The Estimation of Lava Flow Temperatures Using Landsat Night-Time Images: Case Studies from Eruptions of Mt. Etna and Stromboli (Sicily, Italy), Kīlauea (Hawaii Island), and Eyjafjallajökull and Holuhraun (Iceland)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Lava Flow Temperature Estimations
3.1.1. Mt. Etna Eruptions 1991–2020
3.1.2. Stromboli Eruptions
3.1.3. The 2018 Eruption at Kīlauea Volcano (Island of Hawaii)
3.1.4. The 2010 Eruption at Eyjafjallajökull (Southern Iceland)
3.1.5. The 2014–15 Eruption at the Holuhraun (Icelandic Highlands)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bonneville, A.; Gouze, P. Thermal survey of Mount Etna volcano from space. Geophys. Res. Lett. 1992, 19, 725–728. [Google Scholar] [CrossRef]
- Del Negro, C.; Cappello, A.; Neri, M.; Bilotta, G.; Hérault, A.; Ganci, G. Lava flow hazards at Mount Etna: Constraints imposed by eruptive history and numerical simulations. Sci. Rep. 2013, 3, 3493. [Google Scholar] [CrossRef] [Green Version]
- Cappello, A.; Geshi, N.; Neri, M.; Del Negro, C. Lava flow hazards—An impending threat at Miyakejima volcano, Japan. J. Volcanol. Geotherm. Res. 2015, 308, 1–9. [Google Scholar] [CrossRef]
- Pedrazzi, D.; Cappello, A.; Zanon, V.; Del Negro, C. Impact of effusive eruptions from the Eguas-Carvao fissure system, Sao Miguel Island, Azores Archipelago (Portugal). J. Volcanol. Geotherm. Res. 2015, 291, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Corradino, C.; Ganci, G.; Cappello, A.; Bilotta, G.; Hérault, A.; Del Negro, C. Mapping Recent Lava Flows at Mount Etna Using Multispectral Sentinel-2 Images and Machine Learning Techniques. Remote Sens. 2019, 11, 1916. [Google Scholar] [CrossRef] [Green Version]
- Del Negro, C.; Cappello, A.; Ganci, G. Quantifying lava flow hazards in response to effusive eruption. Geol. Soc. Am. Bull. 2016, 128, 752–763. [Google Scholar] [CrossRef]
- Bonneville, A.; Vasseur, G.; Kerr, Y. Satellite thermal infrared observations of Mount Etna after the 17th March 1981 eruption. J. Volcanol. Geotherm. Res. 1985, 36, 209–232. [Google Scholar] [CrossRef]
- Bonneville, A.; Kerr, Y. A thermal forerunner of the 28th March 1983 Mount Etna eruption from satellite thermal infrared data. J. Geodyn. 1987, 7, 1–31. [Google Scholar] [CrossRef]
- Cappello, A.; Ganci, G.; Bilotta, G.; Herault, A.; Zago, V.; Del Negro, C. Satellite-driven modeling approach for monitoring lava flow hazards during the 2017 Etna eruption. Ann. Geophys. Geophys. 2018, 61, 2–13. [Google Scholar] [CrossRef]
- Ganci, G.; Cappello, A.; Bilotta, G.; Corradino, C.; Del Negro, C. Satellite-Based Reconstruction of the Volcanic Deposits during the December 2015 Etna Eruption. Data 2019, 4, 120. [Google Scholar] [CrossRef] [Green Version]
- Cappello, A.; Zanon, V.; Del Negro, C.; Ferreira, T.J.L.; Queiroz, M.G.P.S. Exploring lava-flow hazards at Pico Island, Azores Archipelago (Portugal). Terra Nova 2015, 27, 156–161. [Google Scholar] [CrossRef]
- Rogic, N.; Cappello, A.; Ganci, G.; Maturilli, A.; Rymer, H.; Blake, S.; Ferrucci, F. Spaceborne EO and a Combination of Inverse and Forward Modelling for Monitoring Lava Flow Advance. Remote Sens. 2019, 11, 3032. [Google Scholar] [CrossRef] [Green Version]
- Francis, P.W.; Rothery, D.A. Using Landsat Thematic Mapper to detect and monitor active volcanoes: An example from Lascar volcano, northern Chile. Geology 1987, 15, 614–617. [Google Scholar] [CrossRef]
- Rothery, D.A.; Francis, P.W.; Wood, C.A. Volcano monitoring using short wavelength infrared data from satellites. J. Geophys. Res. Solid Earth 1988, 93, 7993–8008. [Google Scholar] [CrossRef]
- Pieri, D.C.; Glaze, L.S.; Abrams, M.J. Thermal radiance observations of an active lava flow during the June 1984 eruption of Mount Etna. Geology 1990, 18, 1018–1022. [Google Scholar] [CrossRef]
- Chatterjee, R.S. Coal fire mapping from satellite thermal IR data—A case example in Jharia Coalfield, Jharkhand, India. ISPRS J. Photogramm. Remote Sens. 2006, 60, 113–128. [Google Scholar] [CrossRef]
- Huo, H.; Jiang, X.; Song, X.; Li, Z.L.; Ni, Z.; Gao, C. Detection of coal fire dynamics and propagation direction from multi-temporal nighttime Landsat SWIR and TIR data: A case study on the Rujigou Coalfield, Northwest (NW) China. Remote Sens. 2014, 6, 1234–1259. [Google Scholar] [CrossRef] [Green Version]
- Oppenheimer, C. Lava Flow Cooling Estimated from Landsat Thematic Mapper Infrared Data: The Lonquimay Eruption (Chile, 1989). J. Geophys. Res. 1991, 96, 21865–21878. [Google Scholar] [CrossRef]
- Flynn, L.P.; Harris, A.J.L.; Wright, R. Improved identification of volcanic features using Landsat 7 ETM+. Remote Sens. Environ. 2001, 78, 180–193. [Google Scholar] [CrossRef]
- Wooster, M.J.; Rothery, D.A. Thermal monitoring of Lascar volcano, Chile, using infrared data from the along-track scanning radiometer: A 1992–1995 time series. Bull. Volcanol. 1997, 58, 566–579. [Google Scholar] [CrossRef]
- Sano, T.; Shirao, M.; Tani, K.; Tsutsumi, Y.; Kiyokawa, S.; Fujii, T. Progressive enrichment of arc magmas caused by the subduction of seamounts under Nishinoshima volcano, Izu-Bonin Arc, Japan. J. Volcanol. Geotherm. Res. 2016, 319, 52–65. [Google Scholar] [CrossRef]
- Wright, R.; Flynn, L.P. On the retrieval of lava-flow surface temperatures from infrared satellite data. Geology 2003, 31, 893–896. [Google Scholar] [CrossRef]
- Jiang, H.Y.; Xie, L.J.; Peng, Y.S.; Ying, Y.B. Study on the influence of temperature on near infrared spectra. Spectrosc. Spectr. Anal. 2008, 28, 1510–1513. [Google Scholar]
- Foster, J.L. Observations of The Earth Using Nighttime Visible Imagery. In Proceedings of the SPIE 0414, Optical Engineering for Cold Environments, Arlington, VA, USA, 7–8 April 1983. [Google Scholar]
- Liu, J.G.; Mason, P.J. Image Processing and GIS for Remote Sensing: Techniques and Applications; John Wiley & Sons: Chichester, UK, 2016; p. 472. [Google Scholar]
- Maldague, X.P.V. Nondestructive Evaluation of Materials by Infrared Thermography; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; p. 207. [Google Scholar]
- Lisiecka, E.; Passia, H.A. Concept of the method and device for optical measurement of high temperatures (in Polish). Pomiary Autom. Kontrola 2014, 60, 272–274. [Google Scholar]
- Donegan, S.J.; Flynn, L.P. Comparison of the response of the Landsat 7 Enhanced Thematic Mapper Plus and the Earth Observing-1 Advanced Land Imager over active lava flows. J. Volcanol. Geotherm. Res. 2004, 135, 105–126. [Google Scholar] [CrossRef]
- Ramsey, M.; Dehn, J. Spaceborne observations of the 2000 Bezymianny, Kamchatka eruption: The integration of high-resolution ASTER data into near real-time monitoring using AVHRR. J. Volcanol. Geotherm. Res. 2004, 135, 127–146. [Google Scholar] [CrossRef]
- Wright, R.; Flynn, L.P.; Garbeil, H.; Harris, A.J.L.; Pilger, E. MODVOLC: Near-real-time thermal monitoring of global volcanism. J. Volcanol. Geotherm. Res. 2004, 135, 29–49. [Google Scholar] [CrossRef]
- Rothery, D.A.; Borgia, A.; Carlton, R.W.; Oppenheimer, C. The 1992 Etna lava flow imaged by Landsat TM. Int. J. Remote Sens. 1992, 13, 2759–2763. [Google Scholar] [CrossRef]
- Hirn, B.; Di Bartola, C.; Ferrucci, F. Spaceborne monitoring 2000-2005 of the Pu’u ’O’o-Kupaianaha (Hawaii) eruption by synergetic merge of multispectral payloads ASTER and MODIS. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2848–2856. [Google Scholar] [CrossRef]
- Marchese, F.; Neri, M.; Falconieri, A.; Lacava, T.; Mazzeo, G.; Pergola, N.; Tramutoli, V. The contribution of multi-sensor infrared satellite observations to monitor Mt. Etna (Italy) Activity during May to August 2016. Remote Sens. 2018, 10, 1948. [Google Scholar] [CrossRef] [Green Version]
- Landsat Handbook. Available online: https://www.usgs.gov/land-resources/nli/landsat/using-usgs-landsat-level-1-data-product (accessed on 10 March 2020).
- Computing the Planck Function. Yale University. Available online: https://www.yumpu.com/en/document/read/51092673/computing-the-planck-function-yale-university (accessed on 11 March 2020).
- Wright, R.; Garbeil, H.; Davies, A.G. Cooling rate of some active lavas determined using an orbital imaging spectrometer. J. Geophys. Res. Solid Earth 2010, 115, B06205. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.J.; Ramsey, M.S.; King, P.L. Development of a new laboratory technique for high-temperature thermal emission spectroscopy of silicate melts. J. Geophys. Res. Solid Earth 2013, 118, 1968–1983. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, M.; Chevrel, M.; Coppola, D.; Harris, A. The influence of emissivity on the thermo-rheological modeling of the channelized lava flows at Tolbachik volcano. Ann. Geophys. 2019, 62, 222. [Google Scholar] [CrossRef]
- Using the USGS Landsat Level-1 Data Product. Available online: https://www.usgs.gov/land-resources/nli/landsat/using-usgs-landsat-level-1-data-product (accessed on 10 March 2020).
- Calvari, S.; Pinkerton, H. Formation of lava tubes and extensive flow field during the 1991–1993 eruption of Mount Etna. J. Geophys. Res. 1998, 103, 27291–27301. [Google Scholar] [CrossRef]
- Allard, P.; Behncke, B.; D’Amico, S.; Neri, M.; Gambino, S. Mount Etna 1993–2005: Anatomy of an evolving eruptive cycle. Earth Sci. Rev. 2006, 78, 85–114. [Google Scholar] [CrossRef]
- Cappello, A.; Bilotta, G.; Neri, M.; Del Negro, C. Probabilistic modeling of future volcanic eruptions at Mount Etna. J. Geophys. Res. Solid Earth 2013, 118, 1925–1935. [Google Scholar] [CrossRef] [Green Version]
- Acocella, V.; Neri, M.; Behncke, B.; Bonforte, A.; Del Negro, C.; Ganci, G. Why does a mature volcano need new vents? The case of the new southeast crater at Etna. Front. Earth Sci. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Barreca, G.; Branca, S.; Monaco, C. Three-Dimensional Modeling of Mount Etna Volcano: Volume Assessment, Trend of Eruption Rates, and Geodynamic Significance. Tectonics 2018, 37, 842–857. [Google Scholar] [CrossRef]
- Gvirtzman, Z.; Nur, A. Formation of Mount Etna as a consequence of slab rollback. Nature 1999, 401, 782–785. [Google Scholar] [CrossRef]
- Nicolich, R.; Laigle, M.; Hirn, A.; Cernobori, L.; Gallart, J. Crustal structure of the Ionian margin of Sicily: Etna volcano in the frame of regional evolution. Tectonophysics 2000, 329, 121–139. [Google Scholar] [CrossRef]
- Doglioni, C.; Innocenti, F.; Mariotti, S. Why Mt. Etna? Terra Nova 2001, 13, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Palano, M.; Ferranti, L.; Monaco, C.; Mattia, M.; Aloisi, M.; Bruno, V.; Cannavò, F.; Siligato, G. GPS velocity and strain fields in Sicily and southern Calabria, Italy: Updated geodetic constraints on tectonic block interaction in the central Mediterranean. J. Volcanol. Geotherm. Res. 2012, 117, B07401. [Google Scholar] [CrossRef] [Green Version]
- Viccaro, M.; Zuccarello, F. Mantle ingredients for making the fingerprint of Etna alkaline magmas: Implications for shallow partial melting within the complex geodynamic framework of Eastern Sicily. J. Geodyn. 2017, 109, 10–23. [Google Scholar] [CrossRef]
- Díaz-Moreno, A.; Barberi, G.; Cocina, O.; Koulakov, I.; Scarfî, L.; Zuccarello, L.; Prudencio, J.; García-Yeguas, A.; Álvarez, I.; García, L.; et al. New Insights on Mt. Etna’s Crust and Relationship with the Regional Tectonic Framework from Joint Active and Passive P-Wave Seismic Tomography. Surv. Geophys. 2018, 39, 57–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Negro, C.; Cappello, A.; Neri, M.; Bilotta, G.; Hérault, A.; Ganci, G. Etna flank lava flows between 1610 and 2008. Pangaea 2013. [Google Scholar] [CrossRef]
- Corradino, C.; Ganci, G.; Cappello, A.; Bilotta, G.; Calvari, S.; Del Negro, C. Recognizing Eruptions of Mount Etna through Machine Learning using Multiperspective Infrared Images. Remote Sens. 2020, 12, 970. [Google Scholar] [CrossRef] [Green Version]
- Calvari, S.; Salerno, G.G.; Spampinato, L.; Gouhier, M.; La Spina, A.; Pecora, E.; Boschi, E. An unloading foam model to constrain Etna’s 11–13 January 2011 lava fountaining episode. J. Geophys. Res. Solid Earth 2011, 116, 1–18. [Google Scholar] [CrossRef]
- Calvari, S.; Ganci, G.; Victória, S.S.; Hernandez, P.A.; Perez, N.M.; Barrancos, J.; Alfama, V.; Dionis, S.; Cabral, J.; Cardoso, N.; et al. Satellite and Ground Remote Sensing Techniques to Trace the Hidden Growth of a Lava Flow Field: The 2014–2015 Effusive Eruption at Fogo Volcano (Cape Verde). Remote Sens. 2018, 10, 1115. [Google Scholar] [CrossRef] [Green Version]
- Giuffrida, M.; Viccaro, M. Three years (2011–2013) of eruptive activity at Mt. Etna: Working modes and timescales of the modern volcano plumbing system from micro-analytical studies of crystals. Earth Sci. Rev. 2017, 171, 289–322. [Google Scholar] [CrossRef]
- Cappello, A.; Ganci, G.; Bilotta, G.; Corradino, C.; Herault, A.; Del Negro, C. Changing eruptive styles at the South-East Crater of Mount Etna: Implications for assessing lava flow hazards. Front. Earth Sci. 2019, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Palano, M.; Viccaro, M.; Zuccarello, F.; Gresta, S. Magma transport and storage at Mt. Etna (Italy): A review of geodetic and petrological data for the 2002-03, 2004 and 2006 eruptions. J. Volcanol. Geotherm. Res. 2017, 347, 149–164. [Google Scholar] [CrossRef]
- Neri, M.; Acocella, V.; Behncke, B.; Maiolino, V.; Ursino, A.; Velardita, R. Contrasting triggering mechanisms of the 2001 and 2002–2003 eruptions of Mount Etna (Italy). J. Volcanol. Geotherm. Res. 2005, 144, 235–255. [Google Scholar] [CrossRef]
- Nicotra, E.; Viccaro, M. Transient uprise of gas and gas-rich magma batches fed the pulsating behavior of the 2006 eruptive episodes at Mt. Etna volcano. J. Volcanol. Geotherm. Res. 2012, 227, 102–118. [Google Scholar] [CrossRef]
- Bonaccorso, A.; Bonforte, A.; Calvari, S.; Del Negro, C.; Di Grazia, G.; Ganci, G.; Neri, M.; Vicari, A.; Boschi, E. The initial phases of the 2008–2009 Mount Etna eruption: A multidisciplinary approach for hazard assessment. J. Geophys. Res. 2011, 116, B03203. [Google Scholar] [CrossRef] [Green Version]
- Ganci, G.; Vicari, A.; Cappello, A.; Del Negro, C. An emergent strategy for volcano hazard assessment: From thermal satellite monitoring to lava flow modeling. Remote Sens. Environ. 2012, 119, 197–207. [Google Scholar] [CrossRef]
- Behncke, B.; Fornaciai, A.; Neri, M.; Favalli, M.; Ganci, G.; Mazzarini, F. Lidar surveys reveal eruptive volumes and rates at Etna, 2007–2010. Geophys. Res. Lett. 2016, 43, 4270–4278. [Google Scholar] [CrossRef] [Green Version]
- Viccaro, M.; Calcagno, R.; Garozzo, I.; Giuffrida, M.; Nicotra, E. Continuous magma recharge at Mt. Etna during the 2011–2013 period controls the style of volcanic activity and compositions of erupted lavas. Miner. Petrol. 2015, 109, 67–83. [Google Scholar] [CrossRef]
- Giuffrida, M.; Viccaro, M.; Ottolini, L. Ultrafast syn-eruptive degassing and ascent trigger high-energy basic eruptions. Sci. Rep. 2018, 8, 1–7. [Google Scholar] [CrossRef]
- Viccaro, M.; Zuccarello, F.; Cannata, A.; Palano, M.; Gresta, S. How a complex basaltic volcanic system works: Constraints from integrating seismic, geodetic, and petrological data at Mount Etna volcano during the July-August 2014 eruption. J. Geophys. Res. Solid Earth 2016, 121, 5659–5678. [Google Scholar] [CrossRef] [Green Version]
- Cannata, A.; Di Grazia, G.; Giuffrida, M.; Gresta, S.; Palano, M.; Sciotto, M.; Viccaro, M.; Zuccarello, F. Space-time evolution of magma storage and transfer at Mt. Etna volcano (Italy): The 2015-2016 reawakening of Voragine crater. Geochem. Geophys. Geosyst. 2018, 19, 471–495. [Google Scholar] [CrossRef]
- Viccaro, M.; Giuffrida, M.; Zuccarello, F.; Scandura, M.; Palano, M.; Gresta, S. Violent paroxysmal activity drives self-feeding magma replenishment at Mt. Etna. Sci. Rep. 2019, 9, 6717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvari, S.; Coltelli, M.; Neri, M.; Pompilio, M.; Scribano, V. The 1991-1993 Etna eruption: Chronology and geological observations. Acta Vulcanol. 1994, 4, 1–14. [Google Scholar]
- Wright, R.; Rothery, D.A.; Blake, S.; Pieri, D.C. Visualising active volcanism with high spatial resolution satellite data: The 1991-1993 eruption of Mount Etna. Bull. Volcanol. 2000, 62, 256–265. [Google Scholar] [CrossRef]
- Gauthier, F. Field and laboratory studies of the rheology of Mount Etna lava. Philos. Trans. R. Soc. A 1973, 274, 83–98. [Google Scholar] [CrossRef]
- Archambault, C.; Tanguy, J.C. Comparative temperature measurements on Mount Etna lavas: Problems and techniques. J. Volcanol. Geotherm. Res. 1976, 1, 113–125. [Google Scholar] [CrossRef]
- Blackett, M. An Overview of Infrared Remote Sensing of Volcanic Activity. J. Imaging 2017, 3, 13. [Google Scholar] [CrossRef]
- Behncke, B.; Neri, M. The July–August 2001 eruption of Mt. Etna (Sicily). Bull. Volcanol. 2003, 65, 461–476. [Google Scholar] [CrossRef]
- Rosi, M.; Bertagnini, A.; Landi, P. Onset of the persistent activity at Stromboli Volcano (Italy). Bull. Volcanol. 2000, 62, 294–300. [Google Scholar] [CrossRef]
- Ellam, R.M.; Hawkesworth, C.J.; Menzies, M.A.; Rogers, N.W. The volcanism of southern Italy: Role of subduction and the relationship between potassic and sodic alkaline magmatism. J. Geophys. Res. 1989, 94, 4589–4601. [Google Scholar] [CrossRef]
- Francalanci, L.; Manetti, P.; Peccerillo, A. Volcanological and magmatological evolution of Stromboli volcano (Aeolian Islands): The roles of fractional crystallization, magma mixing, crustal contamination, and source heterogeneity. Bull. Volcanol. 1989, 51, 355–378. [Google Scholar] [CrossRef]
- Gillot, P.Y.; Keller, J. Radiochronological dating of Stromboli. Acta Vulcanol. 1993, 3, 69–77. [Google Scholar]
- Conrey, R.M.; Sherrod, D.R.; Hooper, P.R.; Swanson, D.A. Diverse primitive magmas in the Cascade Arc, northern Oregon and southern Washington. Can. Mineral. 1997, 35, 367–396. [Google Scholar]
- Gasparini, P.; Lannaccone, G.; Scandone, P.; Scarpa, R. The seismotectonics of the Calabrian Arc. Tectonophysics 1982, 84, 267–286. [Google Scholar] [CrossRef]
- Soloviev, S.L.; Kuzin, I.P.; Kovacev, S.A.; Ferri, M.; Guerra, I.; Luongo, G. Microearthquakes in the Tyrrhenian Sea as revealed by joint land and sea-bottom seismographs. Mar. Geol. 1990, 94, 131–146. [Google Scholar] [CrossRef]
- Global Volcanism Program. 2020. Available online: https://volcano.si.edu/volcano.cfm?vn=211040 (accessed on 20 May 2020).
- Zakšek, K.; Hort, M.; Lorenz, E. Satellite and Ground Based Thermal Observation of the 2014 Effusive Eruption at Stromboli Volcano. Remote Sens. 2015, 7, 17190–17211. [Google Scholar] [CrossRef] [Green Version]
- U.S. Geological Survey. 2020. Available online: https://volcanoes.usgs.gov/observatories/hvo/hawaii_hazards.html (accessed on 15 June 2020).
- Torsvik, T.; Doubrovine, P.; Steinberger, B.; Gaina, C.; Spakman, W.; Domeier, M. Pacific plate motion change caused the Hawaiian-Emperor Bend. Nat. Commun. 2017, 8, 15660. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.T. A possible origin of the Hawaiian Islands. Can. J. Phys. 1963, 41, 863–870. [Google Scholar] [CrossRef]
- Clague, D.A.; Dalrymple, G.B. The Hawaiian–Emperor volcanic chain, Part 1, Geologic evolution. Geol. Surv. Prof. Pap. 1987, 1350, 5–54. [Google Scholar]
- Richards, M.A.; Lithgow-Bertelloni, C. Plate motion changes, the Hawaiian-Emperor bend, and the apparent success and failure of geodynamic models. Earth Planet. Sci. Lett. 1996, 137, 19–27. [Google Scholar] [CrossRef]
- Neal, C.A.; Brantley, S.R.; Antolik, L.; Babb, J.L.; Burgess, M.; Calles, K.; Cappos, M.; Chang, J.C.; Conway, S.; Desmither, L.; et al. The 2018 rift eruption and summit collapse of Kīlauea Volcano. Science 2019, 363, 367–374. [Google Scholar] [CrossRef]
- Flynn, L.P.; Mouginis-Mark, P.J. Temperature of an active lava channel from spectral measurements, Kilauea Volcano, Hawaii. Bull. Volcanol. 1994, 56, 297–301. [Google Scholar] [CrossRef]
- Pinkerton, H.; James, M.; Jones, A. Surface temperature measurements of active lava flows on Kilauea volcano, Hawai′i. J. Volcanol. Geotherm. Res. 2002, 113, 159–176. [Google Scholar] [CrossRef] [Green Version]
- Gray, D.M.; Burton-Johnson, A.; Fretwell, P.T. Evidence for a lava lake on Mt. Michael volcano, Saunders Island (South Sandwich Islands) from Landsat, Sentinel-2 and ASTER satellite imagery. J. Volcanol. Geotherm. Res. 2019, 379, 60–71. [Google Scholar] [CrossRef]
- Patrick, M.; Orr, T.; Fisher, G.; Trusdell, F.; Kauahikaua, J. Thermal mapping of a pāhoehoe lava flow, Kīlauea Volcano. J. Volcanol. Geotherm. Res. 2017, 332, 71–87. [Google Scholar] [CrossRef]
- Gudmundsson, M.T.; Larsen, G.; Höskuldsson, A.; Gylfason, A.G. Volcanic hazards in Iceland. Jökull 2008, 58, 251–268. [Google Scholar]
- Árnadóttir, T.; Geirsson, H.; Jiang, W. Crustal deformation in Iceland: Plate spreading and earthquake deformation. Jökull 2008, 58, 59–74. [Google Scholar]
- Sigmundsson, F.; Einarsson, P.; Hjartardóttir, Á.R.; Drouin, V.; Jónsdóttir, K.; Árnadóttir, T.; Geirsson, H.; Hreinsdóttir, S.; Li, S.; Ófeigsson, B.G. Geodynamics of Iceland and the signatures of plate spreading. J. Volcanol. Geotherm. Res. 2020, 391, 106436. [Google Scholar] [CrossRef]
- Gudmundsson, M.T.; Pedersen, R.; Vogfjörd, K.; Thorbjarnardóttir, B.; Jakobsdóttir, S.; Roberts, M.J. Eruptions of Eyjafjallajökull Volcano, Iceland. Eos 2010, 91, 190–191. [Google Scholar] [CrossRef]
- Sigmundsson, F.; Hreinsdottir, S.; Hooper, A.; Arnadottir, T.; Pedersen, R.; Roberts, M.J.; Oskarsson, N.; Auriac, A.; Decriem, J.; Einarsson, P.; et al. Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption. Nature 2010, 468, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Sigmarsson, O.; Vlastelic, I.; Andreasen, R.; Bindeman, I.; Devidal, J.L.; Moune, S.; Keiding, J.K.; Larsen, G.; Hoskuldsson, A.; Thordarson, T. Remobilization of silicic intrusion by mafic magmas during the 2010 Eyjafjallajökull eruption. Solid Earth 2011, 2, 271–281. [Google Scholar] [CrossRef] [Green Version]
- Viccaro, M.; Giuffrida, M.; Nicotra, E.; Cristofolini, R. Timescales of magma storage and migration recorded by olivine crystals in basalts of the March-April 2010 eruption at Eyjafjallajökull volcano, Iceland. Am. Miner. 2016, 101, 222–230. [Google Scholar] [CrossRef]
- Elliot, A.J.; Singh, N.; Loveridge, P.; Harcourt, S.; Smith, S.; Pnaiser, R.; Kavanagh, K.; Robertson, C.; Ramsay, C.N.; McMenamin, J.; et al. Syndromic surveillance to assess the potential public health impact of the Icelandic volcanic ash plume across the United Kingdom. Eurosurveillance 2010, 15, 19583. [Google Scholar] [CrossRef] [PubMed]
- Giíslason, S.R.; Stefánsdóttir, G.; Pfeffer, M.A.; Barsotti, S.; Jóhannsson, T.; Galeczka, I.; Bali, E.; Sigmarsson, O.; Stefánsson, A.; Keller, N.S.; et al. Environmental pressure from the 2014–15 eruption of Bárðarbunga volcano, Iceland. Geochem. Perspect. 2015, 1, 84–93. [Google Scholar] [CrossRef] [Green Version]
- Dürig, T.; Gudmundsson, M.; Högnadóttir, T.; Jónsdóttir, I. Estimation of lava flow field volumes and volumetric effusion rates from airborne radar profiling and other data: Monitoring of the Nornahraun (Holuhraun) 2014/15 eruption in Iceland. In European Geosciences Union, General Assembly; European Geosciences Union: Vienna, Austria, 2015; Volume 17, p. 8519. [Google Scholar]
- Pedersen, G.; Höskuldsson, A.; Riishuus, M.S.; Jónsdóttir, I.; Thórdarson, T.; Gudmundsson, M.T.; Durmont, S. Emplacement dynamics and lava field evolution of the flood basalt eruption at Holuhraun, Iceland: Observations from field and remote sensing data. In EGU General Assembly; European Geosciences Union: Vienna, Austria, 2016; Volume 18, p. 13961. [Google Scholar]
- Pedersen, G.B.M.; Höskuldsson, A.; Dürig, T.; Thordarson, T.; Jónsdóttir, I.; Riishuus, M.S.; Óskarsson, B.V.; Dumont, S.; Magnusson, E.; Gudmundsson, M.T.; et al. Lava field evolution and emplacement dynamics of the 2014–2015 basaltic fissure eruption at Holuhraun, Iceland. J. Volcanol. Geotherm. Res. 2017, 340, 155–169. [Google Scholar] [CrossRef] [Green Version]
- Aufaristama, M.; Hoskuldsson, A.; Jonsdottir, I.; Ulfarsson, M.O.; Thordarson, T. New Insights for Detecting and Deriving Thermal Properties of Lava Flow Using Infrared Satellite during 2014–2015 Effusive Eruption at Holuhraun, Iceland. Remote Sens. 2018, 10, 151. [Google Scholar] [CrossRef] [Green Version]
- Kolzenburg, S.; Giordano, D.; Thordarson, T.; Höskuldsson, A.; Dingwell, D.B. The rheological evolution of the 2014/2015 eruption at Holuhraun, central Iceland. Bull. Volcanol. 2017, 79, 45–60. [Google Scholar] [CrossRef]
Product ID | Image Acquired | Scene Centre Time | Sensor Type |
---|---|---|---|
Etna (Sicily, Italy) | |||
LT50522101991358FUI00 | 24.12.1991 | 20:10:05 | Landsat 4-5TM |
LT50522101992073FUI00 | 13.03.1992 | 20:09:54 | Landsat 4-5 TM |
LE70522102001217EDC00 | 05.08.2001 | 20:34:48 | Landsat 7ETM+ |
LE70522102001153EDC00 | 02.06.2001 | 20:35:27 | Landsat 7ETM+ |
LE70522102006199EDC00 | 18.07.2006 | 20:35:30 | Landsat 7ETM+ |
LC80522102013338LGN01 | 04.12.2013 | 20:47:22 | Landsat 8OLI |
LC80522102019211LGN00 | 30.07.2019 | 20:45:47 | Landsat 8OLI |
LC80522102020038LGN00 | 07.02.2020 | 20:45:48 | Landsat 8OLI |
AST_L1T_00312262018210330_20181228005119_11516 | 26.12.2018 | 21:03:30 | ASTER TIR |
Stromboli (Sicily, Italy) | |||
LC80522112014229LGN01 | 17.08.2014 | 20:46:13 | Landsat 8OLI |
LC80522112014261LGN01 | 18.09.2014 | 20:46:16 | Landsat 8OLI |
LC80522112014293LGN01 | 20.10.2014 | 20:46:23 | Landsat 8OLI |
Kīlauea (Hawaii Island) | |||
LC81651972017213LGN00 | 01.08.2017 | 08:18:54 | Landsat 8OLI |
LC81661972018143LGN00 | 23.05.2018 | 08:23:59 | Landsat 8OLI |
LC81661982018159LGN00 | 08.06.2018 | 08:24:17 | Landsat 8OLI |
LC81651982018168LGN00 | 17.06.2018 | 08:18:15 | Landsat 8OLI |
LC81661982018175LGN00 | 24.06.2018 | 08:24:28 | Landsat 8OLI |
LC81641972018193LGN00 | 12.07.2018 | 08:11:58 | Landsat 8OLI |
Eyjafjallajökull and Fimmvörðuháls (Iceland) | |||
LE70672292010091EDC00 | 01.04.2010 | 22:18:13 | Landsat 7ETM+ |
LE70672292010107EDC00 | 17.04.2010 | 22:18:13 | Landsat 7ETM+ |
LE70672292010123EDC00 | 03.05.2010 | 22:18:11 | Landsat 7ETM+ |
Holuhraun (Iceland) | |||
LC80642292014297LGN01 | 24.10.2014 | 22:07:41 | Landsat 8OLI |
LC80642292014313LGN01 | 09.11.2014 | 22:07:42 | Landsat 8OLI |
LE70642302014321ASN00 | 17.11.2014 | 22:06:06 | Landsat 7ETM+ |
LC80642302014329LGN01 | 25.11.2014 | 22:08:03 | Landsat 8OLI |
LC80652292014336LGN01 | 02.12.2014 | 22:13:50 | Landsat 8OLI |
Bands | Calibration Constants | Landsat 4-5TM | Landsat 7ETM+ | Landsat 8OLI | Used Central Wavelength (λ) in µm | Pixel Size (m) | Pixel-Integrated Temperatures Which Can Be Detected Without Achieving Saturation [19] | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Landsat 4-5TM | Landsat 7ETM+ | Landsat 8OLI | Landsat 4-5TM | Landsat 7ETM+ | ||||||||
min. (°C) | max. (°C) | min. (°C) | max. (°C) | |||||||||
Blue | K1 | 4438321096.9 | 4530975960.1 | 4530975960.1 | 0.485 | 0.483 | 0.483 | 30 × 30 | 1050 | 1490 | 1051 (1075) | 1483 (1526) |
K2 | 29665.3 | 29788.1 | 29788.1 | |||||||||
Green | K1 | 1996944890.0 | 2162655164.6 | 2162655164.6 | 0.569 | 0.56 | 0.56 | 30 × 30 | 960 | 1410 | 900 (922) | 1301 (1340) |
K2 | 25285.9 | 25692.2 | 25692.2 | |||||||||
Panchromatic | K1 | - | 679053366.2 | 1109245158.4 | - | 0.706 | 0.64 | 15 × 15 | - | - | 702 (721) | 1056 (1092) |
K2 | 20379.1 | 22480.7 | ||||||||||
Red | K1 | 958297463.8 | 936779686.0 | 951059600.7 | 0.659 | 0.662 | 0.66 | 30 × 30 | 810 | 1170 | 755 (775) | 1119 (1156) |
K2 | 21832.6 | 21733.6 | 21799.5 | |||||||||
NIR | K1 | 283104930.3 | 293423595.4 | 245950026.9 | 0.841 | 0.835 | 0.865 | 30 × 30 | 620 | 1000 | 595 (613) | 926 (961) |
K2 | 17107.8 | 17230.7 | 16633.1 | |||||||||
SWIR1 | K1 | 2198908.4 | 2279816.4 | 2208831.3 | 2.222 | 2.206 | 2.22 | 30 × 30 | 120 | 290 | 92 (101) | 258 (276) |
K2 | 6475.1 | 6522.1 | 6480.9 | |||||||||
SWIR2 | K1 | 9006526.7 | 9798088.9 | 9738850.3 | 1.676 | 1.648 | 1.65 | 30 × 30 | 220 | 430 | 206 (217) | 417 (440) |
K2 | 8584.5 | 8730.4 | 8719.8 | |||||||||
TIR * | K1 | 607.76 | 666.09 | band 10: 774.9 band 11: 480.9 | - | Landsat TM: 120 × 120; Landsat 7ETM+: 60 × 60; Landsat 8OLI: 100 × 100 | - | - | - | - | ||
K2 | 1260.56 | 1282.71 | band 10: 1321.1 band 11: 1201.1 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nádudvari, Á.; Abramowicz, A.; Maniscalco, R.; Viccaro, M. The Estimation of Lava Flow Temperatures Using Landsat Night-Time Images: Case Studies from Eruptions of Mt. Etna and Stromboli (Sicily, Italy), Kīlauea (Hawaii Island), and Eyjafjallajökull and Holuhraun (Iceland). Remote Sens. 2020, 12, 2537. https://doi.org/10.3390/rs12162537
Nádudvari Á, Abramowicz A, Maniscalco R, Viccaro M. The Estimation of Lava Flow Temperatures Using Landsat Night-Time Images: Case Studies from Eruptions of Mt. Etna and Stromboli (Sicily, Italy), Kīlauea (Hawaii Island), and Eyjafjallajökull and Holuhraun (Iceland). Remote Sensing. 2020; 12(16):2537. https://doi.org/10.3390/rs12162537
Chicago/Turabian StyleNádudvari, Ádám, Anna Abramowicz, Rosanna Maniscalco, and Marco Viccaro. 2020. "The Estimation of Lava Flow Temperatures Using Landsat Night-Time Images: Case Studies from Eruptions of Mt. Etna and Stromboli (Sicily, Italy), Kīlauea (Hawaii Island), and Eyjafjallajökull and Holuhraun (Iceland)" Remote Sensing 12, no. 16: 2537. https://doi.org/10.3390/rs12162537
APA StyleNádudvari, Á., Abramowicz, A., Maniscalco, R., & Viccaro, M. (2020). The Estimation of Lava Flow Temperatures Using Landsat Night-Time Images: Case Studies from Eruptions of Mt. Etna and Stromboli (Sicily, Italy), Kīlauea (Hawaii Island), and Eyjafjallajökull and Holuhraun (Iceland). Remote Sensing, 12(16), 2537. https://doi.org/10.3390/rs12162537