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Abstract: Using satellite-based remote sensing to investigate volcanic eruptions is a common approach
for preliminary research, chiefly because a great amount of freely available data can be effectively
accessed. Here, Landsat 4-5TM, 7ETM+, and 8OLI night-time satellite images are used to estimate
lava flow temperatures and radiation heat fluxes from selected volcanic eruptions worldwide.
After retrieving the spectral radiance, the pixel values were transformed into temperatures using the
calculated calibration constants. Results showed that the TIR and SWIR bands were saturated and
unable to detect temperatures over the active lava flows. However, temperatures were effectively
detected over the active lava flows in the range ~500–1060 ◦C applying the NIR-, red-, green- or
blue-band. Application of the panchromatic band with 15 m resolution also revealed details of lava
flow morphology. The calculated radiant heat flux for the lava flows accords with increasing cooling
either with slope or with distance from the vent.
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1. Introduction

Surveys of ground thermal anomalies in volcanic areas due to lava flow-forming eruptions are of
great importance in monitoring the activity of active volcanoes. Effusive events are considerable hazards,
influencing populations, properties, and anthropic activities at volcanoes worldwide [1–4]. In this
regard, temperature measurements of lava flows can help to obtain information on the development of
lava flow fields. Those measurements are also useful for predicting the behavior of the lava flow in the
future [5]. However, this task is rather problematic due to the resurfacing of lava flows and because
of technical issues related to hazardous survey locations in the case of spatially extended flows [5].
Using moderate and high-resolution multispectral satellite remote sensing data can therefore help to
monitor such extreme thermal events, filling critical gaps in volcanic hazard and risk mitigation [5,6].
Satellite image data are a cost-effective and available tool with global surveillance at a wide range of
spatial and temporal resolutions. However, problems are related to discriminating between recently
cooled lava flows and older lava flow fields [2,5–11]. None of the spaceborne sensors, such as the
low-to-moderate spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) on
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the Terra and Aqua satellites, the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on the
Meteosat Second Generation (MSG) geostationary platform, or the higher spatial resolution Landsat
8OLI (Operational Land Imager) were designed to specifically undertake volcanic thermal mapping
during effusive eruptions [12]. The wavelength of the maximum energy recorded by the radiometer
onboard the remote sensing platform depends on the temperature of the emitting surface. The thermal
emission of an active volcanic surface relates directly to the radiative power of the emitter at a specific
time. It can be detected and measured from space to identify physical processes occurring on the
ground [7,8,12]. Thus, different spectral windows must be used to study phenomena occurring at
different temperatures. For example, high temperature phenomena, e.g., lava lakes or lava flows, can be
studied in short wavelength infrared windows (1.2–2.5 µm). The short wavelength infrared (SWIR)
bands of day-time–night-time Landsat series can detect high temperature thermal anomalies from 160
to 420 ◦C, e.g., burning coal seam fires or lava flows [12–17]. Lower temperature phenomena, such as
small ground thermal anomalies, must be studied in the thermal infrared (TIR) window (8–14 µm; [7,8]).
The thermal saturation of TIR band 6 of Landsat 4-5TM and Landsat ETM+ 6/1 is 70–74 ◦C, whereas the
maximum is 49 ◦C for 6/2 (Landsat ETM+) [16–18]. For TIR bands of Landsat 8OLI, the saturation level
is 94 ◦C (band 10) and ~110 ◦C for band 11 (see Figure 1E,F). The saturation level of the TIR band of
Landsat 7ETM+ (60 m resolution) on Etna and Kı̄lauea volcanoes, highlighted by light purple (Landsat
7ETM+) and pale green colors for Landsat 8OLI, illustrates this well. Furthermore, the TIR bands of
the Landsat series or ASTER are generally unsuitable for precise temperature measurements because
of their larger pixel dimensions in comparison with SWIR bands [18].

Temperatures derived from the short wavelength infrared of Landsat Thematic Mapper (TM)
sensors are able to detect pixel-integrated temperatures from 150 to 1000 ◦C or higher [14]. The SWIR
1.6 µm band preferentially reflects thermal anomalies derived from high temperature materials
(e.g., greater than several hundred degrees), even if they occupy only a small surface within the
pixel [19,20]. If the temperature of the effusing lava reaches 970–990 ◦C, it will increase the size
thermal anomalies in the 1.6 µm images [21]. According to Wien’s displacement law, the wavelength of
maximum radiance emission shifts to shorter wavelengths with increasing temperature [12]. However,
temperatures detected over lava flows in the SWIR1-2 bands are hot enough to saturate these bands,
rendering them unusable. Therefore, using SWIR bands for the two-component dual-band method
will fail to resolve any of the major properties of the temperature distributions [22]. Using the
VNIR (visible and near-infrared) 9–13 (0.436–0.518 µm) bands of EO-1 Hyperion or Landsat can be
sufficient to perform accurate temperature characterization of active lava flow surfaces from space [22].
NIR (spectral range 0.845–0.885 µm) can be used to detect objects that are hot enough to begin to
glow in the NIR range. When the temperature reaches a sufficiently high level, the wavelength of
the heat radiation will be short enough to be imaged using near-infrared images. These images
usually do not resemble TIRS images [23]. Visible spectrum (red, green, and blue bands) can also
be used to identify thermal phenomena. As with SWIR and NIR, the most reliable in this spectral
range will be night images [24,25]. The ability to detect increased temperatures using VIS bands
mainly depends on the value of these temperatures. Visible channels can only identify places with
heightened temperatures if these temperatures are high enough [26,27]. The specific temperature range
depends mainly on the wavelength range. In general, when an object cools, it appears more clearly at
further wavelengths [26,27]. Thus, the blue band (0.450–0.515 µm), due to the lower wavelength range,
will detect higher temperatures than the green band (0.525–0.600 µm), and the green band higher
temperatures than the red band (0.630–0.680 µm) [27].
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or may be useful for the evaluation of volcanic hazard. The calculated temperatures and radiant heat 

flux were then compared with the literature data to confirm the reliability of the applied methods, as 

in situ measurements were not available. 

Figure 1. An example of temperature detection problems (saturation) with different spectral bands
(TIR (A,B,F), NIR (E), and SWIR1-2 (C,D)) from Mt. Etna and Kı̄lauea. The identifiable thermal range
depends on the used spectral band. The (D) image is zoomed in of (C); the NIR was able to detect
higher temperatures where SWIR2 was saturated.

To obtain information about the temperature of the Earth’s surface or about objects on it, it is
possible to use the other single bands provided by the satellites, including NIR, red, green, and blue
(VIS). The aim of this research is to apply blue-, green-, red-, and panchromatic NIR night-time Landsat
scene bands, as an alternative to SWIR, in order to detect lava flow temperatures for some eruptions
that occurred at different volcanoes (Figure 2). Application of these bands with different resolution
and sensitivity may help to recognize more details of lava flow emplacement mechanisms or may be
useful for the evaluation of volcanic hazard. The calculated temperatures and radiant heat flux were
then compared with the literature data to confirm the reliability of the applied methods, as in situ
measurements were not available.
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Figure 2. Locations of the studied volcanos.

2. Materials and Methods

The Landsat 4-5TM, 7ETM+, and 8OLI night-time images (freely downloaded from https:
//earthexplorer.usgs.gov/—Table 1) were used to avoid solar radiation. The atmospheric correction as
an artificial modification on satellite data was not applied. Most of the used multispectral wavebands,
i.e., blue, green, red, near-infrared (NIR), panchromatic, and short wave infrared (SWIR1, SWIR2),
are mainly noisy, caused by the absence of reflected energy from the sun at night and radiometric
sensitivity of the sensor. Only lava flows are visible as hot surfaces. Therefore, the effect of dust, smoke,
gases, and vapor over the lava flow is highly problematic to be removed.

Using Planck’s law, which relates spectral radiance to the temperature of the emitting surface,
satellite measurements of spectral radiance may be used to calculate the temperature (inverse of the
Planck Function) of the corresponding ground surface [22]. All objects above absolute zero (0 K) emit
electromagnetic radiation at a wavelength and intensity that are functions of the surface temperature
and emissivity (radiating efficiency). According to the Stefan–Boltzmann law, the radiance emitted
by the surface will increase as the temperature of the surface rises [28]. As a hotter volcanic surface
will radiate more energy and higher radiant flux density, any observed radiance variation will reflect
changes in volcanic activity on the ground [12]. Therefore, there is a direct relationship between
thermal emissions and thermal volcanic activity [29]. Sensors having channels in the mid-infrared
(MIR) and thermal infrared (TIR) bands (e.g., MODIS) have been widely used for decades to detect
volcanic thermal anomalies and have proven to be a valuable tool for identifying trends and monitoring
volcanic activity [20,29–31]. On the other hand, sensors such as the Multi-Spectral Imager (MSI) on
Sentinel-2 satellites and OLI, which have channels in the short wave infrared (SWIR) and provide
data at medium-high spatial resolution, enable a better identification of high temperature thermal
anomalies (if these pixel values are not saturated), e.g., lava flows [32,33]. Thus, the authors in [13]
used Landsat TM images (SWIR bands), showing that the active dome at the summit of the Lascar
volcano in Chile had surface temperatures in the range 148–367.8 ◦C.

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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Table 1. Product ID and the details of Landsat (ASTER) datasets used in this study.

Product ID Image
Acquired

Scene
Centre Time Sensor Type

Etna (Sicily, Italy)

LT50522101991358FUI00 24.12.1991 20:10:05 Landsat 4-5TM
LT50522101992073FUI00 13.03.1992 20:09:54 Landsat 4-5 TM
LE70522102001217EDC00 05.08.2001 20:34:48 Landsat 7ETM+
LE70522102001153EDC00 02.06.2001 20:35:27 Landsat 7ETM+
LE70522102006199EDC00 18.07.2006 20:35:30 Landsat 7ETM+
LC80522102013338LGN01 04.12.2013 20:47:22 Landsat 8OLI
LC80522102019211LGN00 30.07.2019 20:45:47 Landsat 8OLI
LC80522102020038LGN00 07.02.2020 20:45:48 Landsat 8OLI

AST_L1T_00312262018210330_20181228005119_11516 26.12.2018 21:03:30 ASTER TIR

Stromboli (Sicily, Italy)

LC80522112014229LGN01 17.08.2014 20:46:13 Landsat 8OLI
LC80522112014261LGN01 18.09.2014 20:46:16 Landsat 8OLI
LC80522112014293LGN01 20.10.2014 20:46:23 Landsat 8OLI

Kı̄lauea (Hawaii Island)

LC81651972017213LGN00 01.08.2017 08:18:54 Landsat 8OLI
LC81661972018143LGN00 23.05.2018 08:23:59 Landsat 8OLI
LC81661982018159LGN00 08.06.2018 08:24:17 Landsat 8OLI
LC81651982018168LGN00 17.06.2018 08:18:15 Landsat 8OLI
LC81661982018175LGN00 24.06.2018 08:24:28 Landsat 8OLI
LC81641972018193LGN00 12.07.2018 08:11:58 Landsat 8OLI

Eyjafjallajökull and Fimmvörðuháls (Iceland)

LE70672292010091EDC00 01.04.2010 22:18:13 Landsat 7ETM+
LE70672292010107EDC00 17.04.2010 22:18:13 Landsat 7ETM+
LE70672292010123EDC00 03.05.2010 22:18:11 Landsat 7ETM+

Holuhraun (Iceland)

LC80642292014297LGN01 24.10.2014 22:07:41 Landsat 8OLI
LC80642292014313LGN01 09.11.2014 22:07:42 Landsat 8OLI
LE70642302014321ASN00 17.11.2014 22:06:06 Landsat 7ETM+
LC80642302014329LGN01 25.11.2014 22:08:03 Landsat 8OLI
LC80652292014336LGN01 02.12.2014 22:13:50 Landsat 8OLI

The Planck Function is:

Bλ(T) =
2hc2λ−5

(ehc/kλT − 1)
(1)

h = 6.626068 × 10−34 joule sec (Planck’s Constant);
k = 1.38066 × 10−23 joule deg−1 (Boltzmann’s Constant);
c = 2.997925 × 108 m/s (velocity of light);
T—object temperature in Kelvin;
λ—central wavelength.

The temperature can be computed from the emitted radiance through the relation:

T =

(
hc
kλ

)(
1

ln((2hc2λ−5)/(Lλ + 1)

)
(2)

The inverted Planck Function can be written according to [34]:

T =
K2

ln
(K1

Lλ
+ 1

) (3)
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To make the substitutions more systematic, the factors K1 and K2 calculated according to [35]
(see calculated constants in Table 2):

K1 = 2hc2λ−5 (4)

K2 =
hc
kλ

(5)

T =

 K2

ln
(
ελK1

Lλ
+ 1

) − 273.15 (6)

However, when the temperature of an object is estimated, the reduced emissivity should be
accounted for. The emissivity (ε; 0 < ε λ<1) is added to the Planck Function, such that ε= 1 for blackbody
emission. A typical emissivity of 0.95 has been used for calculations [12,36]. However, the emissivity
for molten- and hot volcanic rocks is not well quantified [12]. Several thermal emission studies of
silicate glasses and basaltic lava suggest that the emissivity of molten material is significantly lower
than that of the same material in its solid state [37]. Thus, emissivity is not only wavelength-dependent
but also temperature-dependent [12,38].

The DN (digital number) of Landsat bands is converted to radiance units according to [39]:

Lλ =

(
Lmaxλ − Lminλ

QCALmax −QCALmin

)
∗ (DN −QCALmin) + Lminλ (7)

Lλ—the cell value as radiance;
DN—the digital number of the band (range between 0 and 255);
Lminλ—spectral radiance scales to QCALMIN;
Lmaxλ—spectral radiance scales to QCALMAX;
QCALmin—the minimum quantized calibrated pixel value (typically = 1) spectral radiance scaling factor;
QCALmax—the maximum quantized calibrated pixel value (typically = 255).

All of the required values for the DN conversion to radiance units can be found in the metadata
provided with the Level 1T USGS Landsat data products.

Additionally, the radiation heat transfer was calculated to describe the general heat loss over a
lava flow. The radiant heat transfer was estimated (Φrad) according to

Φrad = εσA
(
T4

hot − T4
cold

)
(8)

where ε = 0.95, σ is the Stefan–Boltzmann constant (5.67 × 10−8 W m−2 K−4), 900 m2 is the pixel area
for Landsat image resolution except panchromatic, T4

hot is the calculated temperature in Kelvin for each
band, and T4

cold is the surrounding air temperature (290 K).
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Table 2. The constants calculated according to Formulas (4) and (5) using the central wavelengths provided. K1: w/(m2
·sr·µm); K2: Kelvin. * Calibration constants are

provided in the metadata file of the satellite image. The minimum and maximum pixel integrated temperatures for Landsat TM and for ETM+ (high-gain–low gain),
see details in [19].

Bands Calibration
Constants

Landsat
4-5TM

Landsat
7ETM+

Landsat 8OLI

Used Central Wavelength
(λ) in µm

Pixel Size (m)

Pixel-Integrated Temperatures Which Can Be
Detected Without Achieving Saturation [19]

Landsat
4-5TM

Landsat
7ETM+

Landsat
8OLI

Landsat 4-5TM Landsat 7ETM+

min. (◦C) max. (◦C) min. (◦C) max. (◦C)

Blue
K1 4438321096.9 4530975960.1 4530975960.1

0.485 0.483 0.483 30 × 30 1050 1490
1051

(1075)
1483

(1526)K2 29665.3 29788.1 29788.1

Green
K1 1996944890.0 2162655164.6 2162655164.6

0.569 0.56 0.56 30 × 30 960 1410 900 (922) 1301
(1340)K2 25285.9 25692.2 25692.2

Panchromatic
K1 - 679053366.2 1109245158.4 - 0.706 0.64 15 × 15 - - 702 (721) 1056

(1092)K2 20379.1 22480.7

Red
K1 958297463.8 936779686.0 951059600.7

0.659 0.662 0.66 30 × 30 810 1170 755 (775) 1119
(1156)K2 21832.6 21733.6 21799.5

NIR
K1 283104930.3 293423595.4 245950026.9

0.841 0.835 0.865 30 × 30 620 1000 595 (613) 926 (961)
K2 17107.8 17230.7 16633.1

SWIR1
K1 2198908.4 2279816.4 2208831.3

2.222 2.206 2.22 30 × 30 120 290 92 (101) 258 (276)
K2 6475.1 6522.1 6480.9

SWIR2
K1 9006526.7 9798088.9 9738850.3

1.676 1.648 1.65 30 × 30 220 430 206 (217) 417 (440)
K2 8584.5 8730.4 8719.8

TIR *
K1 607.76 666.09 band 10: 774.9

band 11: 480.9 - Landsat TM: 120 × 120;
Landsat 7ETM+: 60 × 60;
Landsat 8OLI: 100 × 100

- - - -

K2 1260.56 1282.71 band 10: 1321.1
band 11: 1201.1 -
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3. Results and Discussion

The eruptions at Mount Etna and Stromboli (Sicily, Southern Italy), Kı̄lauea (Island of Hawaii),
and Eyjafjallajökull, Fimmvörðuháls, and Holuhraun (Iceland) were selected because adequate satellite
images showing lava flows, fissures, and vents are available for these volcanic areas.

3.1. Lava Flow Temperature Estimations

3.1.1. Mt. Etna Eruptions 1991–2020

Mt. Etna (Sicily, Italy; Figure 2), one of the most active basaltic volcanoes in the world, is characterized
by persistent and variegated eruptive activity at the summit craters and along fissures on its flanks [40–43].
It is located in the suture zone between two colliding plates, the European and African plates, currently
affected by oblique tectonics resulting from the southeastward shifting of the Calabrian Arc [44].
Volcanism in the Etnean region is interpreted as due to a deep tearing in the lithosphere at the
southwestern edge of the Ionian/Calabrian subduction zone, which formed as a result of the differential
retreat of the Ionian slab. This is associated with passive upwelling of the mantle that melts as
a consequence of adiabatic decompression [44–49]. Activity at Mt. Etna began about 500 ka ago
and, after an initial tholeiitic phase, produced slightly Na-alkaline volcanic products with prevailing
hawaiitic lava emissions [50]. Both summit and flank eruptions are characterized by lava flows and
by explosive activity with conspicuous tephra fall-out that constitutes a major hazard for nearby
communities [51,52]. Volcanic activity at the summit craters can range from exclusive degassing
to short-term (minutes/hours) or long-term eruptions of several months, with strombolian or lava
fountaining activity often accompanied by lava flow effusions [53–56]. Among several lava flows
produced since 2000, the most impressive occurred in July–August 2001 and between October 2002 and
January 2003 [57]. These flows caused serious damages to the local economy [58]. Subsequent eruptions
between September 2004 and July 2009 chiefly occurred from fissures at the southeastern base of the
South East Crater (SEC), which is today one of the six active summit craters of Mt. Etna volcano [57,59].
All of these lava flows poured out towards the uninhabited Valle del Bove, a wide depression on
the eastern flank of Mt. Etna. The 2008–2009 eruption was the longest flank eruption after a large
1991–1993 eruption, and the second longest since the seventeenth century [10,42,60–62]. From January
2011 to December 2013, 44 eruptions occurred at the New South East Crater (NSEC), most of them
characterized by short-term paroxysmal activity with vigorous lava fountaining accompanying
extrusion of rheomorphic lava flows [55,63,64]. The activity changed drastically in July 2014 with a
prevalently effusive eruption at the North East Crater (NEC) and the NSEC lasting from 5 July to
16 August [65]. After the short-lived, effusive eruption of 31 January to 2 February 2015 at NSEC,
the activity moved to the Voragine and gave rise on December 2015 and May 2016 to the most energetic,
paroxysmal eruptions of the last two decades [66]. There were two major eruptions from the SEC–NSEC
craters in February–April 2017 [67] and from fissures at the southeastern base of the NSEC in December
2018. Since September 2019, the volcano has been undergoing a prolonged period of weak Strombolian
activity at the Voragine and from the SEC–NSEC craters [67].

Some of the volcanic activities on Mt. Etna from 1991 to 2020 are shown in Figure 3. The SWIR1-2,
NIR or panchromatic bands were sufficient for temperature detection. The 1991–1993 flank eruption
was the most prolonged and volumetrically significant at Mt. Etna throughout the last 350 years [68].
According to [68], the eruption began on 14 December 1991, with the opening of a discontinuous fracture
system from the base of SEC which later extended in a southeast direction to intersect the western
wall of Valle del Bove at an altitude of ~2500 m a.s.l. Lava began to flow from the lowest tip of this
fissure. The eruption lasted for 473 days, during which about 235 × 106 m3 of lava have been emplaced,
forming a lava flow field 8.5 km long [68]. The picture from 24.12.1991 (Figure 3A) was taken 1.5 weeks
after the eruption. The hottest temperatures of active lava by the vent were 640–765 ◦C (detected by
NIR). According to [40,69], a lava tube segment was present on 2 January 1992 and on 22 March 1992.
The separated fragments of hot surfaces where lava expelled with saturated temperatures between



Remote Sens. 2020, 12, 2537 9 of 26

210 and 379 ◦C represent the formation of the main lava tube (Figure 3B). There were three stages
of tube formation during the 1991–1993 Etna eruption. During 15 December 1991, the flow front
required only four days to form a tube sector. In the same flow, the tube formation along narrow
channels and steep gradient zones required 15 days, while a stable crust formation over the wide
channels of the middle portion of this flow required ~1 month [40]. The temperature data (max. 102 ◦C)
provided by the ASTER TIR band (Figure 3G) for the active lava flow from 26 December 2018 eruption
cannot be considered realistic because of poor ground resolution (90 × 90 m) and saturation TIR band.
The highest temperature (920 ◦C) detected by the panchromatic band (15 m resolution) relates to the
18 July 2006 eruption (Figure 3E). As active lava flows on Etna have temperatures between 870 and
1080 ◦C [68,70,71], some of the snapshots presented refer to moments of relative inactivity of the flow
field. Where NIR- and panchromatic bands are applied together with SWIR1-2 bands, the wider areas
of SWIR bands usually show the detection of radiance from relatively cooler peripheral flow surfaces
and NIR- and panchromatic bands represent the emissions from the lava flow itself [19,72].
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Figure 3. The location of active- and cooling lava flows on Etna from 1991 to 2020 (J) detected on
night-time images by Landsat series 4-5TM, 7ETM+, 8OLI (A–F,H,I), and ASTER TIR (G). Background
map: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID,
IGN, and the GIS User Community.

In Figure 3C, the high temperatures of NIR data (644–712 ◦C) or the panchromatic band (810–850 ◦C)
represent eruptive vents, which were active between 19 July and 6 August 2001 [73]. Temperatures of
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the lava flow on 05.08.2001 compare well with the results of [12]. In Figure 3C, the calculated maximal
temperatures for the 05.08.2001 lava flow 386 ◦C (659 K) and 335 ◦C (608 K) for SWIR2 and SWIR1,
respectively, using ε:0.95, are compared with the maximal temperatures presented by [12] for the same
lava flow, namely, 565 K (SWIR2) and 735 K (SWIR 1) using ε:0.93. The calculated temperatures from
the NIR band (644–717 ◦C) covered the areas where SWIR1-2 became saturated (Figure 3C). The thermal
images processed by [12] involved the use of the radiant pixels in SWIR and TIR using the three
emissivities (1.0, 0.93, and 0.80), where the spatial heterogeneity of the emissivity was retrieved from
the ASTER Global Emissivity Database (GED) and combined with the laboratory-satellite emissivity
values. This was used to establish a realistic land surface temperature from ETM+ to obtain an instant
temperature–radiant flux [12]. Adding the TIRS 1 band from Landsat 8OLI for the lava flow from
04.12.2013, size and temperatures of the lava flow were not saturated by the TIRS band (Figure 3F).
However, because of its lower resolution (100 m), this band could not detect the detailed surface
temperatures as could SWIR2.

The calculated pixel heat flux for lava flows erupted from the vent regions on Etna is well-defined
by the active channel with 34–47 MW (Figure 4B). Similar pixel values were calculated by [36], where the
peak surface cooling of 36 MW was observed in the vicinity of the vent on Etna on 14 September 2014.
The lava flow cooled with distance from the vent (~1 km) following the ground slope with a 5–10 MW
pixel heat flux, in good agreement with the results of [36], who reported an average lava cooling rate
between 5.6 and 8.9 MW at greater distances from the vent.Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 29 
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Figure 5. Comparison of radiant heat flux with slope and distance from twovents from Mount Etna
(A,B) and Stromboli (C). The retrieved pixel values are taken from Figures 4 and 6. The slope was
calculated from SRTM digital elevation models downloaded from https://earthexplorer.usgs.gov/.

Unfortunately, as the saturation of the SWIR bands and the sensitivity of the NIR band leave a gap
in the heat flux calculation, the pixel values of the SWIR band had to be removed from the diagram in
Figure 5. The cooling degree of lava surfaces with increasing slopes on both Etna and Stromboli is
clear (Figure 5). This is also in agreement with the results of [36] who reported that increases in slope
correlate with enhanced cooling at distances of 150, 300, and 430 m from the vent, consistent with
enhanced disruption of the lava crust exposing hotter lava from the flow core at breaks in slope.

https://earthexplorer.usgs.gov/
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3.1.2. Stromboli Eruptions

Stromboli is located in the southern Tyrrhenian Sea and is considered one of the most active
volcanoes over the world (Figure 2). Already famous for its persistent explosive character during
Roman times, it was named ‘the Lighthouse of the Mediterranean’. The typical eruptive activity
of Stromboli is characterized by very spectacular explosions which eject gas, ash, and incandescent
pyroclastic shreds [74]. The volcanic products consist of a large variety of rock types, generally
including high-K calc-alkaline and shoshonitic products [75–78]. The volcanism started about 0.8 Myr
and is placed above a zone of deep seismicity believed to be generated by subduction of the Ionian
slab beneath the southern Tyrrhenian Sea [79,80].

During the selected eruptions (Figure 6(A1–C3)), the temperatures of the main core of actively
flowing lavas reached ~700 ◦C, as shown by the NIR band. The SWIR bands, despite being saturated,
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clearly indicate that hot surfaces (and air) at ~200–420 ◦C surrounded the main lava core. This is in
good agreement with the thermal images of [81] on the basis of which, detected maximal temperatures
of vents and lava flows reached 250–530 ◦C in July–August 2019. The SWIR band temperatures for
18.09.2014 agree well with the temperatures (400–450 ◦C) presented by [82] for the same lava flow.
However, the temperature of that lava flow was changing fast (see lava front movement by [82]—the
thermal images were taken about 12:05–12:50, in Figure 3 of [82]) and the satellite image was taken at
20:46 (Table 1—scene center time). Thus, the temperatures provided by the NIR band (525–700 ◦C
Figure 6(B1)) close to the vents remained relatively higher as the eruption continued during that day.
However, such high temperatures (or even 806 ◦C) were also registered by [82] during their field
observations at Stromboli.

In the case of Stromboli, the pixel-related heat flux values (Figure 6(D1)) reached 20–43 MW by the
lava flow vent and extended for a maximal length of 400 m. As the main lava flow field on Stromboli
had a steep slope, the cooling of the emitted lava was much faster; the SWIR bands can detect such
without saturation some 500–600 meters from the vent (Figure 5C).

3.1.3. The 2018 Eruption at Kı̄lauea Volcano (Island of Hawaii)

Frequent and long-lasting eruptions and recurrent strong earthquakes create a unique combination
of natural hazards across the Hawaiian Islands. This is especially true on the Island of Hawaii,
which hosts five volcanoes, four of which are classified as active, namely, Kı̄lauea, Mauna Loa, Hualālai,
and Mauna Kea [83]. The volcanic chain formed by the Hawaiian Ridge is the result of the Pacific
plate moving to northwest over a mantle hot spot (Figure 2) [84]. The considered Hawaiian lavas
are tholeiitic basalts that erupted during the shield-building stage. Volcanic growth begins with a
poorly voluminous alkaline stage and ends with an alkaline or peralkaline stage [85–87]. The prelude
of the disastrous l90-day 2018 eruption at the Eastern Rift Zone (ERZ) of Kı̄lauea volcano was marked,
on 3 April, by the collapse of the Pu’u O’o vent in the middle of the ERZ [88]. The active lava lake
at the summit Halema’uma’u crater started to drop and the summit caldera underwent deflation as
a consequence of magma drainage throughout the ERZ [88]. The 1–2 May were characterized by
hundreds of low-magnitude earthquakes along the ERZ, accompanying ground deformation. The 2018
eruption started on 3 May after a magnitude 5.0 earthquake with ground fracturing and lava flow
emission in Leilani Estates. Another major earthquake (6.9 magnitude) shook the island on 4 May and
produced further fissure opening with lava effusions, spattering and lava fountaining. There were 24
active fissures towards the end of May [88].

The lava flow series are shown on Landsat 8OLI images with calculated temperatures (Figure 7).
Intensive eruption was captured (Figure 7(A1–A3)), where even the NIR was saturated at ~969 ◦C.
However, the erupted lava had 1025–1042 ◦C with 15–30 m resolution using the red-, green- or
panchromatic bands. Here, the SWIR1-2 bands were useless because they were saturated; they rather
reflected the hot air and steam around the lava flows (see RGB band composites). The NIR-, red-,
and panchromatic bands were well suited to illustrate the active lava flow series with high surface
temperatures of ~800–950 ◦C (Figure 7(A1–D3)).
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Figure 7. Lava flow series illustrated with different bands (A1–D3) on Kı̄lauea detected by Landsat 8OLI
night-time images from 08.06 to 12.07.2018. Background map: Landsat 8OLI (26.02.2019). The (A2–A3)
images are zoomed in of (A1). The NIR saturated on (A1) image. The (E,G) images are composite of
emitted spectral radiance by the lava flow. The red rectangle illustrating the location of the particular
lava flow (F) close to Kı̄lauea.

Using the zoomed image prepared from the lava flow series, the morphology and distribution of
hot surfaces, i.e., the central plug and shear zones, are shown in Figure 8C. The temperatures detected
using high resolution Landsat images agree well with the in situ temperatures measured by [89] using
a narrow band spectroradiometer on Pu’u ‘O’o on the East Rift Zone of Kı̄lauea. The lava flow crust
temperatures reached 940 ◦C, and a hot component near the channeled margin a temperature of
1120 ◦C, while the crust temperature reached 586 ◦C. The temperatures in Figure 8 also agree well with
the classification of [90], who measured active flows and tubes on Kı̄lauea using infrared Minolta/Land
Cyclops radiometers. Their results suggest that the upper surface of the flows can be divided into a
minimum of four thermal components, i.e., core (>1050 ◦C), visco-elastic skin (750–900 ◦C), rigid solid
crust (<750 ◦C), and flow margins (<175 ◦C). Usually, temperatures >1000 ◦C were registered in the
fissures. Figure 8, especially the more detailed panchromatic 15 m resolution, shows that a cool rigid
crust characteristically developed in the central part of the channel on some parts of the lava flow and
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that incandescent lava was exposed in the marginal shear zones of channels. This affects the heat loss
and lava morphology in active channels [90]. The application of panchromatic band by [19] was able to
detect very high temperature of lava channels at Lascar volcano, mapping lava flow fields with more
details. Considering the limits of Landsat bands resolution (30 m—blue, green, red, NIR, SWIR1-2;
panchromatic 15 m), large differences could occur within a sub-pixel which, as well explained by [14],
is due to the total at-satellite radiance which is a weighted average of that emitted by all radiators
present within the pixel at the time of sampling. Typically, high temperature radiant sources occupy
less than a whole pixel, as in the case of fumaroles or crusted lava surfaces with incandescent cracks
exposing hotter material from the lava interior.
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Figure 8. Zoomed images (A–C) of lava flow (Figure 7(B1–B3)) on Kı̄lauea to show more details of hot
and cooler surfaces (C), 15 × 15 m resolution). Background map: Landsat 8OLI (26.02.2019).

Maximal temperatures are different in several bands, i.e., green, red, NIR, panchromatic (Figures 7
and 8). This can be explained by the fact that the emitted radiance depends on both wavelength
and temperature. Thus, a single temperature calculated for any surface, e.g., the pixel-integrated
temperatures reported by [13], will only describe the temperature of one of these radiators and will
differ on the basis of the wavelength used. The spectral radiance at high temperatures increases
at shorter wavelengths, and a much greater portion of the total radiance from molten lava will be
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detectable in SWIR rather than longer wavelengths. This is why pixel-integrated temperatures vary
with the wavelength [14,22,91].

A pāhoehoe lava flow on Kı̄lauea, where the SWIR1-2 bands were sufficient to show their
approximate temperatures (200–400 ◦C), is illustrated in Figure 9A,C. However, the NIR band was
more suitable (560–780 ◦C) compared to the saturated SWIR bands for the Kı̄lauea lava lake (Figure 9B).Remote Sens. 2020, 12, x FOR PEER REVIEW 18 of 29 
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Figure 9. Temperatures of pāhoehoe lava (A,C) and of lava lake on Kı̄lauea (B).

The pāhoehoe lava flow temperatures recorded on Kı̄lauea are generally well in accordance
with the results of [92], who used helicopter-borne georeferenced thermal images with high spatial
resolution (~1 m) near the town of Pāhoa. According to their results, temperatures of such pāhoehoe
breakouts range between 150 and 300 ◦C. The surface breakouts appear in clustered concentrations
over significant areas near the active upslope of the flow front. The temperature distributions on the
pāhoehoe fields range up to 150 ◦C above active lava tubes and tumuli [90]. However, the pāhoehoe
flow temperatures on Kı̄lauea can reach 1094 ◦C, as was shown by [21] using a forward-looking infrared
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(FLIR) ThermaCAM 595 PM thermal imaging camera. The system of fissures with high temperatures
and lava source temperatures of 950–980 ◦C, detected (23.05.2018) by different wavelengths is well seen
in Figure 10A–C. In contrast, temperatures in the lower part of the lava flow ranged between 660 and
900 ◦C. Figure 10 represents the state of volcanic activity at the end of May. During the first half of June,
volcanic activity intensified and moved mainly to Fissure 8 in Leilani Estates, with major lava flow
emission and vigorous lava fountaining (Figure 7) [88]. This activity at Fissure 8 was well described
by [88] and characterized by only small fluctuations with rather steady lava output rate (98 m3/s) until
5 August, when activity decreased markedly. When the eruption ended on 15 August, ~700 houses
and significant agricultural areas in the southeastern part of Big Island were destroyed [88].Remote Sens. 2020, 12, x FOR PEER REVIEW 19 of 29 

 

 

Figure 10. Lava flow formation detected by NIR (A), green–panchromatic (B), red (C) bands from 

different vents on the lower East Rift Zone (Pu’u O’o vents, Kīlauea) where an eruption occurred, and 

new fissures opened in the residential neighborhood of Leilani Estates on 3 May 2018. The 

combination of different spectral radiances is well representative of the lava flow system (D). 

3.1.4. The 2010 Eruption at Eyjafjallajökull (Southern Iceland) 

Volcanic eruptions are common in Iceland with individual volcanic events occurring, on 

average, every 3–4 years, small eruptions once every 4–5 years, and the largest flood-basalt eruptions 

occurring at 500–1000-year intervals. Despite the dominance of basalts, explosive eruptions are more 

common than effusive as, frequently, eruptions through glaciers give rise to hydromagmatic activity 

[93]. It is one of the few places on Earth where active plate spreading can be observed on land. The 

plate boundary between the North American and Eurasian plates formed Iceland as a series of 

seismic and volcanic rift zones with ~32 volcanic systems [94,95]. The volcanoes typically consist of a 

central volcano, commonly with a caldera and one or more associated fissure swarms. In 2015–2016, 

Katla and Bárðarbunga were the most seismically active volcanoes [95]. 

The 2010 eruption of Eyjafjallajökull started on 20 March 2010; firstly, near Fimmvörðuháls, with 

Strombolian activity and lava fountains coupled with small basaltic lava flow effusions lasting until 

12 April 2010 (Figure 11(A1–B); [96–99]). Lava flows melted snow, generating steam. As the 

temperatures reached 625–914 °C, the SWIR1-2 is saturated (see the whole of SWIR2—01.04.2010). 

On 17.04.2010, SWIR2 data indicate that the lava flow field was cooling (Figure 11B). As second, a 

predominantly explosive phase of activity started on 14 April 2010 at the central crater of 

Eyjafjallajökull, just two days after the end of lava flow extrusions in the Fimmvörðuháls area. The 

first days were characterized by powerful hydromagmatic explosions that produced a ~10 km high 

plume of ash with benmoreitic-trachytic composition [97,98]. The hydromagmatic activity decreased 

dramatically in intensity as it evolved to magmatic; in less than one week, temperatures in the range 

180–386 °C were visible on Landsat 7ETM+ (17.04.2010; Figure 11(A3,B)). The period 18 April–4 May 

was characterized by moderate explosive activity accompanied by lava flows. Indeed, classical lava 

flows were visible on 3 May 2010, with saturated SWIR2 visible as missing pixels, where NIR could 

Figure 10. Lava flow formation detected by NIR (A), green–panchromatic (B), red (C) bands from
different vents on the lower East Rift Zone (Pu’u O’o vents, Kı̄lauea) where an eruption occurred, and
new fissures opened in the residential neighborhood of Leilani Estates on 3 May 2018. The combination
of different spectral radiances is well representative of the lava flow system (D).

3.1.4. The 2010 Eruption at Eyjafjallajökull (Southern Iceland)

Volcanic eruptions are common in Iceland with individual volcanic events occurring, on average,
every 3–4 years, small eruptions once every 4–5 years, and the largest flood-basalt eruptions occurring
at 500–1000-year intervals. Despite the dominance of basalts, explosive eruptions are more common
than effusive as, frequently, eruptions through glaciers give rise to hydromagmatic activity [93]. It is
one of the few places on Earth where active plate spreading can be observed on land. The plate
boundary between the North American and Eurasian plates formed Iceland as a series of seismic
and volcanic rift zones with ~32 volcanic systems [94,95]. The volcanoes typically consist of a central
volcano, commonly with a caldera and one or more associated fissure swarms. In 2015–2016, Katla and
Bárðarbunga were the most seismically active volcanoes [95].

The 2010 eruption of Eyjafjallajökull started on 20 March 2010; firstly, near Fimmvörðuháls,
with Strombolian activity and lava fountains coupled with small basaltic lava flow effusions lasting
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until 12 April 2010 (Figure 11(A1–B); [96–99]). Lava flows melted snow, generating steam. As the
temperatures reached 625–914 ◦C, the SWIR1-2 is saturated (see the whole of SWIR2—01.04.2010).
On 17.04.2010, SWIR2 data indicate that the lava flow field was cooling (Figure 11B). As second,
a predominantly explosive phase of activity started on 14 April 2010 at the central crater of
Eyjafjallajökull, just two days after the end of lava flow extrusions in the Fimmvörðuháls area.
The first days were characterized by powerful hydromagmatic explosions that produced a ~10 km high
plume of ash with benmoreitic-trachytic composition [97,98]. The hydromagmatic activity decreased
dramatically in intensity as it evolved to magmatic; in less than one week, temperatures in the range
180–386 ◦C were visible on Landsat 7ETM+ (17.04.2010; Figure 11(A3,B)). The period 18 April–4 May
was characterized by moderate explosive activity accompanied by lava flows. Indeed, classical lava
flows were visible on 3 May 2010, with saturated SWIR2 visible as missing pixels, where NIR could
detect temperatures of 640–712 ◦C (Figure 11(C1–C3)). Another peak of explosive activity was recorded
on 5–6 May before the eruption ended on 22 May 2010. Until 20 April, weather conditions had decreed
that the plume of volcanic ash spread towards Europe, resulting in major air travel restrictions [100].
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3.1.5. The 2014–15 Eruption at the Holuhraun (Icelandic Highlands)

A lava flow field formed at Holuhraun north of the Vatnajökull glacier between 29 August 2014
and 27 February 2015. The Holuhraun eruption has been acknowledged as the largest basaltic fissure
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eruption in Iceland over the last 230 years, with an estimated lava volume of ~1.6 km3 covering an
area of ~84 km2 [101]. The eruption had an average discharge rate of ~77 m3/s, making it the longest
effusive eruption observed in modern times with such a flux [102–105]. The eruption was divided into
three phases based on the lava flow field evolution provided by [101]: (1) development of open channel
lava pathways from 31 August to mid-October 2014; (2) lava pond formation from mid-October to
the end of November 2014; (3) formation of tube-fed lava pathways from early December 2014 until
27 February 2015. Satellite images reported in the present work relate to the second phase of activity,
during which high temperatures (1050–1060 ◦C) appeared beside the lava ponds (Figure 12(D1,E1)).Remote Sens. 2020, 12, x FOR PEER REVIEW 21 of 29 
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(C1,C2,E6,E7) illustrate the uselessness of SWIR bands in this case—note the gaps over the active lava
and lava lake. Background map: as indicated for Figure 3.
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Temperatures detected for lava flows emitted by the Holuhraun fissures are on the order of 1050 ◦C,
much higher than those observed for the 2010 eruption at Eyjafjallajökull (Figure 12). The NIR band
was saturated at 973 ◦C (Figure 12(A1)), whereas the green- or red band worked well. Furthermore,
SWIR1-2 saturation is visible by Figure 12(C1,C2), where temperatures were 644–882 ◦C (Figure 12(C3)).
Applying the blue band to other stages of the second phase of the eruption (Figure 12(D1,E1)),
the estimated temperatures reached 1060 ◦C. During this phase, a lava lake surrounded by spatter-built
ramparts ∼60 m in height formed in Baugur. This lake drained into a secondary lava pond east of
the central vent through a narrow opening on the northeast. Afterwards, the lava proceeded to flow
eastwards through an open channel system [106]. Thus, the green- or red bands can be effectively
applied to detect larger areas with more details where temperatures can reach the saturation level
of NIR. Comparison of the temperature calculations (Figure 12(D1–D5,E1–E8)) with the estimations
of [105] for lavas of the 2014–15 Holuhraun eruption, derived using a dual-band method, reveals similar
temperature values. However, as the authors in [105] applied Landsat 8OLI SWIR1 and TIRS bands
for their dual-band method, temperature detection failed over the lava lake. Thus, our application
of red, NIR- or panchromatic bands revealed more details concerning the hot and cold surfaces of
lava flows than do the images of [105]. The dual-band method is often used to determine lava surface
temperatures from infrared satellite data. The method is based on the assumption that such surfaces can
be described in terms of two end-member thermal components, namely, hot cracks within a thermally
homogeneous crust [22]. This method was successfully applied by [18] to show the cooling of crusted
andesite lava flow from 170 to 250 ◦C at Volcán Lonquimay, Chile, using two short wavelength infrared
bands of Landsat TM. That temperature range is below the detection limits of SWIR bands, as these
were saturated at ~350–420 ◦C.

4. Conclusions

Using the calculated calibration constants and spectral radiances for Landsat night-time images,
and the inverted Planck Function, enabled approximate temperatures of active and cooling lava flows
to be determined. Applying night-time images seems to be the best option for monitoring lava flows
as there is no disturbance by the sun. Our results successfully indicated the saturation and detection
limits of SWIR and TIR bands of Landsat series applied in the context of high temperatures over
lava flows. However, application of the NIR band was sufficient to detect the emitted radiance from
active lava flows and could show more realistic temperatures from the interval between 500–970 ◦C.
Higher temperatures could be visible via red-, green- or blue bands with 30 m resolution as well
exemplified by lava lakes in Iceland and Hawaii. The panchromatic band with 15 m resolution could
reveal more details of lava morphology. Applying the SWIR bands usually showed wider areas which
detected radiance from relatively cooler peripheral flow surfaces and from hot air surrounding lava.
The calculated temperatures also allowed the pixel heat flux from erupted lava flows on Etna and
Stromboli to be determined. On Stromboli, the highest pixel values clearly defined the active channel
with 34–47 MW and the decreasing heat flux with distance from the vent.

Several factors could affect the accuracy of spectral radiance measurements by satellite,
and calculated temperatures for volcanic activities, e.g., band detection limits due to saturation
of Landsat pixel values, pixel size, and application of the proper ε (composition, surface roughness
and temperature-related emissivity) in the Planck Function calculated for each pixel, haze, vapor,
and cloud cover. Thus, precise true surface temperatures of lava flows can be measured only in situ
using thermal cameras with a relatively higher resolution. However, applications using satellite images
with resolutions of 15–30 m can aid recovery of data from areas logistically difficult to access or which
are extremely hazardous.
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