Landsat 4, 5 and 7 (1982 to 2017) Analysis Ready Data (ARD) Observation Coverage over the Conterminous United States and Implications for Terrestrial Monitoring
Abstract
1. Introduction
2. Landsat Data and ARD Study Data
3. Methods
3.1. Sensor Summary Information
3.2. Pixel-Level Summary Information
3.3. ARD Tile-Level Summary Information
4. Results
4.1. Sensor Summary Information
4.2. Pixel-Level Summary Information
4.3. ARD Tile-Level Summary Information
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019. In Press. [Google Scholar]
- Dwyer, J.L.; Roy, D.P.; Sauer, B.; Jenkerson, C.B.; Zhang, H.K.; Lymburner, L. Analysis Ready Data: Enabling analysis of the Landsat archive. Remote Sens. 2018, 10, 1363. [Google Scholar]
- U.S. Landsat Analysis Ready Data. Available online: https://landsat.usgs.gov/ard (accessed on 14 December 2018).
- Kovalskyy, V.; Roy, D.P. The global availability of Landsat 5 TM and Landsat 7 ETM+ land surface observations and implications for global 30m Landsat data product generation. Remote Sens. Environ. 2013, 130, 280–293. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Loveland, T.R.; Woodcock, C.E.; Belward, A.S.; Cohen, W.B.; Fosnight, E.A.; Shaw, J.; Masek, J.G.; Roy, D.P. The global Landsat archive: Status, consolidation, and direction. Remote Sens. Environ. 2016, 185, 271–283. [Google Scholar] [CrossRef]
- Goward, S.; Williams, D.; Arvidson, T.; Rocchio, L.; Irons, J.R.; Russell, C.; Johnston, S. Landsat’s Enduring Legacy: Pioneering Global Land Observations from Space; American Society for Photogrammetry and Remote Sensing: Bethesda, MD, USA, 2017; p. 586. [Google Scholar]
- Asner, G.P. Cloud cover in Landsat observations of the Brazilian Amazon. Int. J. Remote Sens. 2001, 22, 3855–3862. [Google Scholar] [CrossRef]
- Ju, J.; Roy, D.P. The Availability of Cloud-free Landsat ETM+ data over the Conterminous United States and Globally. Remote Sens. Environ. 2008, 112, 1196–1211. [Google Scholar] [CrossRef]
- Tolnai, M.; Nagy, J.G.; Bakó, G. Spatiotemporal distribution of Landsat imagery of Europe using cloud cover-weighted metadata. J. Maps 2016, 12, 1084–1088. [Google Scholar] [CrossRef]
- Whitcraft, A.K.; Becker-Reshef, I.; Killough, B.D.; Justice, C.O. Meeting earth observation requirements for global agricultural monitoring: An evaluation of the revisit capabilities of current and planned moderate resolution optical earth observing missions. Remote Sens. 2015, 7, 1482–1503. [Google Scholar] [CrossRef]
- Li, J.; Roy, D.P. A global analysis of Sentinel-2A, Sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote Sens. 2017, 9, 902. [Google Scholar]
- Kovalskyy, V.; Roy, D.P. A one year Landsat 8 conterminous United States study of cirrus and non-cirrus clouds. Remote Sens. 2015, 7, 564–578. [Google Scholar] [CrossRef]
- Goward, S.; Arvidson, T.; Williams, D.; Faundeen, J.; Irons, J.; Franks, S. Historical record of Landsat global coverage. Photogramm. Eng. Remote Sens. 2006, 72, 1155–1169. [Google Scholar] [CrossRef]
- Arvidson, T.; Goward, S.N.; Gasch, J.; Williams, D. Landsat-7 long-term acquisition plan: Development and validation. Photogramm. Eng. Remote Sens. 2006, 72, 1137–1146. [Google Scholar] [CrossRef]
- Teillet, P.M.; Barker, J.L.; Markham, B.L.; Irish, R.R.; Fedosejevs, G.; Storey, J.C. Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets. Remote Sens. Environ. 2001, 78, 39–54. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations, Global Administrative Unit Layers. Available online: http://www.fao.org/geonetwork/srv/en/main.home (accessed on 14 December 2018).
- Krimmel, R.M.; Key, C.H.; Fagre, D.B.; Menicke, R.K. Glaciers of the conterminous United States—Glaciers of the western United States. In Satellite Images of Glaciers of the World; Professional Paper 1386–J–2; Williams, R.S., Ferrigno, J.G., Eds.; USGS, US Government Printing: Reston, VA, USA, 2002; pp. 329–381. [Google Scholar]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Egorov, A.V.; Hansen, M.C.; Roy, D.P.; Kommareddy, A.; Potapov, P.V. Image interpretation-guided supervised classification using nested segmentation. Remote Sens. Environ. 2015, 165, 135–147. [Google Scholar] [CrossRef]
- Martinec, J.; Rango, A. Areal distribution of snow water equivalent evaluated by snow cover monitoring. Water Resour. Res. 1981, 17, 1480–1488. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Bauer, M.E.; Brezonik, P.L. A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes. Remote Sens. Environ. 2008, 112, 4086–4097. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Egorov, A.V.; Roy, D.P.; Zhang, H.K.; Hansen, M.C.; Kommareddy, A. Demonstration of percent tree cover classification using Landsat analysis ready data (ARD) and sensitivity analysis with respect to Landsat ARD processing level. Remote Sens. 2018, 10, 209. [Google Scholar] [CrossRef]
- Lee, D.S.; Storey, J.C.; Choate, M.J.; Hayes, R. Four years of Landsat-7 on-orbit geometric calibration and performance. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2786–2795. [Google Scholar] [CrossRef]
- Roy, D.P.; Ju, J.; Kline, K.; Scaramuzza, P.L.; Kovalskyy, V.; Hansen, M.C.; Loveland, T.R.; Vermote, E.F.; Zhang, C. Web-enabled Landsat Data (WELD): Landsat ETM+ Composited Mosaics of the Conterminous United States. Remote Sens. Environ. 2010, 114, 35–49. [Google Scholar] [CrossRef]
- Markham, B.L.; Storey, J.C.; Williams, D.L.; Irons, J.R. Landsat sensor performance: History and current status. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2691–2694. [Google Scholar] [CrossRef]
- Zhang, H.K.; Roy, D.P. Landsat 5 Thematic Mapper reflectance and NDVI 27-year time series inconsistencies due to satellite orbit change. Remote Sens. Environ. 2016, 186, 217–233. [Google Scholar] [CrossRef]
- Qiu, S.; Lin, Y.; Shang, R.; Zhang, J.; Ma, L.; Zhu, Z. Making Landsat Time Series Consistent: Evaluating and Improving Landsat Analysis Ready Data. Remote Sens. 2019, 11, 51. [Google Scholar] [CrossRef]
- Roy, D.P.; Zhang, H.K.; Ju, J.; Gomez-Dans, J.L.; Lewis, P.E.; Schaaf, C.B.; Sun, Q.; Li, J.; Huang, H.; Kovalskyy, V. A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance. Remote Sens. Environ. 2016, 176, 255–271. [Google Scholar] [CrossRef]
- Ju, J.; Masek, J.G. The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data. Remote Sens. Environ. 2016, 176, 1–16. [Google Scholar] [CrossRef]
- Hermance, J.F. Stabilizing high-order, non-classical harmonic analysis of NDVI data for average annual models by damping model roughness. Int. J. Remote Sens. 2007, 28, 2801–2819. [Google Scholar] [CrossRef]
- Brooks, E.B.; Thomas, V.A.; Wynne, R.H.; Coulston, J.W. Fitting the multitemporal curve: A Fourier series approach to the missing data problem in remote sensing analysis. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3340–3353. [Google Scholar] [CrossRef]
- Roy, D.P.; Yan, L. Robust Landsat-based crop time series modelling. Remote Sens. Environ. 2018. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondizio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2401. [Google Scholar] [CrossRef]
- Zhu, Z. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- Maisongrande, P.; Duchemin, B.; Dedieu, G. VEGETATION/SPOT: An operational mission for the Earth monitoring; presentation of new standard products. Int. J. Remote Sens. 2004, 25, 9–14. [Google Scholar] [CrossRef]
- Roy, D.P.; Lewis, P.; Schaaf, C.; Devadiga, S.; Boschetti, L. The global impact of clouds on the production of MODIS bidirectional reflectance model-based composites for terrestrial monitoring. IEEE Geosci. Remote Sens. Lett. 2006, 3, 452–456. [Google Scholar] [CrossRef]
- Griffiths, P.; van der Linden, S.; Kuemmerle, T.; Hostert, P. A Pixel-Based Landsat Compositing Algorithm for Large Area Land Cover Mapping. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2013, 6, 2088–2101. [Google Scholar] [CrossRef]
- Helder, D.; Markham, B.; Morfitt, R.; Storey, J.; Barsi, J.; Gascon, F.; Clerc, S.; LaFrance, B.; Masek, J.; Roy, D.P.; et al. Observations and recommendations for the calibration of Landsat 8 OLI and Sentinel 2 MSI for improved data interoperability. Remote Sens. 2018, 10, 1340. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Joseph Hughes, M.; Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef]
- Yan, L.; Roy, D.P. Large-Area Gap Filling of Landsat Reflectance Time Series by Spectral-Angle-Mapper Based Spatio-Temporal Similarity (SAMSTS). Remote Sens. 2018, 10, 609. [Google Scholar] [CrossRef]
- Brooks, E.; Wynne, R.; Thomas, V. Using Window Regression to Gap-Fill Landsat ETM+ Post SLC-Off Data. Remote Sens. 2018, 10, 1502. [Google Scholar] [CrossRef]
- Wolfe, R.; Nishihama, M.; Fleig, A.; Kuyper, J.; Roy, D.; Storey, J.; Patt, F. Achieving sub-pixel geolocation accuracy in support of MODIS land science. Remote Sens. Environ. 2002, 83, 31–49. [Google Scholar] [CrossRef]
- Yan, L.; Roy, D.P.; Li, Z.; Zhang, H.K.; Huang, H. Sentinel-2A multi-temporal misregistration characterization and an orbit-based sub-pixel registration methodology. Remote Sens. Environ. 2018, 215, 495–506. [Google Scholar] [CrossRef]
Sensor | First CONUS ARD Granule Acquisition Date | Last CONUS ARD Granule Acquisition Date | Sensor Lifetime days|years | Number of Sensing days|years |
---|---|---|---|---|
Landsat 4 | 1982/11/11 | 1993/07/16 | 3,900|10.685 | 387|1.060 |
Landsat 5 | 1984/03/16 | 2012/05/05 | 10,277|28.156 | 9,575|26.233 |
Landsat 7 | 1999/06/30 | 2017/12/31 | 6,759|18.518 | 6,634|18.175 |
Landsat 4, 5 and 7 | 1982/11/11 | 2017/12/31 | 12,834|35.162 | 12,191|33.400 |
Landsat 4,5,7 | Landsat 7 | Landsat 5 | Landsat 4 | ||||
---|---|---|---|---|---|---|---|
Tile | Tile | Tile | Tile | ||||
h05v13 | 30.067 | h04v11 | 21.718 | h04v11 | 22.828 | h06v13 | 16.794 |
h04v11 | 29.974 | h05v13 | 21.621 | h05v13 | 22.727 | h06v14 | 16.419 |
h05v12 | 29.876 | h05v12 | 21.522 | h05v12 | 22.669 | h07v13 | 14.637 |
h06v13 | 29.740 | h06v13 | 21.001 | h06v13 | 22.635 | h07v12 | 14.413 |
h06v14 | 29.217 | h04v12 | 20.937 | h04v10 | 22.303 | h05v13 | 14.211 |
h04v10 | 29.024 | h05v11 | 20.900 | h06v14 | 22.280 | h10v14 | 12.974 |
h05v11 | 28.982 | h06v11 | 20.761 | h06v12 | 22.064 | h10v13 | 12.292 |
h06v12 | 28.941 | h04v10 | 20.746 | h05v11 | 22.035 | h08v14 | 12.128 |
h06v11 | 28.749 | h06v12 | 20.695 | h06v11 | 21.855 | h07v14 | 11.790 |
h05v10 | 28.512 | h06v14 | 20.576 | h05v10 | 21.804 | h16v10 | 11.441 |
Landsat 4,5,7 | Landsat 7 | Landsat 5 | Landsat 4 | ||||
---|---|---|---|---|---|---|---|
Tile | Tile | Tile | Tile | ||||
h28v04 | 14.231 | h25v07 | 9.728 | h28v04 | 11.077 | h22v08 | 0.526 |
h28v05 | 14.273 | h28v05 | 9.792 | h28v05 | 11.177 | h22v09 | 0.789 |
h03v02 | 14.546 | h28v04 | 9.905 | h03v02 | 11.453 | h25v09 | 0.840 |
h26v07 | 14.582 | h26v07 | 9.916 | h26v09 | 11.535 | h25v08 | 0.859 |
h26v08 | 14.589 | h26v08 | 10.031 | h26v08 | 11.547 | h18v16 | 0.995 |
h26v09 | 14.864 | h03v02 | 10.069 | h26v07 | 11.587 | h22v07 | 1.019 |
h27v07 | 14.905 | h23v07 | 10.105 | h03v01 | 11.652 | h22v04 | 1.056 |
h03v01 | 14.946 | h27v07 | 10.217 | h28v06 | 11.726 | h25v10 | 1.076 |
h28v06 | 14.957 | h28v06 | 10.262 | h27v07 | 11.789 | h24v11 | 1.087 |
h25v10 | 15.144 | h27v06 | 10.293 | h15v18 | 11.983 | h22v06 | 1.104 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egorov, A.V.; Roy, D.P.; Zhang, H.K.; Li, Z.; Yan, L.; Huang, H. Landsat 4, 5 and 7 (1982 to 2017) Analysis Ready Data (ARD) Observation Coverage over the Conterminous United States and Implications for Terrestrial Monitoring. Remote Sens. 2019, 11, 447. https://doi.org/10.3390/rs11040447
Egorov AV, Roy DP, Zhang HK, Li Z, Yan L, Huang H. Landsat 4, 5 and 7 (1982 to 2017) Analysis Ready Data (ARD) Observation Coverage over the Conterminous United States and Implications for Terrestrial Monitoring. Remote Sensing. 2019; 11(4):447. https://doi.org/10.3390/rs11040447
Chicago/Turabian StyleEgorov, Alexey V., David P. Roy, Hankui K. Zhang, Zhongbin Li, Lin Yan, and Haiyan Huang. 2019. "Landsat 4, 5 and 7 (1982 to 2017) Analysis Ready Data (ARD) Observation Coverage over the Conterminous United States and Implications for Terrestrial Monitoring" Remote Sensing 11, no. 4: 447. https://doi.org/10.3390/rs11040447
APA StyleEgorov, A. V., Roy, D. P., Zhang, H. K., Li, Z., Yan, L., & Huang, H. (2019). Landsat 4, 5 and 7 (1982 to 2017) Analysis Ready Data (ARD) Observation Coverage over the Conterminous United States and Implications for Terrestrial Monitoring. Remote Sensing, 11(4), 447. https://doi.org/10.3390/rs11040447