, and the post-processing of the results was
implemented using landscape metrics and a conditional random field. Zhang et al. [20] proposed
an improved network which was combined with ResNet [21] and U-net to extract roads from optical
remote sensing images. These methods take advantage of the high-performing Encoder-Decoder
network but ignore the characteristics of road features. Mosinska et al. [22] proposed a new loss
term by using pretrained VGG19 [23] layers to capture the higher-order topological features of linear
structures. Their method, which is based on the U-net model, outperformed other state-of-the-art
methods. Although this method is effective, the approach that uses the VGG19 as a loss function
calculator is empirical, so its effectiveness should be validated before its application.

In the problem of road extraction from remote sensing images, it is necessary to ensure a high-detail
resolution of segmentation maps. Because of the extensibility of road networks, road targets have multiscale
features. Examples of road features at different scales include local corners, textures, macroscopic lines,
intersections, and global network structures. Small local features contribute to detail segmentation, while
large-scale global features contribute to the accuracy of the classification. Therefore, the ability to extract
multiscale features is necessary for a road extraction network. Inspired by the U-net and atrous spatial
pyramid pooling (ASPP) [24] approach, we introduce an ASPP-integrated U-net in this paper. By taking
advantage of the U-net and ASPP, the network can capture multiscale features and can restore detailed
information of road targets.

Road targets are small linear structures, so our goal is to generate a clean and detailed extraction
map. However, pixel-level general loss functions, such as cross-entropy, ignore the relationship
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between pixels, so the segmentation results obtained by a general network contain a large number of
ambiguous and unclear predictions. Motivated by this, we seek to improve the quality of the extracted
map by representing the relationship between pixels. Therefore, we introduced the structural similarity
(SSIM) index metric [25] to the process of training semantic segmentation networks. The SSIM is
a method for predicting the perceived quality of digital images, and it was originally introduced for
assessing a structural similarity in the spatial domain. It is widely used because the human visual
system is more sensitive to structures than pixels [26]. By reducing the SSIM loss and by achieving
a higher SSIM score, the result of segmentation is an image with a better quality.

The main contributions of this paper are highlighted as follows.

1. A U-net-based Encoder-Decoder network is proposed as the baseline network for road extraction
from remote sensing imagery. Firstly, the advanced ELU activation function was applied to
improve the performance of the network. This was also used for road and building segmentation in
References [17,27], so its effectiveness has been demonstrated. Secondly, batch normalization [28]
was used to accelerate the convergence of the training process and to prevent the exploding
gradient problem.

2. The ASPP is integrated with the proposed Encoder-Decoder network to capture multiscale
information. DeepLabv3+ [29], combined with the Encoder-Decoder and ASPP, is able to improve
the extraction of small details. However, since DeepLabv3+ is mainly designed for daily scenes,
it neglects targets that are really small. DeepLabv3+ applies the idea of gradually restoring the
resolution from the Encoder-Decoder network, but it can only restore 1/4 of the resolution of the
input, and these results should be improved by using a CRF to capture more detail. Hence, it is
still insufficient for the road extraction task. Therefore, we integrated the ASPP with the strong
Encoder-Decoder network of the U-net, and with the advantage of ASPP, we can overcome the
deficiency of DeepLabv3+. Compared with DeepLabv3+, our approach can restore the resolution
completely and is more suitable for processing remote sensing imagery.

3. The SSIM is employed as a loss function to improve the quality of road segmentation. To the
best of our knowledge, this is the first time that the SSIM has been used as a loss function for
semantic segmentation. The SSIM loss function supplements the representation to a degree that
the general cross-entropy loss function cannot reach, and it improves the quality of the target
extraction results.

The remainder of this paper is arranged as follows. In Section 2, we introduce the materials
related to the work described in this paper and present the details of the proposed approaches to
road segmentation. In Section 3, experiments that were conducted to test the proposed methods are
described and the corresponding analyses are provided. Finally, Section 4 draws conclusions and
recommends future research.

2. Materials and Methods

Figure 1 shows the general scheme for a semantic segmentation in road extraction, which is
considered a binary semantic segmentation problem. The deep segmentation network can produce
a prediction map by forward computing the inputted preprocessed image. The loss between the
predicted result and the corresponding ground truth is propagated back through the chain rule of
derivation, which gives each weight parameter a gradient. The weighted parameters of the network
can be updated through a parameter updating algorithm (optimizer). Iterating the training process
causes a continuous reduction in the loss value, and finally, an applicable weight model can be
obtained. In this study, we improve the segmentation network and the loss function for the road
extraction problem.
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Figure 1. A general scheme of training the deep segmentation network.

2.1. ASPP-Integrated Encoder-Decoder Network

2.1.1. Architecture of the Improved U-net

The baseline architecture that we employed in this study is an improved U-net. As a classical
Encoder-Decoder model, the U-net is widely used in medical and remote sensing imagery
segmentation [15,20,22,30].

Usually, CNNs use pooling layers, such as max pooling, to gather contextual information and
to reduce the level of computation. The problem that arises from semantic segmentation is that the
resulting feature map has a low resolution. For example, the resolution of the image resulting from
the classical FCN, which uses the VGG pretrained model, is only 1/32 of that of the input image.
This problem can be alleviated by FCNs that use upsampling and that skip layers to improve the
resolution [12]. However, such solutions are too simple and rough for road segmentation, and their
final resolution is still insufficient. Encoder-Decoder networks such as U-net can solve this problem
effectively. By multiplying upsampling operations and by gathering information from lower layers,
these networks can restore the resolution of the prediction to that of the input image. After each
upsampling process of the feature map, the Encoder-Decoder network concatenates the resulting
feature map with a low-level feature map to combine the semantic information and spatial information.
Therefore, the Encoder-Decoder network is considered more suitable for road segmentation.

In this paper, we introduce an Encoder-Decoder network that is based on the architecture of the
U-net, as shown in Figure 2. The U-net consists of two parts, an encoder and a decoder. The encoder
part has the typical architecture of a convolutional network. It carries out repeated applications of
two 3 × 3 convolutional layers, each of which are followed by an ELU activation function and a batch
normalization layer. Each convolutional block follows a 2 × 2 max pooling operation for downsampling.
The channels of the feature maps are doubled after each convolutional block. Every block in the decoder
part consists of an upsampling operation that is achieved by a 2 × 2 deconvolution, concatenation with
the corresponding feature map from the encoder part, and two 3 × 3 convolutions that are followed by
an ELU and a batch normalization layer. The channels of the feature maps are halved after each
upsampling process. In the final layer, a 1 × 1 convolution with a Sigmoid activation function is used to
generate the output of the desired binary prediction.

In practice, we find that the Encoder-Decoder network’s hyperparameters, such as layers and
convolution kernels, can be set to have flexibility in a certain range without affecting the road extraction
results [31]. However, to facilitate the reproduction of this work, we built the network architecture
on the basis of the classical U-net. Some modifications of the original U-net are proposed to improve
the capacity of the network. Firstly, the activation of the rectified linear unit (ReLU) is replaced by the
ELU. ReLU is a popular activation function in CNNs and is defined in Equation (1) [32].

ReLU(z) = max(0, z) (1)

The ELU leads not only to a faster learning but also to a generalization performance that is
significantly better than that of ReLU in deep networks [19]. It has also been reported that the ELU
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can increase the generalization performance and can improve the accuracy of classification in the
remote sensing field [17,27]. Secondly, batch normalization is applied after each convolutional layer.
Batch normalization can speed up the convergence of the training process and can avoid the vanishing
gradient and exploding gradient problems.
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Figure 2. A brief illustration of the improved U-net structure: The left-side blocks form the encoder
part, in which the channels of the feature maps are doubled from 64 to 1024. The blocks on the right
side constitute the decoder part, in which the resolution of the feature maps is gradually recovered by
upsampling and gathering information from the encoder feature maps. Finally, a binary segmentation
map that has the same resolution as the input image is produced as the road extraction result.

2.1.2. Integration of ASPP

ASPP consists of several parallel atrous convolutions with different rates. It is a combination
of atrous convolution and spatial pyramid pooling, and it can capture the contextual information at
multiple scales for a more accurate classification. The road network not only contains abundant local
details but also is a macro target with an almost infinite extension. Therefore, ASPP is needed to extract
multiscale features for a road network extraction.

Atrous convolution is a powerful tool for controlling the resolution of the features computed
by deep convolutional neural networks and for adjusting the receptive field to capture multiscale
information. For each pixel i on the output y and filter w, atrous convolution is applied to the input x
as shown in Equation (2) [29]:

y[i] = ∑
k

x[i + r · k]w[k] (2)

where the atrous rate r determines the stride of sampling the input image. Atrous convolution is
equivalent to convolving the input x with the filters produced by inserting r − 1 zeros between two
consecutive filter values. By adjusting the rate r, we can modify the receptive field of the filter.

We employed the ASPP module that is used in DeepLabv3 [24] to improve the proposed U-net
network. It consists of four parallel atrous convolutions with different atrous rates. Specifically,
the ASPP module consists of (a) one 1 × 1 convolution and three parallel 3 × 3 convolutions with
rates of 6, 12, and 18, respectively and (b) an image-level feature that is produced by global average
pooling. The resulting features from all of the branches are bilinearly upsampled to the input size and
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then concatenated and passed through another 1 × 1 convolution. ASPP is applied to the feature map
produced by the encoder part, and the resulting feature map is fed into the decoder part, as shown
in Figure 3.

Concat
+

1x1 Conv

(a) Atrous Spatial 
Pyramid Pooling

1x1 Conv

3x3 Conv 
rate=6

3x3 Conv 
rate=12

3x3 Conv 
rate=18

(b) Image Pooling

Encoder Decoder

Skip layers

Bottleneck 

The ASPP Integration

Figure 3. The improved U-net with atrous spatial pyramid pooling (ASPP) integration: The ASPP
module is inserted after the bottleneck of the Encoder-Decoder network. This means that the feature
map generated by the encoder is processed by using ASPP, and then, the result is fed into the decoder.

2.2. SSIM Loss

The image signals of a road network are highly structured, and their pixels exhibit strong
dependencies, especially on spatial relationships. However, normal metrics, such as cross-entropy,
assign equal weights to each pixel and ignore the spatial information when evaluating the similarity
between two images. The binary cross-entropy (BCE) loss function [32] of a general semantic
segmentation is shown in Equation (3) and is used as the basic loss function in the proposed network.

LBCE = − 1
N

N

∑
i=1

(yi (logŷi) + (1 − yi) (1 − logŷi)) (3)

where yi is the ground truth of the ith pixel, ŷi is the prediction of the ith pixel, and N is the total
number of pixels.

In addition, a problem often encountered in road segmentation is the blurriness of the results.
The structural similarity index metric is a powerful tool for image quality assessment [26]. Generally,
a higher SSIM means cleaner results [25]. This motivated us to improve the road segmentation quality
by applying the SSIM as a loss function to train the network.

The SSIM evaluates the similarity between two images by comparing the luminance, contrast,
and structure. Firstly, the luminance is compared by estimating the mean intensity. The luminance
comparison function l(x, y) is based on µx and µy, where µx is defined by Equation (4).

µx =
1
n

N

∑
i=1

xi (4)

Secondly, the signal contrast can be estimated by using the standard deviation, which is given by
Equation (5). Therefore, the contrast comparison c(x, y) is a function of σx and σy.

σx =

(
1

N − 1

N

∑
i=1

(xi − µx)
2

) 1
2

(5)

Thirdly, the structure comparison s(x, y) can be estimated by using the normalized signals denoted
by (x − µx)/σx and (y − µy)/σy. Therefore, the final similarity measure is a function that combines
the three components, as defined in Equation (6).

S(x, y) = f (l(x, y), c(x, y), s(x, y)) (6)
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To complete the definition of the similarity measure introduced in Equation (6), the three functions,
l(x, y), c(x, y), and s(x, y), as well as the combination f (·), need to be defined. The luminance
comparison is defined in Equation (7),

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(7)

where C1 is a constant that is used to prevent instability when µ2
x + µ2

y is close to zero.
The contrast comparison is defined in Equation (8):

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(8)

where C2 is also a constant to prevent instability. Then, the structure comparison is estimated after
normalizing the signals. The correlation (inner product) is a simple and effective measure for evaluating
the structural similarity, which is defined in Equation (9), where C3 is a constant that inhibits instability.

s(x, y) =
σxy + C3

σxσy + C3
(9)

where σxy is estimated according to Equation (10).

σxy =
1

N − 1

N

∑
i=1

(xi − µx)(yi − µy) (10)

By combining the comparisons in Equations (7)–(9), we obtain the final measurement of the SSIM,
which is defined in Equation (11).

SSIM(x, y) = [l(x, y)α · c(x, y)β · s(x, y)γ] (11)

where α > 0, β > 0, and γ > 0 are parameters that are used to assign different weights to the three
components. To simplify the expression, the parameters were set to be the same as in Reference [25],
in which α = β = γ = 1 and C3 = C2/2. This configuration is a default setting that is widely used;
it not only provides a simple expression of the SSIM but also facilitates comparisons with similar
works in the future. Therefore, Equation (11) can be rewritten as Equation (12).

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(12)

For the road segmentation problem, it is better to apply the SSIM locally rather than globally.
This is because the road distribution is uneven in the image: Some areas contain a lot of local details,
while others are blank. The global SSIM may overwhelm the effective local information and may reduce
the efficiency of a similarity estimation. In addition, the ambiguous predictions of road extraction
results are often local phenomena, so the statistics of local structural similarity are preferred.

The local statistics µx, σx, and σxy can be calculated by a square sliding window. In this work,
we followed the approach used in Reference [25]. An 11 × 11-unit circular symmetric Gaussian
weighting matrix w with a standard deviation of 1.5 is used so that the quality maps exhibit a locally
isotropic property. Therefore, the local statistics are modified according to Equations (13)–(15):

µx =
N

∑
i=1

wixi (13)
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σx =

(
N

∑
i=1

wi (xi − µx)
2

) 1
2

(14)

σxy =
N

∑
i=1

wi (xi − µx)
(
yi − µy

)
(15)

When training the network, it is necessary to condense the metrics into one function. Therefore,
a mean SSIM (MSSIM) loss is used to evaluate the overall image quality [25], as defined in
Equation (16).

MSSIM(X, Y) =
1
M

M

∑
j=1

SSIM(xj, yj) (16)

where X and Y are the ground truth and the predicted map, xj and yj are the image contents at the jth
window, and M is the total number of local windows.

To integrate the SSIM loss with the end-to-end convolutional network, all of the local statistics
can be computed by using a convolutional layer, as shown in Equations (17)–(19).

µx = Conv(X, w) (17)

σ2
x = Conv(X � X, w)− µx � µx (18)

σxy = Conv(X � Y, w)− µx � µy (19)

where Conv(X, w) represents the convolution of X with w as the filter and � represents the Hadamard
product between two tensors. The final loss function of the SSIM is given by Equation (20).

LSSIM(X, Y) = − 1
M

(2µxµy + C1)(2σxy + C2)

(µx2 + µy2 + C1)(σx2 + σy2 + C2)
(20)

It is obvious that all of the math operations in the SSIM loss function are derivable, so it can be
applied to an end-to-end convolutional network directly. We combined the SSIM loss with the BCE
loss to train the network, and the final loss is calculated by Equation (21).

L = LBCE + LSSIM (21)

2.3. Dataset and Preprocessing

The dataset we employed in this study is the Massachusetts road dataset. It includes 1108 training
images, 49 test images, and 14 validation images. Each image has a size of 1500 × 1500 and a resolution
of 1 m/pixel. Because the training process in deep learning is data-hungry, we augmented the training
data by rotating (90, 180, and 270 degrees) and flipping (horizontally and vertically), as shown in
Figure 4. As a result, the training dataset has six times the number of images compared with the
original dataset, with a total of 6648 images.

All of the images were preprocessed by cropping and normalization. Firstly, the input images are
randomly cropped to 512 × 512. Cropping facilitates the downsampling operations and reduces the
level of computation. Then, the cropped images were normalized to [−0.5,0.5] by 0–1 normalization
and average value subtraction.
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Figure 4. An example of augmenting the training data by rotating and flipping.

2.4. Evaluation Metrics

We employed recall, precision, and the F1-score as the evaluation metrics in this study. Recall and
precision, which are also known as completeness and correctness in the remote sensing literature [33],
are the most common metrics for evaluating road extraction results [9].

Since road segmentation is regarded as a semantic segmentation problem, the road pixels are
positive and the background pixels are negative. Therefore, all of the predictions can be classified as
one of four types: true positive (TP), true negative (TN), false positive (FP), and false negative (FN).
TP represents the number of road pixels that are correctly classified. TN represents the number of
background pixels that are correctly classified. FP is the number of background pixels that are classified
as road. FN is the number of road pixels that are classified as background. These metrics are defined
in Equations (22)–(24) [32].

recall =
TP

TP + FN
(22)

precision =
TP

TP + FP
(23)

F1 =
2 × precision × recall

precision + recall
=

2TP
2TP + FN + FP

(24)

The precision is the fraction of predicted road pixels that are true roads, while the recall is the
fraction of true road pixels that are correctly detected [9]. F1 is a combination of precision and recall.
The same metrics have been used in similar works, such as References [13,14,17].

3. Experiment Results and Discussion

The proposed approach is based on the model of an enhanced U-net with two improvements:
(a) ASPP integration to capture multiscale features and (b) the SSIM loss to improve the quality of
the segmentation results. To validate our approach, we conducted experiments using three models:
the baseline U-net, the ASPP-integrated U-net with normal loss, and the ASPP-U-net with SSIM loss.
Except for the differences in the network architecture and loss function shown in Table 1, the three
models’ hyperparameters, such as the convolutional layer, activation, and optimizer, are invariant to
observe the effects of the proposed improvements.

Table 1. The network configuration of the three compared models.

Model Name ASPP Integration Loss Function

Baseline U-net No LBCE
ASPP-U-net Yes LBCE

ASPP-U-net+SSIM Yes LBCE + LSSIM
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3.1. Implementation Details

We utilized the Adam optimizer [34] to update the parameters. In the field of deep learning,
Adam is a popular algorithm because it can achieve excellent results quickly. Empirical results have
shown that the Adam algorithm has an excellent performance in practice and outperforms other
optimization algorithms, such as SGD, RMSprop, and AdaGrad [35]. It can automatically adjust the
learning rate during the iterations. For the Adam optimizer, some parameters should be initialized.
We employed the default settings specified in Reference [34] because they have been tested for machine
learning problems. The learning rate was set to α = 0.001, the exponential decay rates for the moment
estimates were set to β1 = 0.9 and β2 = 0.999, and the small constant was ε = 10−8.

All of the experiments were conducted using the PyTorch framework. The hardware environment
of the experiments is a server with a CPU with the following specifications: Intel Xeon E5-2630 v4 × 15,
64 GB Memory, and an NVIDIA GeForce GTX 1080Ti(11G) GPU.

3.2. Discussion on Experimental Results

In order to determine the convergence and performance of the networks in the training process,
some metrics were observed. By observing the mean losses of the training and test images displayed
in Figure 5a,b, we can see that the baseline U-net achieves convergence before 15 epochs and begins
overfitting with continuous training. The ASPP-U-net and ASPP-U-net-SSIM converge after about
30 epochs.

From evaluating the predictions of the test data in each epoch, we can observe the performance of the
three models by the average MSSIM and mean F1-score metrics. Because of the overfitting phenomenon,
the SSIM metric of the baseline U-net increases, as shown in Figure 5c,d. This is because the overfitting
effect ignores some of the blurred targets and makes the segmentation map cleaner, but the accuracy
begins to decline. From the test metrics in Figure 5d,e, we can see that an ASPP integration significantly
improves the comprehensive metrics of road extraction and inhibits a premature convergence during
training. Further, the SSIM loss function yields a higher SSIM metric, which means a better quality of the
segmentation maps.

We adopted the trained models with the best F1-score performance. Their quantitative comparison
is shown in Table 2.

First, the performance of our baseline U-net is at the same level as that of the best model from the
references, i.e., ELU-SegNet-R, and achieves the so-called “state-of-the-art”. It demonstrates that our
baseline network represents the general level of the road extraction model.

ASPP integration aims to increase the accuracy of the network by capturing multiscale features.
Table 2 shows that the ASPP-U-net outperforms the baseline U-net: the F1-score of ASPP-U-net is
approximately 2.3% higher than that of the baseline U-net. The ASPP-U-net-SSIM performs about
2.6% better than the baseline U-net. These results prove that the strategy of integrating ASPP into the
Encoder-Decoder network is effective.

Table 2. The quantitative results of the comparative models: The performance results of the first three
models listed are from several similar works that are cited in this paper, and the results of the last three
models listed are from the experiments conducted in this study.

Model Name Recall Precision F1-Score Average MSSIM

FCN-4s [13] 66.0% 71.0% 68.4% /
RSRCNN [14] 72.9% 60.6% 66.2% /

ELU-SegNet-R [17] 78.0% 84.7% 81.2% /
Baseline U-net 80.3% 82.0% 80.9% 0.716

ASPP-U-net 81.9% 84.9% 83.2% 0.730
ASPP-U-net-SSIM 80.5% 87.1% 83.5% 0.893
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The MSSIM values of the test images were averaged, and the F1-score of the ASPP-U-net is
about 0.73, while that of the ASPP-U-net-SSIM is about 0.89. Although their F1-scores are similar,
the ASPP-U-net-SSIM outperforms the ASPP-U-net in the SSIM metric. It is obvious that the SSIM loss
function effectively improves the image quality of the results. It demonstrates the positive effect of the
SSIM loss function from a quantitative perspective. In addition, it also shows that the F1-score cannot
be used alone to evaluate the segmentation results and that the SSIM is a good complement.
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Figure 5. The training metrics of the three different experiments. (a) is the BCE loss of the training
process, and (b) is the BCE loss of the test predictions. (c) is the SSIM metric in training process, and (d)
is the SSIM metric of the test predictions. (e) is the mean F1-score of the test predictions.



Remote Sens. 2019, 11, 1015 12 of 16

In summary, it can be concluded that the two proposed strategies effectively improve the accuracy
and quality of the road extraction results. In order to reveal the performance of the models and to
interpret the quantitative metrics, the prediction results of the three networks are visualized.

ASPP is used to extract multiscale features and to improve the accuracy of classification.
Both a general segmentation network and our ASPP-integrated network can correctly extract simple
targets, so the advantages of our approach are not reflected by this process alone. However, when the
local features of the target are blurred, the ASPP-integrated network can achieve a more accurate
segmentation by taking advantage of the multiscale information. We illustrate this with some visual
samples in Figure 6.

(a)

(b)

(c)

(d)

Input  Image Ground Truth ASPP-U-netBaseline U-net

Figure 6. Visual comparisons between the baseline U-net and ASPP-integrated U-net using test samples
from the Massachusetts road dataset: The results are binarized using a threshold of 0.5. For each row
in (a)–(d), it contains an input image, a ground truth image and two result maps of a sample region.

The local features of the sample images in Figure 6 are blurred, making their semantic
segmentation difficult. Figure 6a presents a sample in which the road network is partly occluded,
and Figure 6b,c shows a complex background around the road area. In the above three samples,
the baseline U-net does not recognize the road network accurately or completely, and the results of
the ASPP-U-net are better. It can be found that the proposed approach results in more True-Positive
predictions than the baseline method, so the recall rate of the proposed model is higher. Figure 6d
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presents some other objects of which the features, such as rivers, are similar to those of the road
network. The baseline U-net does not distinguish these areas from roads and classifies them as road
targets, while the ASPP-U-net correctly classifies the region by drawing support from multiscale
information. The proposed ASPP integration reduces the number of False-Positive predictions so that
a higher precision is achieved.

It can be concluded that multiscale information can help to distinguish road targets with blurred
features. Therefore, an ASPP integration can obtain discriminatory information to classify blurred
areas and, thus, achieves a more accurate classification.

The SSIM loss function is used to prevent ambiguous segmentation and to improve the image
quality of the extracted results. Generally, image quality is improved through post-processing methods,
such as CRF. However, these methods deal with the extracted results and cannot be embedded
in the end-to-end deep network. The SSIM loss function enables the network to directly produce
segmentation maps with a satisfactory image quality. The effect of the SSIM loss function is shown in
the visualization results in Figure 7.

（a）

（b）

（c）

（d）

Input Image Ground Truth Baseline U-net ASPP-U-net ASPP-U-net-SSIM

（e）

Figure 7. Visualization results of three models in the test set of the Massachusetts road dataset:
The brightness of the results represents the confidence of the predicted results. For each row in (a)–(e),
it contains an input image, a ground truth image and three result maps of a sample region.
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Figure 7a presents the ambiguous segmentation map caused by false detection. Although it is
a problem that occurs during the extraction and classification of features, the SSIM constraint removes
these scattered false detections and improves the image quality. Figure 7b–d shows the ambiguous
segmentation of areas that are adjacent to roads. Because of the inaccuracy of road width annotations,
it is difficult for the network to accurately determine the road boundary, so compromised predictions
are given. The application of the SSIM loss function can improve this situation and can make the
extraction result clearer. Figure 7e illustrates an example of the result of the SSIM loss function’s
removal of sporadic noise points. This figure demonstrates the additional effect of the loss function on
improving the image quality.

Generally, the application of the SSIM loss function can remove ambiguous predictions and noise
from the extraction results and can significantly improve the image quality. Compared with other
post-processing methods, the SSIM loss function can be directly applied to end-to-end neural networks
to improve the efficiency of obtaining high-quality results. A possible disadvantage of the SSIM
loss function is that it may remove some correct predictions that have low confidence levels. Thus,
although the SSIM loss function reduces false detections, the overall F1-score is not increased significantly.

4. Conclusions

The main purpose of this study was to improve the accuracy and quality of road extraction from
remote sensing images. First, an approach that uses an ASPP-integrated Encoder-Decoder network
was proposed. The ASPP module can capture multiscale features and can improve the accuracy of
classification. The Encoder-Decoder network can recover the resolution of images completely and
performs well in resolving segmenting details. We effectively improved the accuracy of road extraction
by combining ASPP and the Encoder-Decoder network. Second, on the basis of the image quality
assessment method using the SSIM, we designed a novel loss function to train the proposed network
and effectively improved the image quality of the extracted results. The experiments were conducted
using the Massachusetts road dataset. The quantitative experimental metrics and visual experimental
results all demonstrated that the ASPP-integrated network can effectively improve the accuracy of road
extraction and that the SSIM loss function can improve the image quality significantly. Our approach
outperformed the compared “state-of-the-art” methods not only in F1, precision, and recall but also
in the SSIM image quality metric. Our approach achieved an F1-score of 83.5%, which is 15% higher
than that of the FCN methods [13,14] and 2% higher than that of SegNet [17] and the baseline U-net.
For the SSIM loss, our approach realized an SSIM index of 0.893, which is about 0.18 higher than that
of the baseline U-net.

In the future, we will aim to constrain the topological features of the road in the training of the deep
neural network and will improve the topological structure of the road extraction results. This research
can be carried out from the aspects of the network structure, components, and the loss function.
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The following abbreviations are used in this manuscript:

ASPP Atrous spatial pyramid pooling
AdaGrad Adaptive gradient algorithm
ADAM Adaptive Moment Estimation
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BCE Binary cross-entropy
CNN Convolutional neural network
CRF Conditional random field
ELU Exponential linear unit
FCN Fully convolutional network
FN False Negative
FP False Positive
FSM Finite state machine
GIS Geographic information system
MSSIM Mean SSIM
ReLU Rectified Linear Unit
RMSprop Root-mean square prop
RSRCNN Road structure refined CNN
SGD Stochastic gradient descent
SSIM Structural similarity
TN True Negative
TP True Positive
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