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Abstract: Aerial photographs and satellite images are one of the resources used for earth observation.
In practice, automated detection of roads on aerial images is of significant values for the application
such as car navigation, law enforcement, and fire services. In this paper, we present a novel road
extraction method from aerial images based on an improved generative adversarial network, which is
an end-to-end framework only requiring a few samples for training. Experimental results on the
Massachusetts Roads Dataset show that the proposed method provides better performance than
several state of the art techniques in terms of detection accuracy, recall, precision and F1-score.
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1. Introduction

Roads act as a fundamental unit for many geographic information system applications, such as
vehicle navigation, traffic management, and emergency response. It is also an important element
of military surveying and mapping. In addition, for ensuring dynamics and accuracy, rapid city
development requires frequent road updating, and the growing development of aerial technologies
also provides an efficient, low-cost and reliable solution to receive dynamical road information. Besides
aerial images, there are also other kinds of remote sensing data can be used for road extraction,
such as hyperspectral images (HSI) [1,2], synthetic aperture radar (SAR) data [3–5], airborne laser
scanning (ALS) data [6–8] and mobile laser scanner (MLS) data [9–11]. In this paper, we only focus on
aerial images.

Traditional road network data mainly comes from manual extraction, which consumes intensive
human resources. Aerial images provide abundant information about the ground covers. With the
improvement of spatial resolution, it becomes an increasingly important data source for extracting road
network information from aerial images. With the continuous updating of road information, traditional
manual operation has been unable to meet the demand. Combining remote sensing technology
with computer vision to extract road information from aerial images helps automate and accelerate
road monitoring.

The research for road extraction has a long history before deep learning methods become widely
used. We here summarize the traditional road extraction methods on three levels: feature, object, and
knowledge levels.

(1) Road extraction methods on feature level: In previous work, roads were often extracted using
spectral, geometric, topological and textural features of the roads. For example, a template matching
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method was used to extract a certain number of seed pixels, or specific templates [12–14] and then
generate roads based on the extracted seed points or templates. Using the characteristic edges of roads
(e.g. parallelism), edges and parallel lines of roads were extracted using a distance function [15–19].
Using established mathematical models, such as Snake model [20–23] and Markov models, the edges
of roads were examined. Some specific filters can be used to enhance road pixels for better road
extraction [24]. Hierarchical feature level algorithms were usually performed based on spectral features
of images [24,25], and the design of these algorithms was slightly simple but had impressive efficiency.
However, these algorithms cannot produce satisfactory performance in complex environments and
may produce ‘salt and pepper’ noise [24].

(2) The extraction methods based on object hierarchy: These object-based road extraction methods
usually cluster image into a number of small areas (objects) or first segment the image, and then take a
small area as a unit for road extraction. One example is the multi-resolution analysis method [26–29]
based on the different resolutions of the aerial image or a single image with different scales, which
can improve the accuracy of road extraction through two combination operations. Regional statistical
analysis methods [30,31] were based on a probability model as well as the widely used road unit
trimming [32–34] and joining [35] methods. These algorithms have achieved good performance in
complex situations by merging pixels into homogeneous regions, which helps to reduce the influence
of noise. However, these algorithms usually require initial segmentation or clustering of images, which
has significantly influenced the final extraction precision, and is prone to the “sticky” phenomenon [29].

(3) Road information extraction methods based on knowledge level: Knowledge-based road
extraction methods usually use the previous knowledge about roads, or the supplementary information
to extract the targets. Methods such as multi-source data analysis based on existing road databases
to guide or assist the extraction of road networks [36,37] are commonly used. They also exploited
the self-characteristics of roads, such as spectrum and context [38–44]. These methods have achieved
satisfactory results in complex situations [45–49]. However, these algorithms are not efficient. It is
reasonable to combine multi-source to distinguish "different bodies with the same spectrum" or "same
body with different spectra" but the acquisition of multi-resources data is relatively difficult, which
limits the applications of the method.

In recent years, deep learning has made successful applications in image analysis [50] and natural
language processing [51]. Combining with low-level features, high-level representations of images
can be formed, which have the capability of mining the distributions of data. The essence of deep
learning is to learn more meaningful features from massive training data by constructing networks with
multiple hidden layers, and its destination is to improve the accuracy of classification or prediction.
Therefore, deep learning can be regarded as a case of feature learning. Methods based on deep learning
transform features from one layer to another, which makes classification or prediction much easier.

There are some available deep learning based road extraction methods. Convolutional Neural
networks (CNNs) have achieved excellent performance in image classification. Different from the
classification of the whole image, road extraction is considered as a binary classification problem at
the pixel level. It is needed to classify each pixel in the input aerial image as road or background.
Therefore, the extraction method based on CNN usually uses a sliding window [52,53], by which the
category of the central pixel of the window is obtained. Recently, a cascaded end-to-end convolutional
neural network called CasNet [54] was proposed to detect roads and extract the centerline of an aerial
image, ARCNet [55] combine CNN with attention mechanism to classify scene in very high resolution
remote sensing images including roads. For some 3D data, such as HSI and ALS data, some end-to-end
3D CNN [56–58] has been proposed to detection and classification. A full convolutional network
(FCN) can output pixel level classification information with the same size as the input image, which
is suitable for road extraction in aerial images [59–62]. FCN includes down- and up-sampling. The
up-sampling process in FCN uses the features obtained from the down-sampling process to increase
the dimension by deconvolution layers, and obtains the same dimension of the classification map as
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the input image. They can be divided into FCN-32s, FCN-16s, FCN-8s, FCN-4s, corresponding to the
FCN networks with different upper sampling steps 32,16,8, and 4 respectively.

Some works also use Generative Adversarial Network (GAN) [63] model to extract roads form
aerial images [64,65]. GAN as a kind of deep learning model is inspired by the zero-sum game theory.
It contains a generator model G and a discriminator model D where the generator G can capture the
distribution of the sample data, and the discriminator D is a binary classifier used to check whether the
input is the real data or the generated sample. Generally speaking, GAN based methods regard road
extraction as a task of image-to-image translation, so in [64,65] FCN was used as the architecture of the
generator, and CNN as the discriminator. [64] used an encoder-decoder architecture in generator, and
added a term of entropy loss in loss function; [65] used a two-stage framework to extract roads, in
which two GANs were first used to detect roads and intersections and then the best covering road
graph was found by applying a smoothing-based graph optimization procedure. Both methods chose
encoder-decoder architecture in generator, which makes the generator be of poor ability to generate
finer images.

In this paper, we propose an improved GAN model to extract roads from aerial images, and the
overall framework of the proposed model is shown in Figure 1. In comparison to the available road
extraction methods based on GAN, our proposed method has a simpler architecture than two stages
method [65] and an easier loss function than [63]. In addition, Since GAN can produce promising results
with a small amount of samples, which overcomes the scarcity in quantity of remote sensing images
compared to natural images when using deep learning methods. According to the characteristics of
GANs, we train a model to automatically generate a binary image of roads and the background. For the
specific road extraction task, we enhance the original GAN loss function, adding a content-based loss
item to ensure that the generated image is more accurate. Our approach has improved the extraction
outcome compared to the other methods based on deep learning.
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The remainder of this paper is organized as follows: Section 2 introduces the standard generative
adversarial networks and the network structure we use for road extraction. Section 3 mainly shows
our experimental results and comparisons. In Section 4, summary and future expectations are given.

2. Generative Adversarial Network for Road Extraction

2.1. Generative Adversarial Network

GAN has received much attention in recent years due to its ability to generate new samples
similar to the training samples by learning the given samples’ probability distributions. Different
from the other deep learning models, GAN consists of two networks, i.e., generative and discriminate
networks. As the name suggests, GAN can learn probability distributions from the given dataset
and generate new samples similar to the given samples by using random noise. The training process
of GAN can be seen as that the two networks optimize themselves against each other. Briefly, the
generative network needs to generate more realistic samples to ‘fool’ the discriminate network, on
the contrary, discriminate networks need to learn a better way to detect fake images generated by the
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generative network. For the trained GAN, we can use the generative network to generate new samples,
and also use the discriminate network for feature extraction or classification. The loss function of GAN
is defined as follows:

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1−D(G(z)))] (1)

where pdata denotes the distribution of the real data (usually real images), pz denotes the distribution of
the input noise, D denotes the discriminate network, G denotes the generative network, x denotes the
input from the real data, and z denotes the input from the random noise. The discriminate network
needs to detect fake samples so as to make D(x)→ 1 and D(G(z))→ 0 , whilst the generative network
needs to generate realistic samples, leading to D(G(z))→ 1 .

In the last few years, the original GAN has a number of variants, such as Deep Convolutional
Generative Adversarial Network (DCGAN) which combines CNN with GAN [66]; Conditional
Generative Adversarial Network (CGAN) which takes the inputs with random noise or certain
conditions [67]; Wasserstein GAN [68] which uses Wasserstein distance to define the loss function for
solving the vanishing gradient problem [68,69]; CycleGAN [70] that has outstanding performance on
the task of image translation.

DCGAN replaces the multilayer perceptron in GAN with CNN. In our approach, in the generative
network, we use fractional-stride convolutions for up-sampling, which indicates that we map the input
vector of low dimension into the image of high dimension. In the discriminate network, we use stride
convolutions for down-sampling, mapping the input image into (0,1), which denotes the probability of
the input belonging to the real data.

CGAN’s input contains random noise z. Given condition y, the loss function of CGAN can be
defined as follows:

min
G

max
D

V(D, G) = Ex∼pdata(x)

[
log D(x

∣∣∣y )]+ Ez∼pz(z)

[
log(1−D(G(z

∣∣∣y )))] (2)

For different tasks and datasets, condition y is different, but for a certain task and dataset, condition
y should be the same for different samples in the same category.

Different from the previous methods, CycleGAN has outstanding performance on the task of
image translation where we need pair datasets (the original and the transformed images). We treat
image translation as a reversible process, in other words, when we use a GAN to translate image a ∈ A
into image b ∈ B, images a and b have different styles of A and B, and we can also use another GAN
to translate image b into image a. CycleGAN uses a cycle consistency loss function to guarantee the
reversible process:

Lcyc(GAtoB, GBtoA, A, B) = Ea∼A[‖GBtoA(GAtoB(a)) − a‖1] + Eb∼B[‖GAtoB(GBtoA(b)) − b‖1] (3)

where GAtoB and GBtoA denote two generators respectively, a and b denote images belonging to style A
and B respectively, and ‖.‖1 denotes L1-norm. The loss function of CycleGAN can be defined as follows:

L(GAtoB, GBtoA, DA, DB) = LG(GAtoB, DB, A, B) + LG(GBtoA, DA, B, A) + Lcyc(GAtoB, GBtoA, A, B) (4)

where DA and DB denote the discriminators corresponding to the generators GAtoB and GBtoA
respectively, LG denotes the GAN loss and Lcyc denotes the cycle consistency loss.

There are also some other methods based on GAN to conduct image translation, or called
image-to-image translation such as DiscoGAN [71], DualGAN [72], and pix2pix [73].

2.2. The Structure of Generative Adversarial Network for Road Extraction

Inspired by the outstanding performance of CGAN to image translation tasks, we use CGAN
to extract roads in aerial images. Using CycleGAN and some other CGAN models, we can easily
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translate images into another style, such as horse into zebra, day into night, summer into winter and so
on, we want to use this idea translate aerial images into label images.

Road extraction can be regarded as a problem of binary classification at the pixel level, in which
we predict whether a pixel belongs to roads or background. When targeting a binary image regardless
of process details, we can regard this task as an image translation, where we want to translate the aerial
image into the binary image that depicts the road and background.

We combine DCGAN and CGAN in our model to extract roads from aerial images, in short,
we use a structure of DCGAN with certain conditions, and here we just input aerial images as our
condition without any random noise. Due to the particularity of our task where the input and the
output are images with the same size, we replace the deconvolution layers with FCN. The structure
of the discriminator is the same as that of the discriminator of DCGAN. Our framework is shown in
Figure 1. The structure of FCN is shown as Figure 2, where the blue blocks denote the down-sampling
layers and the pink ones denote the up-sampling. The numbers on the blocks equal to the numbers
of the feature maps of each layer. Our FCN model inherits the traditional FCN-4s structure. We also
collect low level features by adding them to the feature maps of up-sampling. Different from the
traditional FCN-4s model, we remove the pooling layers in terms of down-sampling and have different
numbers of layers and feature maps in our FCN network.
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In fact, the structure of the FCN part has many choices. We here use Unet [74] due to its deeper
architecture and good performance in road extraction task (see Figure 3). In our approach, Unet has
a symmetric structure of down-sampling and up-sampling layers, including eight convolutional or
deconvolutional layers, and there is not any pooling layer, as shown in Figure 4.
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2.3. Loss Function

Different from CycleGAN, we do not need two GANs or any cycle consistency as our road dataset
contains the matches between the aerial and binary images. Moreover, the road extraction task does
not need image translation. Our loss function can be defined as follows:

L = argmin
G

max
D

αLcGAN(G, D) + βLcontent(G) (5)

where LcGAN denotes the loss of CGAN; Lcontent denotes the loss of the content, and α and β are
hyper-parameters to balance the two different losses.

First, we use an L1-norm loss function due to its simple form, i.e., Lcontent(G) = L1(G) =

Ex∼X‖G(x) − y‖1, in which ‖.‖1 denotes the L1 distance, G(x) denotes the binary image generated from
the input aerial image, y denotes the ground truth, and X denotes the aerial image in the training batch.
Ex∼X‖G(x) − y‖1 also can be written as follows:

Ex∼X‖G(x) − y‖1 =
1
m

m∑
i=1

M×N∑
j=1

∣∣∣∣∣G(
xi
)

j
− yi

j

∣∣∣∣∣ (6)

where m denotes the batch size during the training, i denotes the index of the samples in the current
batch, k denotes the sample which is different from the ith sample, j denotes the index of the pixels in
each image, and M×N denote the size of the image. The loss function of our model with L1-norm can
be written as follows:

L = arg min
G

max
D

1
m

m∑
i=1,k,i

M×N∑
j=1

(
α
(
log D(yk

∣∣∣xk ) + log(1−D(G(xi)))
)
+β

∣∣∣∣∣G(
xi
)

j
− yi

j

∣∣∣∣∣) (7)

The L2-norm loss function is another choice, i.e., Lcontent(G) = L2(G) = Ex∼X‖G(x) − y‖2, and
Ex∼X‖G(x) − y‖2 can be written as Equation (8). The loss function of our model with L2 loss can be
written as Equation (9).

Ex∼X‖G(x) − y‖2 =
1
m

m∑
i=1

√√√√M×N∑
j=1

(
G(xi) j − yi

j

)2
(8)
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L = arg min
G

max
D

α
m

m∑
i=1,k,i

(
log D(yk

∣∣∣xk ) + log(1−D(G(xi)))
)
+
β

m

m∑
i=1

√√√√M×N∑
j=1

(
G(xi) j − yi

j

)2
(9)

The results of our model with L1-norm and L2-norm are shown in Figure 5. Both of them have
satisfactory performance, and we choose L2 loss as our element-wise loss function due to its better
performance. Detailed comparison will be given in the experimental section.
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In summary, we use Equation (9) as the loss function of our proposed method to extract roads
from aerial images.

2.4. Training Algorithm

In our proposed method, we choose Adaptive Moment Estimation (Adam) [75] to train our
network because it is one of the best algorithms in deep learning to optimize the network parameters.
In fact, we usually regard Adam as the combination of Stochastic Gradient Descent with Momentum
(SGDM) [76] and Root Mean Square prop (RMSprop). When we update the parameters of the generative
network, each iteration of the Adam algorithm can be written as Equations (10) to (13).

We first use Equation (10) to calculate the gradient of the generative network like other training
algorithms based on mini-batch gradient descent, and then we use Equation (11) to calculate mini-batch
gradient descent with momentum to avoid the oscillation of the gradient whilst accelerating convergence
by retaining ρ1 of the gradient in the previous iterations and using only (1− ρ1) of the gradient in
current iteration as our gradient to update the parameters in the current iteration. 1 − ρt

1 in the
denominator is mainly used to remove the bias of the gradient in first few iterations. Next, we
calculate RMSprop term by Equation (12), different from Equation (11), we use the square of the current
gradient to replace the current gradient in Equation (11) and use the result to change the learning rate
adaptively. Finally, we use Equation (13) to update the parameters of the generative network in the
current iteration.

gG =
1
m
∇θG

m∑
i=1

∂ log
(
1−D

(
G
(
xi
)))

+ β

√√√√M×N∑
j=1

(
G(xi) j − yi

j

)2
 (10)

sG =
ρ1sG + (1− ρ1)gG

1− ρt
1

(11)

rG =
ρ2rG + (1− ρ2)gG � gG

1− ρt
2

(12)

θG = θG − ε
sG

√
rG + δ

(13)
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where gG denotes the gradient of the parameters in the generative network, sG and rG are corresponding
to the first moment estimate and the second raw moment estimate with bias-correction respectively.
In other words, we can regard sG as a moment term, and rG as an RMSprop term. ρ1 and ρ2 are
two hyper-parameters called exponential decay rates which are usually set to be 0.9 and 0.999 in
the experiments; ε denotes the learning rate and t denotes the number of the iterations; δ is a small
positive number to keep Equation (13) stable, which is experimentally set as 10-8; and � denotes the
dot products of the matrix.

For the discriminate network, we use Equations (14) to (17) to update the paraments in
each iteration.

gD =
∂
m
∇θD

m∑
i=1,k,i

(
log D(yk

∣∣∣xk ) + log
(
1−D

(
G
(
xi
))))

(14)

sD =
ρ1sD + (1− ρ1)gD

1− ρt
1

(15)

rD =
ρ2rD + (1− ρ2)gD � gD

1− ρt
2

(16)

θD = θD + ε
sD

√
rD + δ

(17)

where, gD denotes the gradient of the parameters in the discriminate network, sD and rD are
corresponding to the first moment and the second raw moment estimates with bias-correction,
respectively.

Since our model has two networks, i.e. generative and discriminate networks, whilst one loss
function is defined as Equation (9), we train these two parts alternately. We first train the discriminate
network using stochastic gradient ascend as shown in Equation (17) for one iteration, and then train
the generative network using stochastic gradient descent shown in Equation (13) for another iteration
till the training loss converges.

3. Experimental Results And Analysis

3.1. Datasets

All the experiments are conducted on the Massachusetts Roads Dataset. This dataset contains
aerial images depicting urban, suburban, and rural areas in the state of Massachusetts, USA. The
dataset consists of 1171 aerial images, where each image is with the size of 1500 × 1500 pixels. 1108 of
these images have been randomly assigned to the training set. The remaining 49 and 14 images are
allocated to the test and validation sets respectively. The dataset covers an area of approximately
2600 square kilometers in total, suggesting a Ground Sample Distance (GSD) of 1.0 meter per pixel.

Each aerial image has an accompanying binary label image, indicating whether a pixel in the
aerial image belongs to either the road or non-road class. Road centerline vectors retrieved from the
OpenStreetMap project were used to generate the label images. The vectors were rasterized as white
lines with a line thickness of 7 pixels, which, based on the GSD, is equivalent to 7 meters on the ground.
An aerial and label image pair example from this dataset is illustrated in Figure 6.
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Figure 6. Image and label example taken from the test set in the Massachusetts Roads Dataset. (a)
Aerial image; (b) Label image.

3.2. Evaluation Criteria

We use accuracy, precision, recall and F1-score to evaluate our results. F1-score is a number
between 0 to 1 which considers both precision and recall. The closer F1-score approaches 1, the
better results are achieved. Accuracy (A), precision (P), recall (R), and F1-score (F1) can be expressed
as follows:

A =
TP + TN

TP + FN + FP + TN
(18)

P =
TP

TP + FP
(19)

R =
TP

TP + FN
(20)

F1 = 2×
P×R
P + R

(21)

where TP, TN, FN and FP denote the true positive, true negative, false negative, and true
positive respectively.

3.3. Parameter Settings

We set α = 1, β = 300 in the loss function shown in Equation (9) since they can obtain the best
results. We choose Unet as our FCN part due to its good performance, and the number of the feature
maps of each layer are shown in Figure 3. We use mini-batch Adam to train our network and set the
learning rate as 0.0002, the momentum as 0.5, and the max epoch as 300. We perform our network on a
GTX 1080ti GPU to accelerate the training process, which consumes about 500 seconds per epoch. We
set the batch size as 2 which means that m = 2 in Equation (9).

3.4. Comparison Algorithms

To verify the performance, our proposed method is compared with the other methods in three
aspects: road extraction on a model of image to image translation (pix2pix), road extraction based on
other deep learning methods and road extraction based on GANs.

(1) Pix2pix [73]: Pix2pix is a kind of framework that can achieve the state of the art performance
in image-to-image translation. The source code can be found at https://github.com/phillipi/pix2pix.
During the training and testing, the architecture and hyper-parameters are same as [73].

https://github.com/phillipi/pix2pix
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(2) CNN [62]: The architecture and hyper-parameters we use are totally same as [62] which used
a CNN with 6 hidden layers including 3 convolutional layers, 1 pooling layer and 2 full connection
layers to extract roads in aerial images. The input of the network is a sliding window with the size
64× 64, and the output is a label image with the size 16× 16 corresponding to the central region of the
input. During the training, we randomly choose 200 windows of 64× 64 in each training image, and
use Nesterov’s Accelerated Gradient (NAG) algorithm [77] with learning rate 0.0025, max epoch 100.
During the test, we set the sliding window as 64× 64 with stride 16 to cover each image of the test
set. Furthermore, before the training, we do some data augmentation by mirror and reversal to obtain
more training samples, we also throw some selected windows which only contain background to keep
the training data of road and background classes balance.

(3) FCN [56]: We use FCN-8s and FCN-4s models respectively, both of which have 13 convolutional
layers, 5 pooling layers and 2 deconvolutional layers (FCN-4s has 3 deconvolutional layers). During the
down-sampling, we fine-tune partial parameters of VGG16 to accelerate convergence. The algorithm
to train is stochastic gradient descent (SGD) with a small learning rate, and we set the max epoch to
be 3000.

(4) DCGAN: The framework of DCGAN shown in Figure 7, and the input of the discriminator is
only the output of the generator without any condition. Since we only use GAN loss, we set the loss
function as:

L = arg min
G

max
D

LDCGAN(G, D) (22)
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Figure 7. The framework of DCGAN.

The FCN Network in Figure 7 is the same as Figure 4. The CNN with Sigmoid has same structure
as Figure 1. We use mini-batch Adam with learning rate 0.0002, momentum 0.9, batch size 32, and max
epoch 500.

(5) C-DCGAN: We add conditions to DCGAN in order to improve performance. The structure
is the same as Figure 1. We use the loss function shown in Equation (9) with α = 1, β = 0. Other
parameters are the same as those presented in (4).

(6) L2 loss only: In order to explore the influence of L2 loss in our model, we set an experiment
that only uses L2 loss. It means we set the loss function shown in Equation (9) with α = 0, β = 300.
Other parameters are the same as those shown in (5).

3.5. Experimental Results

We use two types of Figures to show our results, shown in Figures 8–13. In the first type, we
compare the extracted images against the label images using different methods, such as Figures 8, 10
and 12. In the second type, we can extract the hit/miss image by superposing the label images and the
extracted images upon the original images to find the hit and miss areas, like Figures 9, 11 and 13. In
these Figures, green lines (or points) denote the areas that we extract correctly, red lines (or points)
denote the areas that contain roads but the model does not correctly extract, and blue lines (or points)
denote the areas that do not contain any road but the model extracts ‘roads’ incorrectly.
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Figure 12. Results of road extraction on test image 3 by different methods. (a) Original image; (b)
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(j) Our proposed method.
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We choose three images to demonstrate the system performance, shown in Figures 8–13. The
first image contains an area in which roads are narrow, like countryside or edge of the city, shown
in Figures 8 and 9. The second image contains an area in which some roads are wide and the road
network is relatively complex, like the center of the city, shown in Figures 10 and 11. The third image
contains the body of water, and there are roads both inland and waterside, shown in Figures 12 and 13.
From the sixth column of the Figure, we can see that although DCGAN uses deep neural networks, it
fails to distinguish roads and the background. The main reason is that DCGAN is free to generate
random images [61], and the content of the generated images may contain much noise.

Figures 8i, 9i, 10i, 11i, 12i and 13i show the results when we only use L2 loss as our loss function.
The results present that L2 loss leads to better performance than C-DCGAN shown in Figures 8h, 9h,
10h, 11h, 12h and 13h.

In our proposed model, we assign large hyperparameters to L2 loss (α = 1, β = 300), and the
results of our model are shown in Figures 8j, 9j, 10j, 11j, 12j and 13j. These results are much better than
the case where we only use CGAN or L2 loss function. CNN shown in Figures 8d, 9d, 10d, 11d, 12d
and 13d and FCN Figure 8e,f, Figure 9e,f, Figure 10e,f, Figure 11e,f, Figure 12e,f and Figure 13e,f also
have good performance visually.

Table 1 shows qualitative results of these 8 models, including average accuracy, precision, recall,
and F1-score, which are calculated by Equations (18) to (21). The values of accuracy, precision and
recall shown in Table 1 come from the average ones on the whole test set (49 images), and F1-score
comes from the average precision and recall.

Table 1. Performance comparison of different methods on the test set.

Evaluation Pix2pix CNN FCN-8s FCN-4s DCGAN C-DCGAN L2 Our Method

Accuracy 0.97 0.96 0.92 0.94 0.86 0.93 0.98 0.98
Precision 0.81 0.90 0.90 0.86 0.37 0.71 0.85 0.93

Recall 0.72 0.73 0.44 0.49 0.33 0.70 0.72 0.82
F1-score 0.76 0.81 0.59 0.62 0.35 0.70 0.78 0.87

From Table 1, we can see our method has the best performance due to the highest F1-score. CNN
also has good results, but compared to our method, CNN based methods usually need to take data
augmentation and apply sliding windows before the training, these will lead to more computational
costs. In some way, CNN based methods are not an end-to-end framework for road extraction.
Although our method has achieved the best performance, the results shown in the last row of Table 1
can be improved. Our model can be further improved to extract roads in the areas where road networks
are complex, especially when for the thin roads, such as country roads. And in the cases when some
objects are similar to roads, such as roofs, our model faces challenges to distinguish these regions, e.g.
red blocks shown in Figure 14. In reality, different roads have different widths, but in Massachusetts
Roads Dataset, different roads are labeled at the same width (7 pixel). It means that each road in the
dataset is labeled with the width of 7 meters. Therefore, some incorrect results that extracted by our
model comes from the miss of part of road width in the ground truth. This issue usually occurs when
there are wide roads in the images like the purple block shown in Figure 14. For the green blocks
shown in Figure 14, some roads are not properly labeled in the ground truth which also leads to the
mistakes in road extraction.
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3.6. Parameter Analysis

As said in Section 2.2, we choose Unet as our FCN element in the generative network due to its
good performance, and in Section 2.3, we choose L2 loss as our element-wise loss.

In this section, we will provide statistics of accuracy, recall, precision and F1-score of our FCN
structure, Unet, L1 loss and L2 loss as shown in Tables 2 and 3 to validate the choice of the FCN structure
and the element-wise loss. From Table 3, it is observed that L2 loss provides better performance in
comparison to L1 loss.

Table 2. Performance comparison of our FCN and Unet on the test set.

Methods Accuracy Precision Recall F1-Score

Our FCN 0.97 0.80 0.71 0.75
Our Unet 0.98 0.93 0.82 0.87

Table 3. Performance comparison of L1 loss and L2 loss on the test set.

Methods Accuracy Precision Recall F1-Score

L1 Loss 0.98 0.87 0.81 0.84
L2 Loss 0.98 0.93 0.82 0.87

Another important aspect is to determine a proper size of the convolutional kernel for CNN. We
choose two groups of the kernel size, one is [4, 4, 4, 4, 3, 3, 3, 3] and the other is [11, 11, 7, 7, 5, 5, 4, 4], and
the results are shown in Figure 15 and Table 4.

From Figure 15 and Table 4, we notice that the results of a small kernel size are better than those
of a large kernel size. Generally speaking, the size of the kernel size is corresponding to the size of the
receptive field. In the task of road extraction, we do not need a large receptive filed because the roads
in the aerial images are usually tiny so a smaller kernel size can lead to better results.

We use Equation (9) as the loss function in our model. How to balance C-DCGAN loss and L2
loss becomes a problem to be solved for road extraction task. From the above experiments, we find
that L2 loss plays an important role in the task of road extraction, so we need to choose the best weight
of L2 loss for Equation (9). We undertake experiments on the test set by different weights of L2 loss
and plot the curves in Figure 16.
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Table 4. Performance comparison of different kernel size on the test set.

Kernel Size Accuracy Precision Recall F1-Score

Large 0.97 0.84 0.75 0.79
Small 0.98 0.93 0.82 0.87
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From Figure 16, we can observe that when we increase the weight, F1-score on the whole test set
increases as well, especially when the weights fall in the range of 0 to 250, and the performance on the
test set significantly improves (F1-score increases from 0.74 to 0.86). When the weights are larger than
250, F1-score increases slowly and reaches 0.87 when the weight equals to 300. After this, F1-score
does not change. So we set the weight as 300, and α = 1, β = 300 are used in Equation (9).

4. Conclusions

In this paper, a novel end-to-end generative adversarial network has been proposed to perform the
road extraction task in aerial images. A conditional GAN with L2 loss achieves better performance than
the state of the art methods. Our proposed method, road extraction based on generative adversarial
networks, does not need large training datasets, and still has the best performance. Compared to
the other methods which also achieve good performance, our method is an end to end framework to
extract roads and needs less computational costs.

Although the proposed model has achieved the best performance, extraction results on country
roads and complex road network need to be further improved. The performance of remote sensing
image processing methods based on deep neural networks relies on the given training dataset. Data
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from different sources will have a great impact on model performance. Usually we use fine-tune to
transfer trained model to new dataset with a few of training samples inform the new dataset. For zero
training sample, we may need to use some prior knowledge of new data to assist the decision making.
These are our future research directions.
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