Vegetation Water Use Based on a Thermal and Optical Remote Sensing Model in the Mediterranean Region of Doñana
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Remote Sensing Dataset
3.2. Meteorological Data
3.3. Remote Sensing ET Model (PT-JPL-Thermal)
3.3.1. Canopy Transpiration
3.3.2. Soil Evaporation
3.4. Hydrological Model WATEN
3.5. Remote Sensing Global Evapotranspiration Product MOD16 ET
3.6. Validation of the PT-JPL-Thermal ET
3.7. Assessment of PT-JPL-Thermal vs. MOD16 ET in the Doñana Region
4. Results
4.1. Validation of the PT-JPL-Thermal ET
4.2. Assessment of PT-JPL-Thermal vs. MOD16 ET in the Doñana Region
5. Discussion
5.1. Validation of the PT-JPL-Thermal ET
5.2. Assessment of PT-JPL-Thermal vs. MOD16 ET in the Doñana Region
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Prudhomme, C.; Giuntoli, I.; Robinson, E.L.; Clark, D.B.; Arnell, N.W.; Dankers, R.; Fekete, B.M.; Franssen, W.; Gerten, D.; Gosling, S.N. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc. Natl. Acad. Sci. USA 2014, 111, 3262–3267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision; ESA Working Paper; FAO: Rome, Italy, 2012. [Google Scholar]
- Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N.W.; Clark, D.B.; Dankers, R.; Eisner, S.; Fekete, B.M.; Colón-González, F.J. Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3245–3250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flörke, M.; Schneider, C.; McDonald, R.I. Water competition between cities and agriculture driven by climate change and urban growth. Nat. Sustain. 2018, 1, 51–58. [Google Scholar] [CrossRef]
- Curtis, S.; Gamble, D.W.; Popke, J. Sensitivity of crop water need to 2071–95 projected temperature and precipitation changes in Jamaica. Earth Interact. 2014, 18, 1–17. [Google Scholar] [CrossRef]
- Hoerling, M.; Eischeid, J.; Perlwitz, J.; Quan, X.; Zhang, T.; Pegion, P. On the increased frequency of Mediterranean drought. J. Clim. 2012, 25, 2146–2161. [Google Scholar] [CrossRef]
- Tanasijevic, L.; Todorovic, M.; Pereira, L.S.; Pizzigalli, C.; Lionello, P. Impacts of climate change on olive crop evapotranspiration and irrigation requirements in the Mediterranean region. Agric. Water Manag. 2014, 144, 54–68. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Pal, J.S.; Giorgi, F.; Gao, X. Heat stress intensification in the Mediterranean climate change hotspot. Geophys. Res. Lett. 2007, 34, 224–228. [Google Scholar] [CrossRef]
- Minacapilli, M.; Consoli, S.; Vanella, D.; Ciraolo, G.; Motisi, A. A time domain triangle method approach to estimate actual evapotranspiration: Application in a Mediterranean region using MODIS and MSG-SEVIRI products. Remote Sens. Environ. 2016, 174, 10–23. [Google Scholar] [CrossRef]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Chavez-Jimenez, A.; Granados, A.; Garrote, L.; Martín-Carrasco, F. Adapting water allocation to irrigation demands to constraints in water availability imposed by climate change. Water Resour. Manag. 2015, 29, 1413–1430. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Jolly, I.; Sophocleous, M.; Zhang, L. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality. Water Resour. Res. 2007, 43, 215–222. [Google Scholar] [CrossRef]
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Chirouze, J.; Boulet, G.; Jarlan, L.; Fieuzal, R.; Rodriguez, J.; Ezzahar, J.; Raki, S.E.; Bigeard, G.; Merlin, O.; Garatuza-Payan, J. Intercomparison of four remote-sensing-based energy balance methods to retrieve surface evapotranspiration and water stress of irrigated fields in semi-arid climate. Hydrol. Earth Syst. Sci. Discuss. 2014, 1165–1188. [Google Scholar] [CrossRef] [Green Version]
- Leuning, R.; Zhang, Y.; Rajaud, A.; Cleugh, H.; Tu, K. A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation. Water Resour. Res. 2008, 44, 652–655. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef]
- Anderson, M.C.; Kustas, W.P.; Norman, J.M. Upscaling and downscaling—A regional view of the soil–plant–atmosphere continuum. Agron. J. 2003, 95, 1408–1423. [Google Scholar] [CrossRef]
- Wang, K.; Dickinson, R.E.; Wild, M.; Liang, S. Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002: 1. Model development. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Zhuang, Q.; Yin, Y.; Zhu, X.; Wu, S. Spatio-temporal dynamics of evapotranspiration on the Tibetan Plateau from 2000 to 2010. Environ. Res. Lett. 2017, 12, 014011. [Google Scholar] [CrossRef] [Green Version]
- Guzinski, R.; Nieto, H.; Stisen, S.; Fensholt, R. Inter-comparison of energy balance and hydrological models for land surface energy flux estimation over a whole river catchment. Hydrol. Earth Syst. Sci. 2015, 19, 2017–2037. [Google Scholar] [CrossRef] [Green Version]
- Xing, W.; Wang, W.; Shao, Q.; Yu, Z.; Yang, T.; Fu, J. Periodic fluctuation of reference evapotranspiration during the past five decades: Does Evaporation Paradox really exist in China? Sci. Rep. 2016, 6, 39503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.F.; Hook, S.; Baldocchi, D.; Townsend, P.A. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 2017, 53, 2618–2626. [Google Scholar] [CrossRef] [Green Version]
- Senay, G.; Leake, S.; Nagler, P.; Artan, G.; Dickinson, J.; Cordova, J.; Glenn, E. Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods. Hydrol. Process. 2011, 25, 4037–4049. [Google Scholar] [CrossRef]
- Beven, K.; Freer, J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J. Hydrol. 2001, 249, 11–29. [Google Scholar] [CrossRef]
- Fortin, V.; Chahinian, N.; Montanari, A.; Moretti, G.; Moussa, R. Distributed hydrological modelling with lumped inputs. IAHS Publ. 2006, 307, 135. [Google Scholar]
- Olioso, A.; Chauki, H.; Courault, D.; Wigneron, J.-P. Estimation of evapotranspiration and photosynthesis by assimilation of remote sensing data into SVAT models. Remote Sens. Environ. 1999, 68, 341–356. [Google Scholar] [CrossRef]
- Xu, X.; Li, J.; Tolson, B.A. Progress in integrating remote sensing data and hydrologic modeling. Prog. Phys. Geogr. 2014, 38, 464–498. [Google Scholar] [CrossRef]
- Yilmaz, M.T.; Anderson, M.C.; Zaitchik, B.; Hain, C.R.; Crow, W.T.; Ozdogan, M.; Chun, J.A.; Evans, J. Comparison of prognostic and diagnostic surface flux modeling approaches over the Nile River basin. Water Resour. Res. 2014, 50, 386–408. [Google Scholar] [CrossRef] [Green Version]
- Kalma, J.D.; McVicar, T.R.; McCabe, M.F. Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surv. Geophys. 2008, 29, 421–469. [Google Scholar] [CrossRef]
- Karimi, P.; Bastiaanssen, W.G. Spatial evapotranspiration, rainfall and land use data in water accounting—Part 1: Review of the accuracy of the remote sensing data. Hydrol. Earth Syst. Sci. 2015, 19, 507–532. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar] [PubMed]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Zhang, Y.; Leuning, R.; Hutley, L.B.; Beringer, J.; McHugh, I.; Walker, J.P. Using long-term water balances to parameterize surface conductances and calculate evaporation at 0.05° spatial resolution. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.; Jia, L.; Menenti, M. Comparison of MOD16 and LSA-SAF MSG evapotranspiration products over Europe for 2011. Remote Sens. Environ. 2015, 156, 510–526. [Google Scholar] [CrossRef]
- Velpuri, N.M.; Senay, G.B.; Singh, R.K.; Bohms, S.; Verdin, J.P. A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET. Remote Sens. Environ. 2013, 139, 35–49. [Google Scholar] [CrossRef]
- Biggs, T.W.; Marshall, M.; Messina, A. Mapping daily and seasonal evapotranspiration from irrigated crops using global climate grids and satellite imagery: Automation and methods comparison. Water Resour. Res. 2016, 52, 7311–7326. [Google Scholar] [CrossRef]
- Priestley, C.; Taylor, R. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Mu, Q.; Jones, L.A.; Goetz, S.J.; Running, S.W. Satellite based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005. J. Hydrol. 2009, 379, 92–110. [Google Scholar] [CrossRef]
- Fisher, J.B.; Tu, K.P.; Baldocchi, D.D. Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 2008, 112, 901–919. [Google Scholar] [CrossRef]
- García, M.; Sandholt, I.; Ceccato, P.; Ridler, M.; Mougin, E.; Kergoat, L.; Morillas, L.; Timouk, F.; Fensholt, R.; Domingo, F. Actual evapotranspiration in drylands derived from in-situ and satellite data: Assessing biophysical constraints. Remote Sens. Environ. 2013, 131, 103–118. [Google Scholar] [CrossRef]
- Muñoz-Reinoso, J.C. Doñana mobile dunes: What is the vegetation pattern telling us? J. Coast. Conserv. 2018, 1–10. [Google Scholar] [CrossRef]
- García De Jalón, S.; Iglesias, A.; Cunningham, R.; Díaz, J.I.P. Building resilience to water scarcity in southern Spain: A case study of rice farming in Doñana protected wetlands. Reg. Environ. Chang. 2014, 14, 1229–1242. [Google Scholar] [CrossRef]
- Martín-López, B.; García-Llorente, M.; Palomo, I.; Montes, C. The conservation against development paradigm in protected areas: Valuation of ecosystem services in the Doñana social–ecological system (southwestern Spain). Ecol. Econom. 2011, 70, 1481–1491. [Google Scholar] [CrossRef]
- Green, A.J.; Bustamante, J.; Janss, G.F.E.; Fernández-Zamudio, R.; Díaz-Paniagua, C. Doñana Wetlands (Spain). In The Wetland Book II: Distribution, Description and Conservation; Finlayson, C.M., Milton, R., Prentice, C., Davidson, N.C., Eds.; Springer: Dordrecht, The Netherlands, 2017. [Google Scholar]
- Serrano, L.; Diaz-Paniagua, C.; Gomez-Rodriguez, C.; Florencio, M.; Marchand, M.A.; Roelofs, J.G.; Lucassen, E.C. Susceptibility to acidification of groundwater-dependent wetlands affected by water level declines, and potential risk to an early-breeding amphibian species. Sci. Total Environ. 2016, 571, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- García-Novo, F.; Marín-Cabrera, C. Doñana: Water and Biosphere; Doñana 2005, Confederación Hidrográfica del Guadalquivir; Ministerio de Medio Ambiente: Seville, Spain, 2006.
- Estévez, J.; Gavilán, P.; García-Marín, A. Data validation procedures in agricultural meteorology—A prerequisite for their use. Adv. Sci. Res. 2011, 6, 141–146. [Google Scholar] [CrossRef]
- Purdy, A.; Fisher, J.; Goulden, M.; Famiglietti, J. Ground heat flux: An analytical review of 6 models evaluated at 88 sites and globally. J. Geophys. Res. Biogeosci. 2016, 121, 3045–3059. [Google Scholar] [CrossRef]
- Jackson, R.; Hatfield, J.; Reginato, R.; Idso, S.; Pinter, P., Jr. Estimation of daily evapotranspiration from one time-of-day measurements. Agric. Water Manag. 1983, 7, 351–362. [Google Scholar] [CrossRef]
- García, M.; Villagarcía, L.; Contreras, S.; Domingo, F.; Puigdefábregas, J. Comparison of three operative models for estimating the surface water deficit using ASTER reflective and thermal data. Sensors 2007, 7, 860–883. [Google Scholar] [CrossRef]
- Bisht, G.; Venturini, V.; Islam, S.; Jiang, L. Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data for clear sky days. Remote Sens. Environ. 2005, 97, 52–67. [Google Scholar] [CrossRef]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, S.; Yu, G.; Bonnefond, J.-M.; Chen, J.; Davis, K.; Desai, A.R.; Goldstein, A.H.; Gianelle, D.; Rossi, F. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens. Environ. 2010, 114, 1416–1431. [Google Scholar] [CrossRef] [Green Version]
- Peters, J.; De Baets, B.; De Clercq, E.M.; Ducheyne, E.; Verhoest, N.E. The potential of multitemporal Aqua and Terra MODIS apparent thermal inertia as a soil moisture indicator. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 934–941. [Google Scholar]
- Mitra, D.; Majumdar, T. Thermal inertia mapping over the Brahmaputra basin, India using NOAA-AVHRR data and its possible geological applications. Int. J. Remote Sens. 2004, 25, 3245–3260. [Google Scholar] [CrossRef]
- Verstraeten, W.W.; Veroustraete, F.; van der Sande, C.J.; Grootaers, I.; Feyen, J. Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forests. Remote Sens. Environ. 2006, 101, 299–314. [Google Scholar] [CrossRef]
- Norman, J.M.; Kustas, W.P.; Humes, K.S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- IFAPA. Estación Meteorológica de Lebrija I. Available online: http://www.juntadeandalucia.es/agriculturaypesca/ifapa/ria/servlet/FrontController?action=Static&url=fechas.jsp&c_provincia=41&c_estacion=3 (accessed on 7 March 2017).
- Idso, S.B.; Jackson, R.D. Thermal radiation from the atmosphere. J. Geophys. Res. 1969, 74, 5397–5403. [Google Scholar] [CrossRef]
- Parton, W.J.; Logan, J.A. A model for diurnal variation in soil and air temperature. Agric. Meteorol. 1981, 23, 205–216. [Google Scholar] [CrossRef]
- Rasmussen, M.O.; Sørensen, M.K.; Wu, B.; Yan, N.; Qin, H.; Sandholt, I. Regional-scale estimation of evapotranspiration for the North China Plain using MODIS data and the triangle-approach. Int. J. Appl. Earth Obs. Geoinf. 2014, 31, 143–153. [Google Scholar] [CrossRef]
- Iqbal, M. An Introduction to Solar Radiation; Academic Press: Toronto, ON, USA, 1983. [Google Scholar]
- Moyano, M.C.; Tornos, L.; Juana, L. Water balance and flow rate discharge on a receiving water body: Application to the B-XII Irrigation District in Spain. J. Hydrol. 2015, 527, 38–49. [Google Scholar] [CrossRef]
- Cleugh, H.A.; Leuning, R.; Mu, Q.; Running, S.W. Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sens. Environ. 2007, 106, 285–304. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Pindyck, R.S.; Rubinfeld, D.L. Econometric Models and Economic Forecasts; Irwin/McGraw-Hill: Boston, MA, USA, 1998; Volume 4. [Google Scholar]
- Watson, P.K.; Teelucksingh, S.S. A Practical Introduction to Econometric Methods: Classical and Modern; University of West Indies Press: Mona, West Indies, 2002. [Google Scholar]
- Cicuéndez, V.; Rodríguez-Rastrero, M.; Huesca, M.; Uribe, C.; Schmid, T.; Inclán, R.; Litago, J.; Sánchez-Girón, V.; Merino-de-Miguel, S.; Palacios-Orueta, A. Assessment of soil respiration patterns in an irrigated corn field based on spectral information acquired by field spectroscopy. Agric. Ecosyst. Environ. 2015, 212, 158–167. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Heinsch, F.A.; Liu, M.; Tian, H.; Running, S.W. Evaluating water stress controls on primary production in biogeochemical and remote sensing based models. J. Geophys. Res. Biogeosci. 2007, 112, 863–866. [Google Scholar] [CrossRef]
- JdA. El cultivo del arroz en Andalucía. Secretaría general de Agricultura, Ganadería y Desarrollo Rural, España. Available online: https://www.juntadeandalucia.es/agriculturaypesca/portal/export/sites/default/comun/galerias/galeriaDescargas/cap/servicio-estadisticas/Estudios-e-informes/agricultura/herbaceos-extensivos/arr07121.pdf (accessed on 7 March 2017).
- Drexler, J.Z.; Anderson, F.E.; Snyder, R.L. Evapotranspiration rates and crop coefficients for a restored marsh in the Sacramento–San Joaquin Delta, California, USA. Hydrol. Process. 2008, 22, 725–735. [Google Scholar] [CrossRef]
- Penatti, N.C.; de Almeida, T.I.R.; Ferreira, L.G.; Arantes, A.E.; Coe, M.T. Satellite-based hydrological dynamics of the world’s largest continuous wetland. Remote Sens. Environ. 2015, 170, 1–13. [Google Scholar] [CrossRef]
- Jang, K.; Kang, S.; Lim, Y.J.; Jeong, S.; Kim, J.; Kimball, J.S.; Hong, S.Y. Monitoring daily evapotranspiration in Northeast Asia using MODIS and a regional Land Data Assimilation System. J. Geophys. Res. Atmos. 2013, 118, 1277. [Google Scholar] [CrossRef]
- Ontillera, R.R.; González-Nóvoa, J.A. Marismas de Doñana. Ecosistemas de Doñana; MAPAMA: Madrid, Spain.
- Nagler, P.; Glenn, E.; Kim, H.; Emmerich, W.; Scott, R.; Huxman, T.; Huete, A. Relationship between evapotranspiration and precipitation pulses in a semiarid rangeland estimated by moisture flux towers and MODIS vegetation indices. J. Arid Environ. 2007, 70, 443–462. [Google Scholar] [CrossRef]
- Garcia, M.; Fernandez, N.; Gonzalez-Dugo, M.P.; Delibes, M. Impact of Annual Drought on the Water and Energy Exchanges in the Doñana Region (SW Spain). In Proceedings of the Symposium Earth Observation and Water Cycle Science, Frascati, Italy, 18–20 November 2009. [Google Scholar]
Variable Description | PT-JPL-Thermal Equations | Reference |
---|---|---|
Evapotranspiration | [41] | |
Canopy Transpiration | [41] | |
Potential Canopy Transpiration | [41] | |
• Net Canopy Radiation | [41] | |
• Net Soil Radiation | [59] | |
• Net Radiation | [41] | |
Instant. In. Longwave Radiation | [61] | |
Air Temperature at MODIS pass-time | [62] | |
Number of Hours from Tmin until Sunset | [62] | |
Instant Out. Longwave Radiation | [52] | |
Daily Shortwave Radiation | [52] | |
Albedo | [63] | |
Instant. Shortwave Radiation | [51] | |
Conversion Factor Day-inst | [51] | |
Instantaneous Net Radiation | ||
Daily Net Radiation | [53] | |
Canopy Transpiration Constraints | ||
• Green Canopy Fraction | [41] | |
• Plant Moisture Constraint | [41] | |
• Plant Temperature Constraint | [52] | |
Soil Evaporation | [41] | |
Potential Soil Evaporation | [41] | |
Soil Evaporation Constraints | ||
• Soil Moisture Constraint | [42] | |
Apparent Thermal Inertia | [42] | |
Solar Flux Correction Factor | [64] |
WATEN | PT-JPL-Thermal | MOD16 | |
---|---|---|---|
Inputs | |||
• RS Data | LAI, fAPAR (MOD15A2) | LAI, fAPAR (MOD15A2) | |
Broadband α (MCD43B3) | Broadband α (MOD43C1) | ||
NDVI (MOD13A2) | EVI (MOD13A2) | ||
Day LST, , (MOD11A1, MYD11A1) | Land cover (MOD12Q1) | ||
(MOD11A2, MYD11A2) | |||
• Climatic Data | Precipitation P | Average maximum and minimum air temperature Tair | Meteorological reanalysis data GMAO: |
Reference ETo | Incoming daily shortwave radiation | • Air temperature • Air pressure • Humidity • Radiation | |
• Other in-situ Data | Sowing/harvesting dates | Biome-type-look-up-table | |
Crop growth stages | |||
Crop coefficients | |||
Irrigation I | |||
Calibrated Parameters | TAM, RAM, RI, RP | ||
Outputs | ET, D, SMD | ET | ET |
Monthly ET | ρ | e2 | MAE | Bias | RMSE |
---|---|---|---|---|---|
(mm/day) | |||||
PT-JPL-t vs. WATEN | 0.78 * | 0.59 | 0.74 | 0.13 | 0.9 |
PT-JPL-t vs. WATEN1month-lag | 0.94 * | 0.87 | 0.39 | 0.13 | 0.51 |
MOD16 vs. WATEN | 0.48 * | −0.27 | 1.17 | −0.92 | 1.58 |
MOD16 vs. WATEN1month-lag | 0.18 * | −0.42 | 1.22 | −0.94 | 1.67 |
ETaverage seasonality | |||||
PT-JPL-t vs. WATEN | 0.83 * | 0.67 | 0.68 | 0.13 | 0.78 |
PT-JPL-t vs. WATEN1month-lag | 0.99 * | 0.96 | 0.25 | 0.13 | 0.29 |
MOD16 vs. WATEN | 0.65 * | −0.28 | 1.15 | −0.92 | 1.54 |
MOD16 vs. WATEN1month-lag | 0.17 * | −0.43 | 1.18 | −0.92 | 1.63 |
Monthly ET | Theil’s Inequality Components | ||
---|---|---|---|
um | us | uc | |
PT-JPL-thermal vs. WATEN | 0.02 | 0.02 | 0.96 |
MOD16 vs. WATEN | 0.34 | 0.48 | 0.18 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moyano, M.C.; Garcia, M.; Palacios-Orueta, A.; Tornos, L.; Fisher, J.B.; Fernández, N.; Recuero, L.; Juana, L. Vegetation Water Use Based on a Thermal and Optical Remote Sensing Model in the Mediterranean Region of Doñana. Remote Sens. 2018, 10, 1105. https://doi.org/10.3390/rs10071105
Moyano MC, Garcia M, Palacios-Orueta A, Tornos L, Fisher JB, Fernández N, Recuero L, Juana L. Vegetation Water Use Based on a Thermal and Optical Remote Sensing Model in the Mediterranean Region of Doñana. Remote Sensing. 2018; 10(7):1105. https://doi.org/10.3390/rs10071105
Chicago/Turabian StyleMoyano, Maria C., Monica Garcia, Alicia Palacios-Orueta, Lucia Tornos, Joshua B. Fisher, Néstor Fernández, Laura Recuero, and Luis Juana. 2018. "Vegetation Water Use Based on a Thermal and Optical Remote Sensing Model in the Mediterranean Region of Doñana" Remote Sensing 10, no. 7: 1105. https://doi.org/10.3390/rs10071105
APA StyleMoyano, M. C., Garcia, M., Palacios-Orueta, A., Tornos, L., Fisher, J. B., Fernández, N., Recuero, L., & Juana, L. (2018). Vegetation Water Use Based on a Thermal and Optical Remote Sensing Model in the Mediterranean Region of Doñana. Remote Sensing, 10(7), 1105. https://doi.org/10.3390/rs10071105