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Abstract: Road network extraction from remote sensing images has played an important role in
various areas. However, due to complex imaging conditions and terrain factors, such as occlusion
and shades, it is very challenging to extract road networks with complete topology structures. In this
paper, we propose a learning-based road network extraction framework via a Multi-supervised
Generative Adversarial Network (MsGAN), which is jointly trained by the spectral and topology
features of the road network. Such a design makes the network capable of learning how to “guess”
the aberrant road cases, which is caused by occlusion and shadow, based on the relationship between
the road region and centerline; thus, it is able to provide a road network with integrated topology.
Additionally, we also present a sample quality measurement to efficiently generate a large number of
training samples with a little human interaction. Through the experiments on images from various
satellites and the comprehensive comparisons to state-of-the-art approaches on the public datasets, it
is demonstrated that the proposed method is able to provide high-quality results, especially for the
completeness of the road network.

Keywords: multi-supervised generative adversarial network; road topology reconstruction;
road centerline extraction

1. Introduction

Road network extraction is a fundamental issue in remote sensing image processing, which can
provide an important reference for road planning or surveys, or prior knowledge for the detection and
recognition of vehicles, buildings, or other objects.

Most of the rule-based approaches rely on spectral behavior or intensity contrast [1], thus
relying heavily on appropriate features to describe the “potential road regions” [2,3]. However,
this kind of method may be limited in two ways [4]: Firstly, the spectral behaviors of the roads
from various satellites can be very different. Secondly, it is hard to recognize aberrant road regions
caused by occlusion or shadows in the remote sensing images. To address these limitations, recent
works [3,5–7] have tried to reconstruct the road topology via multi-stage schemes according to
“assistant information”, such as simple interaction [5], a 3D road surface model [6], pre-defined
classifiers [7], or an aperiodic directional structure measurement [3,8]. However, such rule-based
expert systems can easily fall into a difficult problem—that is, to cover all expected types of roads, they
have to exhaustively establish the complex discriminate criterion and at last make it infeasible to tune
such expert systems by hand. Thus, this calls for a machine learning approach.
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To avoid the ad hoc trait of the feature-based methods, learning-based approaches have appeared
over the past few decades. Based on the neural network, several works attempt to predict whether
a given pixel is on the road [9,10]. In recent years, the development of deep neural networks [11]
has provided a new solution for road network extraction. Learning-based methods, such as the
higher-order CRF model [12], multi-level networks [1], or cascaded end-to-end convolutional neural
networks [13] with various structures have been employed to find road regions from satellite images.
Most of these learning-based approaches focus on the spectral behavior of the road regions, while a
few of them take the topology of the road network into account, thus leading to the discontinuous
road network map caused by the aberrant road regions, such as shadows and occlusion, as shown in
the highlighted region of Figure 1.

Figure 1. Challenges of road network extraction from remote sensing image.

Based on these considerations, we propose a topology-aware road network extraction framework
via a Multi-supervised Generative Adversarial Network (MsGAN). The major contribution of the
proposed network relies on a multi-supervised structure, where the generator is jointly trained
by the road region map and the centerline map, so as to capture both the spectral and topology
information of the road network. Such a scheme makes the network capable of learning how to
“guess” the aberrant road cases based on the relationship between the road region and centerline;
thus, it is able to provide a road network with integrated topology. On the other hand, to address
the expensive labor-consuming problem of training sample production, we also propose a sample
quality measurement so as to efficiently generate a large number of training samples with just a little
human interaction. In the experiments, we present comprehensive comparisons to demonstrate the
performance of the proposed MsGAN.

2. Related Work

Road network extraction is a long-standing problem in remote sensing image processing.
According to previous surveys [4,14–18] and the latest works on road extraction [5,7], road network
extraction can be roughly divided into three methods: rule-based, topology-based, and learning-based.

Early road extraction studies have preferred extracting roads by utilizing their visual or geometric
features. Assuming that road regions often appear as thin, low-curvature, high-contrast structures,
various filters and road segmentation connection methods (such as morphological filters [19],
Gibbs point [20], directional filters [21], Kalman filters [22], line segments matching [23], and line
primitive connection [24–27]) were proposed. To further improve extraction performance, more
elaborate methods followed. Poullis and You, 2010 [28], employed Gabor filtering and tensor voting
for geospatial feature inference classification. Then, followed by orientation-based segmentation, road
centerlines were extracted to describe the road network. Inspired by this work, Grote et al., 2012 [29]
extracted road networks by integrating the radiometric and geometric features of road regions. Then,
by constructing a subgraph, potential road segments were connected to form the results. Based on the
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definition of pixel-wise polygonal areas, Hu et al., 2007 [30] and Zhang et al., 2011 [31] employed a
pixel footprint detector to extract road regions. However, these methods are able to handle long and
continuous road regions, which often failed for the cases of occlusion and shadows.

To address this problem, recent approaches have focused on the topology reconstruction of the
road regions. With the observation that low-level road extraction methods are fragmented, Steger et al.,
1998 [32], 1997 [33] first proposed constructing a road network topology according to the graph theory.
Also benefiting from graph representation, Peteri and Ranchin, 2006 [34] developed a road shape
extraction scheme by defining the active contours. Followed by these works, Ünsalan et al., 2012 [5]
proposed a graph-based topology analysis scheme to refine the road map, in which spectral, shape, and
gradient features are combined to generate approximate road primitives. By employing different road
detection methods and introducing 3D road information, Ziems et al., 2012 [6] proposed a multi-model
fusing scheme to combine the results of different models, which is able to present impressive robustness
and detection performance. Based on a pre-trained spectral-spatial classifier, Shi et al., 2015 [7]
developed a road centerline extraction scheme, which significantly improves the detection robustness.
To suppress the interference of the undesired textures and overcome the blur effect of feature descriptor
mathematical morphology (MM), general adaptive neighborhood (GAN)-based MM (GANMM) [35]
was applied to form the morphological profiles. Zang et al., 2016 [8] proposed an aperiodic directional
structure measurement for road structure description, where such a measurement considers not only
the geometry features, but also includes an aperiodicity measurement term to evaluate the “low social
conformity” of potential road regions, meaning that it is thus able to provide spectral character and
contrast-independent road extraction results.

However, in order to reconstruct complete road network topology, most recent studies have
tended to adopt increasingly complex multi-stage or multi-model schemes. As pointed out by
Mnih et al., 2010 [1], such an ad hoc manner may introduce extra parameters or computational
burden, thus leading to the reduction of the robustness and speed of the whole system.

On the other hand, learning-based approaches attempt to predict whether a given pixel is a road
or not, according to the context around the target pixel [9,10,36–40]. The extraction is similar to the
task of salient objects extraction or segmentation [41–47]. Liu et al., 2017 [46] exploited multiscale and
multilevel information to extract edges and boundaries, which is also adopted by us as the multilevel
discriminator. By observing that the pixels near road boundaries have large responses, while the
pixels within the roads have small responses to the Laplacian of Gaussian filter, Yuan et al., 2011 [48]
extracted roads automatically by clustering the well-aligned pixels according to a proposed locally
excitatory globally inhibitory oscillator network (LEGION). Recently, the development of a deep neural
network [11] has provided a new idea for road network extraction. Mnih and Hinton, 2010 [1] first
proposed a multi-level network, which aims to assign each pixel a label to denote whether it belongs to
a road region or not. Wegner et al., 2013 [12] proposed a higher-order CRF model for road labeling, in
which the road likelihood is amplified for thin chains of super-pixels. Cheng et al., 2017 [13] proposed
a cascaded end-to-end convolutional neural network (CasNet) to address the road segmentation and
centerline extraction tasks, where such an approach works well for urban roads with explicit spectral
features. Most of these learning-based approaches focus on the spectral behavior of the road regions,
while few of them take the topology of the road network into account, thus leading to a discontinuous
road network map caused by shadow and occlusion.

3. Method

To acquire the large amount of training samples, we first used an automatic sample production
method to generate training sets, which contains both of the road centerline and region maps, with
just a little human interaction. With the created samples, the MsGAN was proposed to generate road
centerlines directly. In the following subsections, we will describe the architecture and loss functions
of the proposed network in detail.
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3.1. Automatic Sample Production

Manual labeling is the most accurate method for creating a training sample, but it is very
labor-consuming to acquire. In this section, we will introduce our solution to efficiently produce
a large number of training samples with only a little human interaction.

Specifically, since we do not have any road network information, previous methods such
as [3,5,6] can be applied for the initial centerline estimation (in this paper, the system proposed
by Zang et al., 2016 [3] is employed). In this approach, the applied training patches have the size
of 1024 × 1024 pixels, and we tended to select training samples with consistent local structures.
According to this criterion, a confidence evaluation algorithm was designed to help in the selection of
the most appropriate regions for the selection of suitable training samples. As shown in Figure 2, the
better samples should be selected in the long and straight road region, as highlighted in the zoomed-in
patch on the right, while the area of ambiguity should be avoided (as shown in the zoomed-in patch
on the left).

Figure 2. The automatic sample production.

Therefore, our idea was to give a score for each sample candidate (with a size of 1024× 1024),
which were generated by using a sliding window over the whole image with a step of 256 pixels. Then,
a set of small patches were created along the road centerlines for each sample candidate. Specifically,
the size of the local patches was 64× 64 with a step of 20 pixels. Then, the sample candidates with
smaller scores (calculated as average scores of the local patches) with high probability were selected as
training samples. Suppose there are N local patches in a sample candidate. The score of the candidate
Sc can be calculated as:

Sc =
1
N

N

∑
k=1

sk (1)

where sk represents the measurement of each local patch, which can be calculated by the
following scheme.
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Given the extracted road centerline L, for each road pixel p ∈ L, Ap denotes the set of road pixels
in the local area centered at p. Then, our aim was to find a target straight line lt : y = ax + b, such that
the sum of the distance from pi ∈ Ap to lt is at a minimum. Formally, our aim can be written as:

sk = arg min
a,b

1
n

(
n

∑
i=1

(axi − yi + b)2

a2 + 1
); (2)

where (xi , yi) is the position of pixel pi, and n is the size of Ap.

To solve this problem,
n
∑
i=1

(axi−yi+b)2

a2+1 can be denoted as F(a, b), and it is then easy to get b = ȳ− ax̄

(x̄ = 1
n

n
∑
i=1

xi and ȳ = 1
n

n
∑
i=1

yi). Then we have:

F(a, b) =
Ma2 + Na + T

a2 + 1
(3)

where
M = ∑ x2

i −
1
n

(∑ xi)2

N =
2
n ∑ xi ∑ yi − 2 ∑ xiyi

T = ∑ y2
i −

1
n

(∑ yi)2

(4)

Then, after the transposition of terms, we have (M− F(a, b))a2 + Na + T− F(a, b) = 0. To guarantee
Equation (3) has a solution, we have:

N2 − 4(M− F(a, b))(T − F(a, b)) ≥ 0. (5)

It is
− 4F(a, b)2 + 4(M + T)F(a, b) + N2 − 4MT ≥ 0. (6)

Notice that the above equation must have one or two intersections with a straight line y = 0 (since N2−
4MT + (M + T)2 = N2 + (M− T)2 ≥ 0), where denoting the solutions as s1, s2, and the smaller one, say
s1 ≤ s2, would be the desired value of F(a, b). Then, by solving the equation (M− F(a, b))a2 + Na + T−
F(a, b) = 0, we have a = (−N±

√
N2 − 4(M− s1)(T − s1))/2(M− s1), since

√
N2 − 4(M− s1)(T − s1) =

0; thus we have an analytical solution to this problem a = − N
M−s1

.
Then, for a selected sample candidate, a set of three maps, including the original image, the region

map, and the centerline map were created to form the training set. Here, the road centerline map was
generated with the help of a previous work [3], and the region map was generated by [7].

3.2. Network Architecture

By reviewing previous learning-based road extraction works, we found that most of the methods
focused mainly on the spectral and spatial performance of road regions, while few of them paid
attention to the topological completeness of road networks.

To address this issue, inspired by the generative adversarial networks (GAN) [49], this paper
proposes MsGAN, a topology-aware road centerline generation network via a multi-supervised
manner. Specifically, two multi-scale discriminators are employed in the proposed network, where
one of them takes the region map as the supervisor while the other one takes the centerline map as the
supervisor. In this structure, the first part of the network emphasizes the detection of road regions,
and the other one focuses mainly on the road topology reconstruction.

The architecture of the MsGAN is shown in Figure 3, which consists of two discriminators and
a generator. A set of three images, including the original image, the region map, and the centerline
map are employed to train the network. Then, for the generator G, it is composed of two parts. Firstly,
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the original image is fed into the first part, made up of four residual blocks [50], four convolutional
layers, and two deconvolutional layers. Each residual block comprises two convolutional layers, two
InstanceNorm [51] layers, and one ReLU layer. The output of the first part (the 9th block) is the
generated road region map.

Region Map Centerline Map

Original Image

Generator

Centerline Map

Synthetic centerline Map
Block 1-3 Block 4-7 Block 8-9

⋯⋯⋯⋯ ⋯⋯⋯⋯

Block 10-12 Block 13-15 Block 16-19

Block 10

⋯⋯

⋯⋯

Convolution

Residual block

Deconvolution

Input Set

Multi-scale discriminator

Region Map

LM LH LM LHLR

Synthetic centerline Map
⋯⋯

⋯⋯

Multi-

⋯⋯

scale discriminator

Figure 3. Architecture of the proposed MsGAN.

Similarly to the first part, the second is comprised of four residual blocks, three convolutional
layers, and two deconvolutional layers. In addition, we add two skipped connections to both parts,
similar to the structure of U-Net [52], considering that the added skipped connection can decrease
the loss of enlargement and preserve more detail. The output of the second part (the 10th block) is
the generated road region map; the output of the second part (the 19th block) is the generated road
centerline map.

For the discriminators, the first one was trained by the road region map to make the network
aware of the spectral structures, and another one trained by the centerline map considering the
topological connectivity of road networks in order to instruct the extraction. In each discriminator,
there are four identical sub-discriminators, including five convolutional layers, which takes the same
image with four scales as inputs, respectively, thus making the network capable of extracting roads of
different widths.

In general, the output of the discriminator is 1 or 0, while we assume the image as a Markov
random field consisting of N pixel patches, beyond which the pixels are independent, and we set the
size N as 70. A smaller value of N implies the fewer required parameters, thus resulting in less running
time and making it appropriate for more images with various sizes; however, this also leads to weak
anti-noise capability. Additionally, we also added the pre-trained VGG network as the other part of
MsGAN, where the feature maps of eight layers were extracted respectively from real and fake inputs.

3.3. Loss Function

As mentioned above, our goal was to extract road centerlines from the satellite or aerial images.
We used the generative adversarial training scheme: the generator aims to produce as accurate
centerlines as possible, while the two discriminators are trained to distinguish the fake road region
maps and centerline maps. For our task, the loss function contains four parts: the multi-supervised
loss, the hierarchical per-pixel loss, the perceptual loss, and the region loss.
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To extract the roads with different widths, in each discriminator, four identical sub-discriminators
with four-scale inputs were combined together. The multi-supervised loss is as follows:

LM(G, Dk) =
4

∑
k=1

LsubD (G, Dk). (7)

where Dk(x) is the k-th sub-discriminator, and LsubD denotes the conditional adversarial loss for the
sub-discriminators, which can be written as:

LsubD (G, D) = Ex,y∈Pdata(x,y)[logD(x, y)] + Ex∈Pdata(x)[log(1− D(x, G(x)))]. (8)

Here, x and y represent the input and ground truth, respectively; G(x) represents the output of
the generator; and D(x) represents the output of the discriminator. Pdata(x) represents the distribution
of data.

Meanwhile, considering how the output of the discriminator may miss low feature distinctions,
we added an adversarial loss called hierarchical per-pixel loss, whose aim was to collect the feature
differences from all layers under L1 norms:

LH(G, Dk) =
4

∑
i=1

Ni

∑
k=1

1
Ni
‖ Dk(G(x))− Dk(y) ‖1. (9)

where Ni is the layer number of the i-th sub-discriminator.
For the generator, we took in the perceptual loss as the recent super-resolution task [53], which

has been proven effective:

LP(G) =
iN

∑
k=i1

λkPk(G(x), y), (10)

and Pk(G(x), y) is defined as:

Pk(G(x), y) = ‖ Hk(G(x))− Hk(y) ‖1 (11)

where Hk denotes the pre-trained VGG [54], Pk denotes the difference of the k-th layer, λk is the weight
of the k-th layer, and i1 ∼ iN means the N-extracted layers.

In addition, the road region image was taken as an extra supervisor, and a designed region
loss was employed to punish the generated centerlines out of the area, which can be written as the
following formula:

LR(G) = ∑
P∈PR

‖ G(x)R − yR ‖1 + λR ∑
P′∈PR

‖ G(x)R′ − yR′ ‖1 (12)

where λR is the weight for punishing the outliers; Rp denotes the pixels within the road region; and
Rp denotes the pixels out of the road region.

The total objective function contains the four parts: LM, LH , LG, LR. We tried to minimize T∗ for
the generator and maximize T∗ for the discriminators. The final objective function is as follows:

T∗ = arg min
G

max
D

Ltotal (13)

Ltotal = LM + LH + LG + LR (14)

4. Results and Analysis

Implementation details. Our approach was based on a PyTorch framework on a PC with one Titan
X GPU. The network was trained from scratch using an Adam solver [55], and the learning rate was
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0.0004. Weights were initialized from a Gaussian distribution with mean µ = 0 and standard deviation
σ = 0.02. For the generator, the activation layer was ReLU, while for the discriminator the activation
layer was LeakyReLU with a slope of 0.2. The number of layers in the perceptual loss branch was eight
layers extracted from VGG. The weights of the four middle layers were 1

32 , the next two were 1
16 , and

the last two were 1
4 and 1

2 , respectively. λR was set as 20 to punish the error out of road regions.
Quantitative measurements. The widely used quantitative measurements, recall, precision, and

F1 score were employed to evaluate the overall detection performance. Specifically, they can be
written as:

recall(R) =
TP

TP + FN

precision(P) =
TP

TP + FP

F1 score (F) =
2 · precision · recall

precision + recall

(15)

where TP, FN, and FP stand for true-positive, false-negative, and false-positive, respectively.
Datasets. To comprehensively evaluate the performance of our approach, several groups of

experiments were designed on various datasets. Firstly, based on the remote sensing images of the
Pleiades-1A satellite and a public dataset released by Cheng et al., 2017 [13], we provided some
intuitional results to show how the network parameters and structure could affect the road extraction
results. Meanwhile, we also compared our method with the single-supervised GAN (i.e., the SsGAN,
which is trained only by the road centerline map), to demonstrate the effect of the extra supervisor on
various datasets.

Then, images from various satellite sensors, including Geoeye, QuickBird, Pleiades-1A, and
GaoFen2, were applied to evaluate the performance of our approach, where various terrains like urban,
rural, and mountain were involved and the ground truth was manually created.

Finally, our approach was compared with some of the latest learning-based approaches on two
public datasets released by Cheng et al., 2017 [13] and Mnih, 2013 [56]. We also evaluated our method
on the Pleiades-1A remote sensing images, which covered an entire city of China (Shaoshan City
in Hunan province), in which the reference was obtained by the ground survey and provided by
the China Transportation & Telecommunication Center, and presented a comparison with the latest
rule-based road network extraction methods.

4.1. Evaluation of the Network Performance

In this section, we first discuss the setting of parameters and present how different parameters
affected the results. Then, we make a comparison against the centerline generation strategy of road
region extraction plus the post-processing route to demonstrate the superiority of the MsGAN. Finally,
we also make a comparison against the single-supervised GAN (SsGAN), which is trained by just the
centerline map, to demonstrate the advantage of the multi-supervisor.

Evaluation of the network parameters. For the proposed MsGAN, the number of sub-discriminators
affects the extraction results. Due to the image resolution and the various widths of roads, the
characteristics of road regions can be very different over different sources or even in the same
image, thus making it challenging to capture the roads with different scales. To address this issue,
the multi-scale [46,57] discriminator is employed, but the number of sub-discriminators should be
set to balance the efficiency and extraction performance. In this experiment, results of different
numbers of sub-discriminators are collected, as shown in Figure 4 (Column (c) to (f) is the number
of sub-discriminators from two to five). It can be viewed that, as the number of sub-discriminators
increases, more roads are able to be detected, thus leading to more complete topological structures.
As the number increases to four or five, the results tend to be convergent. Therefore, considering the
efficiency and performance, the number of sub-discriminators was set as four for all experiments.
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Figure 4. Results of different parameter settings. (a) shows the original images; (b) is the ground
truth; (c) is the output of MsGAN with two discriminators; (d) is three discriminators; (e) is four
discriminators; (f) is five discriminators.

Comparison to the post-processing-based centerline generation scheme. The proposed MsGAN aimed
to generate the road region and centerline map via one network. Here, we set up an experiment to
compare with the segmentation-thinning manner, which was to obtain the road region map first and
then get the road centerline map through the post-processing scheme, such as thinning or the image
skeleton extraction algorithm. The segmentation-thinning manner has been widely used by previous
rule-based approaches to create road centerlines, which may result in inaccurate or pseudo-extraction
results, while MsGAN is able to directly extract complete road centerlines. Specifically, we designed
a comparison with the network of removing the supervision of centerline maps and corresponding
losses. Then, after obtaining the road region map, a thinning method was applied to generate the
final centerline maps. Here, following previous procedures, Gaussian filtering was applied before the
thinning process to generate a more complete road network.

The results are shown in Figure 5 (column (a) and (b) are the input images and ground truth;
column (c) is the result of the MsGAN; column (d) and (e) are the road region map and corresponding
thinning centerline result). It can be viewed that, despite the adding of Gaussian filtering, the gaps or
pseudo-lines can still be observed due to the two-step operation (as highlighted in the red box), while
MsGAN can produce more complete centerline results directly.
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（a） （b） （c） （d） （e）

Figure 5. Comparison with the segmentation-thinning centerline extraction scheme. (a) shows the
original images; (b) is the ground truth; (c) is the output of MsGAN; (d) is the output of MsGAN
aiming to produce road region maps; (e) is the thinning results of the produced road region maps.

Evaluation of the extra supervisor. Then, to demonstrate the effect of the extra supervisor, the
proposed MsGAN was compared to the single-supervised GAN, that is, SsGAN. In this experiment,
we just removed the supervision of road region maps and corresponding losses, while keeping other
parts of the network unchanged. The training and testing phase was based on a public dataset released
by Cheng et al., 2017 [13]. For the SsGAN, the training sample consisted of an original image and a
labeled road centerline image. Corresponding results are shown in Figure 6 (column (a) and (b) are the
input images and ground truth, (c) and (d) are the results of SsGAN and MsGAN). The corresponding
quantitative statistics of the MsGAN and SsGAN on this dataset are shown in Table 1.

(a) (b) (c) (d)

Figure 6. Comparison with SsGAN on the dataset released by Cheng et al., 2017 [13]. (a) shows the
original images; (b) is the ground truth; (c) is the result of MsGAN; (d) is the result of SsGAN.

It can be seen that the result of SsGAN suffers some gaps when the road topology is complex
or the spectral performance of the road region is not visually significant. However, for the proposed
MsGAN, due to the network that is desired to achieve not only the road region detection, but also the
road topology reconstruction, it is thus able to produce a road network with complete topology, as
highlighted in the red box.
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Table 1. Quantitative statistics on images in Figure 6 and dataset [13]. Images 1 to 3 are from top to bottom.

Image 1 Image 2 Image 3 Avg.(test set)

ρ = 2 R P F R P F R P F R P F

SsGAN 0.922 0.962 0.942 0.955 0.971 0.963 0.901 0.962 0.930 0.926 0.965 0.945
MsGAN 0.952 0.988 0.970 0.963 0.978 0.971 0.944 0.962 0.953 0.960 0.975 0.967

4.2. Evaluation on Various Datasets

In this section, we evaluate the proposed approach on images from four different sensors,
including Geoeye, QuickBird, Pleiades-1A, and GaoFen2 satellites, where the resolutions of
these images are 0.5 m, 0.5 m, 0.5 m, and 1 m, respectively, and the ground truth data were
manually generated.

Test on Geoeye satellite image. The proposed approach has been tested on ten selected Geoeye
images (including seven city region images, two rural region images, and one mountain region image,
and most of them are about 1000× 1000 patches) with 13,627,789 pixels. Figure 7 shows an example
which was also applied in a previous work [5], as shown in the Figure 7. Where column (b) is the
extracted centerline result of our approach, column (c) is the comparison to the ground truth, where
the green, blue, and red lines represent the true-positive, false-positive, and false-negative detections.
From the results, it can be observed that despite how there are many interferences, such as buildings
or occlusions, our approach has received pretty high recall, and the overall detection quality is quite
satisfactory. The average quantitative measurements over ten images are listed in the second row of
Table 2.

Test on QuickBird satellite image. Then, the proposed approach was tested on ten classic QuickBird
images, including three mountain region images, three city region images, and four rural region
images. Also, the sizes of these images are about 1000× 1000, and involves 10,516,297 pixels in total.
The selected example, as shown in the Figure 7, was also tested in previous works [3,5]. The results
of Unsalan et al., 2012 [5] did not perform well because the images were JPEG compressed, while for
the result of Zang et al., 2016 [3], the terrain boundary was misidentified as being a road; hence, the
precision was not satisfactory. For our result, since there was not much interference, the recall was able
to achieve almost 90%, while the precision was also satisfied. The average quantitative measurements
over ten images are listed in the third row of Table 2.

Test on Pleiades-1A satellite image. For this satellite, we tested the whole Shaoshan city. Details of
such data can be viewed in Section 4.3. The selected example is a typical patch, as shown in Figure 7,
in which various challenging cases for road network extraction are involved, such as the curved roads,
shadows, and occlusions. From the extraction result, it can be viewed that most of these cases have
been well-handled due to the topology learning. The average quantitative measurements over the
whole Shaoshan City are listed in the fourth row of Table 2.

Test on GaoFen2 image. The proposed approach has also been tested on two GaoFen2 images with
a size of 8000× 8000 and 7000 × 11,000 pixels. The selected example was chosen from the rural region,
as shown in Figure 7. Some road-like structures, such as the rivers or boundaries of the farmland,
can be observed. In previous works, like that by Zang et al., 2016 [3], these structures were likely to
be falsely recognized. In our approach, such errors can be effectively eliminated due to the direct
extraction of road centerlines. The average quantitative measurements are listed in the last row of
Table 2.



Remote Sens. 2019, 11, 1017 12 of 19

G
eo

ey
e

Q
ui

ck
B

ird
Pl

ei
ad

es
-1

A
G

ao
fe

n2

Figure 7. Our road extraction results on various sensors.

Table 2. Quantitative statistics on images from various sensors.

Data Recall Precision F1 Score

Geoeye 0.888 0.841 0.864
QuickBird 0.861 0.855 0.858

Pleiades-1A 0.857 0.862 0.860
GaoFen2 0.881 0.833 0.856

4.3. Comparisons

In this section, the designing of two comparison groups is presented to demonstrate the
performance of the proposed MsGAN. Specifically, two types of methods are employed for comparison:
Firstly, we compare with some of the latest deep neural networks on two public datasets released
by Cheng et al., 2017 [13] and Mnih, 2013 [56]; and secondly, we compare with some of the latest
rule-based road extraction approaches on the images from Pleiades-1A which covers Shaoshan city
in China.

Comparison with learning-based approaches. In this experiment, some learning-based approaches
were applied for comparison. The dataset is public, and was released by Cheng et al., 2017 [13] which
can be downloaded from the address http://www.escience.cn/people/guangliangcheng/Datasets.

http://www.escience.cn/people/guangliangcheng/Datasets.html
http://www.escience.cn/people/guangliangcheng/Datasets.html
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html. The dataset consists of 224 very high-resolution (VHR) images from Google Earth with a
resolution of 1.2 m per pixel, and it is known to be the largest road dataset with accurate segmentation
maps and centerline maps. The approaches applied for testing include those by Huang et al., 2009 [10],
Miao et al., 2013 [58], Shi et al., 2015 [7], Cheng et al., 2016 [59], Baseline-Casnet [13], and Casnet [13],
and we employed the same samples used in Cheng et al., 2017 [13] for the comparison. Results of
previous works were provided by Cheng et al., 2017 [13], and corresponding results are shown in
Figure 8.

（a） （c）（b） （d） （e） （f） （g） （h） （i）
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Figure 8. Comparisons with latest methods on dataset [13] (the results of previous works provided
by Cheng et al., 2017 [13]). (a) Original image; (b) result of Huang et al., 2009 [10]; (c) result of
Miao et al., 2013 [58]; (d) result of Shi et al., 2015 [7]; (e) result of Cheng et al., 2016 [59]; (f) result of
Baseline-Casnet [13]; (g) result of Casnet [13]; (h) result of MsGAN; (i) result of the reference map.

Where column (a) is the input image; columns (b)–(h) are the results corresponding to the methods
of Huang et al., Miao et al., Shi et al., Cheng et al., Baseline-Casnet, Casnet, and our approach; and
column (i) is the ground truth. The results in the first to the third rows correspond to the three samples
employed in [13], and the results in the fourth and fifth rows are the zoomed-in patch intercept from
Image 3, as shown in the red and blue box. From the results, it can be seen that the performances of
the latest road centerline extraction method proposed by Cheng et al., 2017 [13] and our approach are
rather similar, while in the zoomed-in patch, our results have better local topology similarity to the
ground truth, as highlighted in the green box.

For the quantitative measurement, following the buffer widths method proposed by
Wessel et al., 2003 [60] and Cheng et al., 2017 [13], statistics of the above methods, along with our
approach were collected under the parameter of ρ = 2, and the results are shown in Table 3, and the
best performance of each criterion are emphasized in boldface. As shown, our method has better
performance in road centerline results than the other methods. In all of the three images, our method

http://www.escience.cn/people/guangliangcheng/Datasets.html
http://www.escience.cn/people/guangliangcheng/Datasets.html
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achieves the highest results in precision and the F1 score, as seen in Images 2 and 3; although we are
slightly lower than Casnet in the recall, our overall performance is higher than the others.

Table 3. Quantitative statistics of different methods on the dataset [13].

Image 1 Image 2 Image 3 Avg.(test set)

ρ = 2 R P F R P F R P F R P F

Huang et al. [10] 0.975 0.814 0.887 0.964 0.722 0.826 0.967 0.747 0.843 0.959 0.738 0.834
Miao et al. [58] 0.930 0.816 0.882 0.885 0.705 0.784 0.894 0.724 0.800 0.896 0.718 0.797

Shi et al. [7] 0.938 0.920 0.925 0.940 0.920 0.930 0.864 0.849 0.856 0.893 0.907 0.900
Cheng et al. [59] 0.960 0.910 0.935 0.990 0.907 0.946 0.949 0.824 0.881 0.931 0.896 0.913

Casnet-baseline [13] 0.942 0.908 0.921 0.927 0.911 0.919 0.933 0.791 0.856 0.924 0.874 0.898
Casnet [13] 0.979 0.946 0.962 0.997 0.965 0.981 0.957 0.943 0.950 0.963 0.954 0.959

MsGAN 0.983 0.968 0.975 0.995 0.981 0.988 0.953 0.973 0.963 0.960 0.974 0.967

For the second group of the experiment, the proposed approach, along with several latest
networks, were evaluated on the Massachusetts Roads Dataset, which is public and was released by
Mnih, 2013 [56]. In the comparison, the same patches applied in a previous work [61] are presented,
and corresponding results are shown in Figure 9, where column (a) is the input image; columns
(b)–(g) are the results corresponding to methods of Wegner et al., 2013 [12], Wegner et al., 2015 [62],
Zhong et al., 2016 [63], Wei et al., 2017 [61], Cheng et al., 2017 [13] and our approach, respectively;
and column (h) is the ground truth. The results of previous work by Wegner et al., 2013 [12],
Wegner et al., 2015 [62], Zhong et al., 2016 [63], and Wei et al., 2017 [61] were provided by
Wei et al., 2017 [61], and the results of Cheng et al., 2017 [13] were implemented with little changes to
adapt to the dataset.

  (a)          (b)          (c)           (d)           (e)          (f)          (g)           (h)
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Figure 9. Comparison with the latest state-of-the-art methods on the dataset [56] (the results of previous
works were provided by Wei et al., 2017 [61]). (a) Original image; (b) result of Wegner et al., 2013 [12];
(c) result of Wegner et al., 2015 [62]; (d) result of Zhong et al., 2016 [63]; (e) result of Wei et al., 2017 [61];
(f) result of Cheng et al., 2017 [13]; (g) result of MsGAN; (h) ground truth.

It is viewed that, for the challenging cases presented, the feature-based CRF scheme [12,62]
did not perform well due to the interference of terrain or buildings, and the results either suffered
from incomplete topology or heavy false alarm. Learning-based algorithms [13,61,63] have better
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performance. For the result of Zhong et al., 2016 [63], major road network topology structures have been
captured, but errors often occurred around the buildings. The approaches of Wei et al., 2017 [61] and
Cheng et al., 2017 [13] were derived from CNNs, which were able to produce high-quality extraction
results. However, some “gaps” can still be observed at the road region with shadows or occlusion, and
the fine structures cannot be identified, such as the roads marked with double lines. Our approach
was able to provide the road network with more complete topology, as shown in column (g).

Corresponding statistics are shown in Table 4. It can be seen that previous approaches by
Wegner et al., 2013 [12], Wegner et al., 2015 [62], Zhong et al., 2016 [63], and Wei et al., 2017 [61] have
unsatisfactory performance, where either the recall or the precision is lower than 0.75. The approach of
Cheng et al., 2017 [13] performs well for this dataset, and apparent improvement is observed for the
overall F1 score. McGAN performed quite well, where the recall moved up more than 7 points, and
there a 3 point improvement for the precision can also be observed.

Table 4. Quantitative statistics of different methods on the Massachusetts Dataset [56].

Method Recall Precision F1 Score

Wegner et al. [12] 0.322 0.405 0.359
Wegner et al. [62] 0.679 0.471 0.556
Zhong et al. [63] 0.686 0.435 0.532

Wei et al. [61] 0.729 0.606 0.662
Cheng et al. [13] 0.783 0.812 0.797

MsGAN 0.871 0.853 0.862

Comparison with latest feature-based approaches. In this part, we evaluate our approach on the
remote sensing image of Shaoshan City recorded by the Pleiades-1A satellite with a resolution 0.5 m.
In the prediction phase, the whole image was divided into patches with a size of 1000× 1000. Then,
the results of these patches were merged together according to the gradient change direction of the
boundary pixels. Details can be viewed in [3].

Shaoshan is a typical mountainous city, covering 247 square kilometers in the mid-south region
of China. The size of the whole satellite image is 28,648 × 37,929 pixels, in which various roads
and terrains are involved. The whole image is divided into 1000× 1000 patches with 30% overlap.
We evaluated our approach on each patch, and finally merged them together. The reference was
acquired by the ground survey and provided by the China Transportation & Telecommunication Center.

Some typical results are shown in Figure 10, where the selected examples include typical terrains
in the surrounding regions of Shaoshan city, such as the plain area, mountain area, town area, and
so on. It can be observed that most of the errors occur in regions where the roads are occluded for a
long distance, because the gaps may not be captured in this case. For the quantitative measurement,
three recent rule-based road extraction methods [5,7,8] were applied for comparison. We also gathered
the statistics of the result generated only by performing feature learning. The corresponding results
are listed in Table 5. From the results, it can be observed that the result of Unsalan et al., 2012 [5] had
high recall, while the precision was not satisfied; Shi et al., 2015 [7] and Zang et al., 2016 [8] got more
balanced results for recall and precision, and had a similar F1 score. The performance of the proposed
MsGAN was beyond our expectations, where both the recall and precision had significantly improved,
and the overall extraction quality increased by about 15 percentage points, compared with previous
road extraction works.
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Figure 10. Typical results of Pleiades-1A satellite image on Shaoshan city.

Table 5. Comparisons of recent rule-based road detection methods on Shaoshan City.

Method R P F

Ünsalan et al., 2012 [5] 0.803 0.663 0.726
Shi et al., 2015 [7] 0.730 0.769 0.749

Zang et al., 2016 [8] 0.779 0.714 0.745
MsGAN 0.857 0.862 0.860

5. Conclusions

In this paper, we presented a learning-based road network extraction scheme via a
multi-supervised generative adversarial network (MsGAN). The motivation of this paper was to
directly extract accuracy road centerlines with integrated topology. The contribution of this paper
relied on a proposed multi-supervisor scheme to capture not only the spectral, but also the topology
information of the road regions; thus, this makes the network capable of learning how to “guess” the
aberrant road cases, which is caused by occlusion and shadow.
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