Evaluation of Spectral Indices for Assessing Fire Severity in Australian Temperate Forests
Abstract
:1. Introduction
- Do different eucalypt forest types require different optical spectral indices for wildfire severity estimation?
- Do functionally-equivalent eucalypt forest types (i.e., same structure and post-fire regeneration strategy) have a similar spectral response, and thus, is there a single index that could be used for each forest functional group?
- How accurately can we map fire severity when using spectral indices selected by forest type and/ or forest group?
2. Materials and Methods
2.1. Study Area and Forest Types
2.2. Reference Fire-Severity Data
2.3. Remote Sensing Data
2.4. Spectral Indices
2.5. Data Analysis
2.5.1. Sensitivity Analysis of Spectral Indices
2.5.2. Index Accuracy Assessment
3. Results
3.1. Sensitivity of Spectral Indices to Fire Severity Classes
3.2. Index Accuracy Assessment
4. Discussion
4.1. One Size Doesn’t Fit All: Index Suitability Varies with Forest Type
4.2. Accuracy of Fire Severity Estimates Using Forest-Specific Indices
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bond, W.J.; Keeley, J.E. Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 2005, 20, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the earth system. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, P.M.; Stroppiana, D.; Grégoire, J.-M.; Cardoso Pereira, J.M. An assessment of vegetation fire in Africa (1981–1991): Burned areas, burned biomass, and atmospheric emissions. Glob. Biogeochem. Cycles 1999, 13, 933–950. [Google Scholar] [CrossRef] [Green Version]
- Veraverbeke, S.; Gitas, I.; Katagis, T.; Polychronaki, A.; Somers, B.; Goossens, R. Assessing post-fire vegetation recovery using red-near infrared vegetation indices: Accounting for background and vegetation variability. ISPRS J. Photogramm. Remote Sens. 2012, 68, 28–39. [Google Scholar] [CrossRef] [Green Version]
- Collins, B.M.; Kelly, M.; van Wagtendonk, J.W.; Stephens, S.L. Spatial patterns of large natural fires in Sierra Nevada wilderness areas. Landsc. Ecol. 2007, 22, 545–557. [Google Scholar] [CrossRef]
- Fairman, T.A.; Nitschke, C.R.; Bennett, L.T. Too much, too soon? A review of the effects of increasing wildfire frequency on tree mortality and regeneration in temperate eucalypt forests. Int. J. Wildland Fire 2016, 25, 831–848. [Google Scholar] [CrossRef]
- Patterson, M.W.; Yool, S.R. Mapping fire-induced vegetation mortality using Landsat thematic mapper data: A comparison of linear transformation techniques. Remote Sens. Environ. 1998, 65, 132–142. [Google Scholar] [CrossRef]
- Jakubauskas, M.E.; Lulla, K.P.; Mausel, P.W. Assessment of vegetation change in a fire-altered forest landscape. PE RS Photogramm. Eng. Remote Sens. 1990, 56, 371–377. [Google Scholar]
- Brewer, C.K.; Winne, J.C.; Redmond, R.L.; Opitz, D.W.; Mangrich, M.V. Classifying and mapping wildfire severity. Photogramm. Eng. Remote Sens. 2005, 71, 1311–1320. [Google Scholar] [CrossRef]
- Tanase, M.A.; Kennedy, R.; Aponte, C. Fire severity estimation from space: A comparison of active and passive sensors and their synergy for different forest types. Int. J. Wildland Fire 2015, 24, 1062–1075. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Verstraeten, W.W.; Lhermitte, S.; Goossens, R. Evaluating Landsat Thematic Mapper spectral indices for estimating burn severity of the 2007 Peloponnese wildfires in Greece. Int. J. Wildland Fire 2010, 19, 558–569. [Google Scholar] [CrossRef] [Green Version]
- White, J.D.; Ryan, K.C.; Key, C.C.; Running, S.W. Remote sensing of forest fire severity and vegetation recovery. Int. J. Wildland Fire 1996, 6, 125–136. [Google Scholar] [CrossRef]
- Chuvieco, E.; Englefield, P.; Trishchenko, A.P.; Luo, Y. Generation of long time series of burn area maps of the boreal forest from NOAA-AVHRR composite data. Remote Sens. Environ. 2008, 112, 2381–2396. [Google Scholar] [CrossRef]
- Miller, J.D.; Thode, A.E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ. 2007, 109, 66–80. [Google Scholar] [CrossRef]
- Trigg, S.; Flasse, S. An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah. Int. J. Remote Sens. 2001, 22, 2641–2647. [Google Scholar] [CrossRef]
- Pereira, J.M.C.; Pereira, B.S.; Barbosa, P.; Stroppiana, D.; Vasconcelos, M.J.P.; Grégoire, J.-M. Satellite monitoring of fire in the EXPRESSO study area during the 1996 dry season experiment: Active fires, burnt area, and atmospheric emissions. J. Geophys. Res. Atmos. 1999, 104, 30701–30712. [Google Scholar] [CrossRef] [Green Version]
- Escuin, S.; Navarro, R.; Fernandez, P. Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. Int. J. Remote Sens. 2008, 29, 1053–1073. [Google Scholar] [CrossRef]
- Key, C.; Benson, N. Landscape Assessment: Ground Measure of Severity, the Composite Burn Index; and Remote Sensing of Severity, the Normalized Burn Ratio; USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2006; pp. LA 1–LA 51. [Google Scholar]
- Epting, J.; Verbyla, D.; Sorbel, B. Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+. Remote Sens. Environ. 2005, 96, 328–339. [Google Scholar] [CrossRef]
- French, N.H.F.; Kasischke, E.S.; Hall, R.J.; Murphy, K.A.; Verbyla, D.L.; Hoy, E.E.; Allen, J.L. Using Landsat data to assess fire and burn severity in the North American boreal forest region: An overview and summary of results. Int. J. Wildland Fire 2008, 17, 443–462. [Google Scholar] [CrossRef]
- Harris, S.; Veraverbeke, S.; Hook, S. Evaluating spectral indices for assessing fire severity in chaparral ecosystems (Southern California) using MODIS/ASTER (MASTER) airborne simulator data. Remote Sens. 2011, 3, 2403–2419. [Google Scholar] [CrossRef]
- Van Wagtendonk, J.W.; Root, R.R.; Key, C.H. Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity. Remote Sens. Environ. 2004, 92, 397–408. [Google Scholar] [CrossRef]
- Chuvieco, E. Using cluster analysis to improve the selection of training statistics in classifying remotely sensed data. Photogramm. Eng. Remote Sens. 1988, 54, 1275–1281. [Google Scholar]
- De Santis, A.; Asner, G.P.; Vaughan, P.J.; Knapp, D.E. Mapping burn severity and burning efficiency in California using simulation models and Landsat imagery. Remote Sens. Environ. 2010, 114, 1535–1545. [Google Scholar] [CrossRef]
- Murphy, K.A.; Reynolds, J.H.; Koltun, J.M. Evaluating the ability of the differenced Normalized Burn Ratio (dNBR) to predict ecologically significant burn severity in Alaskan boreal forests. Int. J. Wildland Fire 2008, 17, 490–499. [Google Scholar] [CrossRef]
- Díaz-Delgado, R.; Lloret, F.; Pons, X. Influence of fire severity on plant regeneration by means of remote sensing imagery. Int. J. Remote Sens. 2003, 24, 1751–1763. [Google Scholar] [CrossRef] [Green Version]
- Veraverbeke, S.; Hook, S.J. Evaluating spectral indices and spectral mixture analysis for assessing fire severity, combustion completeness and carbon emissions. Int. J. Wildland Fire 2013, 22, 707–720. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Rockwell, B.W.; Haire, S.L.; King, T.V.V. Characterization of post-fire surface cover, soils, and burn severity at the Cerro Grande Fire, New Mexico, using hyperspectral and multispectral remote sensing. Remote Sens. Environ. 2007, 106, 305–325. [Google Scholar] [CrossRef]
- Holden, Z.A.; Smith, A.M.S.; Morgan, P.; Rollins, M.G.; Gessler, P.E. Evaluation of novel thermally enhanced spectral indices for mapping fire perimeters and comparisons with fire atlas data. Int. J. Remote Sens. 2005, 26, 4801–4808. [Google Scholar] [CrossRef]
- Smith, A.M.S.; Drake, N.A.; Wooster, M.J.; Hudak, A.T.; Holden, Z.A.; Gibbons, C.J. Production of Landsat ETM+ reference imagery of burned areas within Southern African savannahs: Comparison of methods and application to MODIS. Int. J. Remote Sens. 2007, 28, 2753–2775. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Harris, S.; Hook, S. Evaluating spectral indices for burned area discrimination using MODIS/ASTER (MASTER) airborne simulator data. Remote Sens. Environ. 2011, 115, 2702–2709. [Google Scholar] [CrossRef]
- Chu, T.A.; Guo, X.L. Remote sensing techniques in monitoring post-fire effects and patterns of forest recovery in boreal forest regions: A review. Remote Sens. 2014, 6, 470–520. [Google Scholar] [CrossRef]
- Timbal, B.; Ekström, M.; Fiddes, S.; Grose, M.; Kirono, D.; Lim, E.-P.; Lucas, C.; Wilson, L. Climate Change Science and Victoria; Bureau Research Report No. 014; Bureau of Meteorology: Melbourne, Victoria, Australia, 2016; p. 94. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Hennessey, K.; Lucas, C.; Nicholls, N.; Bathols, J.; Suppiah, R.; Ricketts, J. Climate Change Impacts on Fire-Weather in South-East Australia; CSIRO Marine and Atmospheric Research: Aspendale, Australia, 2005. [Google Scholar]
- Cheal, D. Growth Stages and Tolerable Fire Intervals for Victoria’s Native Vegetation Data Sets; Fire and Adaptive Management Report No. 84; Victorian Government Department of Sustainability and Environment: East Melbourne, Victoria, Australia, 2010; pp. 1–36. [Google Scholar]
- Department of Environment, Land, Water & Planning (DELWP). Fire History Records of Fires Primarily on Public Land; Department of Environment, Land, Water & Planning: Melbourne, Victoria, Australia, 2017. [Google Scholar]
- Specht, R.L. The Vegetation of South Australia; Govt. Pr.: Adelaide, Australia, 1972. [Google Scholar]
- Kasel, S.; Bennett, L.T.; Aponte, C.; Fedrigo, M.; Nitschke, C.R. Environmental heterogeneity promotes floristic turnover in temperate forests of south-eastern Australia more than dispersal limitation and disturbance. Landsc. Ecol. 2017, 32, 1613–1629. [Google Scholar] [CrossRef]
- USGS. Earth Explorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 15 January 2017).
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Erdas Inc. Erdas Imagine. Available online: http://www.hexagongeospatial.com/products/power-portfolio/erdas-imagine (accessed on 20 September 2017).
- Clarke, P.J.; Lawes, M.J.; Murphy, B.P.; Russell-Smith, J.; Nano, C.E.M.; Bradstock, R.; Enright, N.J.; Fontaine, J.B.; Gosper, C.R.; Radford, I.; et al. A synthesis of postfire recovery traits of woody plants in Australian ecosystems. Sci. Total Environ. 2015, 534, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Nicolle, D. A classification and census of regenerative strategies in the eucalypts (Angophora, Corymbia and Eucalyptus—Myrtaceae), with special reference to the obligate seeders. Aust. J. Bot. 2006, 54, 391–407. [Google Scholar] [CrossRef]
- Government of Victoria. Bioregions and EVC Benchmarks. Available online: https://www.environment.vic.gov.au/biodiversity/bioregions-and-evc-benchmarks#hsf (accessed on 1 March 2018).
- Specht, R.L.; Wood, J.G. British Science Guild, Handbooks Committee, South Australian Branch. In The Vegetation of South Australia: Handbook of the Flora and Fauna of South Australia, 2nd ed.; Govt. Pr.: Adelaide, Australia, 1972; 328p. [Google Scholar]
- Allen, J.L.; Sorbel, B. Assessing the differenced Normalized Burn Ratio’s ability to map burn severity in the boreal forest and tundra ecosystems of Alaska’s national parks. Int. J. Wildland Fire 2008, 17, 463–475. [Google Scholar] [CrossRef]
- De Santis, A.; Chuvieco, E. Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models. Remote Sens. Environ. 2007, 108, 422–435. [Google Scholar] [CrossRef]
- Tanase, M.; de la Riva, J.; Pérez-Cabello, F. Estimating burn severity at the regional level using optically based indices. Can. J. For. Res. 2011, 41, 863–872. [Google Scholar] [CrossRef]
- Duffy, P.A.; Epting, J.; Graham, J.M.; Rupp, T.S.; McGuire, A.D. Analysis of Alaskan burn severity patterns using remotely sensed data. Int. J. Wildland Fire 2007, 16, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Hoy, E.E.; French, N.H.F.; Turetsky, M.R.; Trigg, S.N.; Kasischke, E.S. Evaluating the potential of Landsat TM/ETM+ imagery for assessing fire severity in Alaskan black spruce forests. Int. J. Wildland Fire 2008, 17, 500–514. [Google Scholar] [CrossRef]
- Soverel, N.O.; Perrakis, D.D.B.; Coops, N.C. Estimating burn severity from Landsat dNBR and RdNBR indices across western Canada. Remote Sens. Environ. 2010, 114, 1896–1909. [Google Scholar] [CrossRef]
- Hall, R.J.; Freeburn, J.T.; de Groot, W.J.; Pritchard, J.M.; Lynham, T.J.; Landry, R. Remote sensing of burn severity: Experience from western Canada boreal fires. Int. J. Wildland Fire 2008, 17, 476–489. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with Erts; Third Earth Resources Technology Satellite-1 Symposium; NASA: Washington, DC, USA, 1974; pp. 309–317. [Google Scholar]
- Lutes, D.C.; Keane, R.E.; Caratti, J.F.; Key, C.H.; Benson, N.C.; Sutherland, S.; Gangi, L.J. Firemon: Fire Effects Monitoring and Inventory System; Dept. of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006. [Google Scholar]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Chuvieco, E.; Martín, M.P.; Palacios, A. Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination. Int. J. Remote Sens. 2002, 23, 5103–5110. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Smith, A.M.S.; Wooster, M.J.; Drake, N.A.; Dipotso, F.M.; Falkowski, M.J.; Hudak, A.T. Testing the potential of multi-spectral remote sensing for retrospectively estimating fire severity in African savannahs. Remote Sens. Environ. 2005, 97, 92–115. [Google Scholar] [CrossRef]
- Schepers, L.; Haest, B.; Veraverbeke, S.; Spanhove, T.; Vanden Borre, J.; Goossens, R. Burned area detection and burn severity assessment of a heathland fire in Belgium using airborne imaging spectroscopy (APEX). Remote Sens. 2014, 6, 1803–1826. [Google Scholar] [CrossRef]
- Roy, D.R.; Boschetti, L.; Trigg, S.N. Remote sensing of fire severity: Assesing the performance of the normalized burn ratio. IEEE Geosci. Remote Sens. Lett. 2006, 3, 112–116. [Google Scholar] [CrossRef]
- Quinn, G.P. Experimental Design and Data Analysis for Biologists; Quinn, G.P., Keough, M.J., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2002. [Google Scholar]
- Hessl, A.; Miller, J.; Kernan, J.; Keenum, D.; McKenzie, D. Mapping paleo-fire boundaries from binary point data: Comparing interpolation methods. Prof. Geogr. 2007, 59, 87–104. [Google Scholar] [CrossRef]
- Fernandez-Carrillo, A.; McCaw, L.; Belenguer-Plomer, M.A.; Tanase, M.A. L-band SAR sensitivity to prescribed burning effects in eucalypt forests of Western Australia. Proc. SPIE 2018, 10788. [Google Scholar] [CrossRef]
- Padilla, M.; Stehman, S.V.; Ramo, R.; Corti, D.; Hantson, S.; Oliva, P.; Alonso-Canas, I.; Bradley, A.V.; Tansey, K.; Mota, B.; et al. Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation. Remote Sens. Environ. 2015, 160, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Cohen, J. Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. Psychol. Bull. 1968, 70, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Holle, H.; Rein, R. The modified cohen’s kappa: Calculating interrater agreement for segmentation and annotation. In Understanding Body Movement: A Guide to Empirical Research on Non-Verbal Behavior, 1st ed.; Lausberg, H., Ed.; Peter Lang: Frankfurt, Germany, 2013; pp. 261–275. [Google Scholar]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Hammill, K.A.; Bradstock, R.A. Remote sensing of fire severity in the blue mountains: Influence of vegetation type and inferring fire intensity. Int. J. Wildland Fire 2006, 15, 213–226. [Google Scholar] [CrossRef]
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- Sparks, A.; Kolden, C.; Talhelm, A.; Smith, A.; Apostol, K.; Johnson, D.; Boschetti, L. Spectral indices accurately quantify changes in seedling physiology following fire: Towards mechanistic assessments of post-fire carbon cycling. Remote Sens. 2016, 8, 572. [Google Scholar] [CrossRef]
- Marino, E.; Guillen-Climent, M.; Ranz Vega, P.; Tomé, J. Fire Severity Mapping in Garajonay National Park: Comparison between Spectral Indices; Flamma: Madrid, Spain, 2016; Volume 7, pp. 22–28. [Google Scholar]
- Lee, B.; Kim, S.Y.; Chung, J.; Park, P.S. Estimation of fire severity by use of Landsat TM images and its relevance to vegetation and topography in the 2000 Samcheok forest fire. J. For. Res. 2008, 13, 197–204. [Google Scholar] [CrossRef]
- Lu, B.; He, Y.; Tong, A. Evaluation of spectral indices for estimating burn severity in semiarid grasslands. Int. J. Wildland Fire 2016, 25, 147–157. [Google Scholar] [CrossRef]
- Miller, J.D.; Knapp, E.E.; Key, C.H.; Skinner, C.N.; Isbell, C.J.; Max Creasy, R.; Sherlock, J.W. Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA. Remote Sens. Environ. 2009, 113, 645–656. [Google Scholar] [CrossRef]
- Stow, D.; Petersen, A.; Rogan, J.; Franklin, J. Mapping burn severity of Mediterranean-type vegetation using satellite multispectral data. Gisci. Remote Sens. 2007, 44, 1–23. [Google Scholar] [CrossRef]
- Collins, L.; Griffioen, P.; Newell, G.; Mellor, A. The utility of random forests for wildfire severity mapping. Remote Sens. Environ. 2018, 216, 374–384. [Google Scholar] [CrossRef]
- Hultquist, C.; Chen, G.; Zhao, K. A comparison of gaussian process regression, random forests and support vector regression for burn severity assessment in diseased forests. Remote Sens. Lett. 2014, 5, 723–732. [Google Scholar] [CrossRef]
Forest Type a | Regeneration Strategy b | Tallest Stratum Genus c | Height of Tallest Stratum | Over-Storey Canopy Cover | Projective Foliage Cover of Tallest Stratum | Group d | ||
---|---|---|---|---|---|---|---|---|
Dense (70–100%) | Mid-dense (30–70%) | Spare (10–30%) | ||||||
Tall Mist Forest | S | E | 30 m | 40% | CF | CF-S | ||
Moist Forest (S) | S | E | 30 m | 90% | CF | |||
Closed-forest | R | E/A | 25 m | 50% | CF | CF-R | ||
Grassy/Heathy Dry Forest | R | E | 10–30 m | 20–30% | OF | OF-R | ||
Tall Mixed Forest | R | E | 20–30 m | 40–60% | OF | |||
Foothills Forest | R | E | 15–25 m | 25–40% | OF | |||
Forby Forest | R | E | 15–30 m | 20–40% | OF | |||
Moist Forest (R) | R | E | 25–30 m | 30–40% | OF | |||
High Altitude Shrubland/Woodland | R | E | 15 m | 15–20% | W | W-R | ||
Riverine Woodland/Forest | R | E | 15 m | 10% | W | |||
Inland Plains Woodland | R | E | 15 m | 15–30% | W | |||
Lowan Mallee | R | E | 7 m | 25% | LW | LW-R | ||
Broombush Whipstick | R | E | 3 m | 30% | LW | |||
Riparian (higher rainfall) | RS | E | 30 m | 40% | OF | OF-RS |
Spectral Index | Formula * | References | |
---|---|---|---|
Normalised Difference Vegetation Index | NDVI | [54,55] | |
Normalised Burn Ratio | NBR | [18,56] | |
Normalised Difference Water Index | NDWI | [57] | |
Normalised Difference Vegetation Index Thermal | NDVIT | [29,30] | |
Normalised Burn Ratio Thermal | NBRT | [29] | |
Vegetation Index 6 Thermal | VI6T | [30] | |
Burned Area Index | BAI | [58] | |
Modified Soil Adjusted VegetationIndex | MSAVI | [59] | |
Mid InfraRed Burn Index | MIRBI | [15] | |
Char Soil Index | CSI | [60] |
Scores | ANOVA | Separability Index | Optimality Index |
---|---|---|---|
1 | The index significantly distinguishes all 4 fire severity classes | AVG Separability > 1 | AVG Optimality > 0.75 |
0.75 | The index significantly distinguishes 3 fire severity classes | 0.75 ≤ AVG Separability ≤ 1 | 0.5 ≤ AVG Optimality ≤ 0.75 |
0 | The index significantly distinguishes less than 3 fire severity classes | AVG Separability < 0.75 | AVG Optimality < 0.5 |
Forest Type | Forest Group (FG) | FG Code | Summary Total Scores for all Spectral Indices by Three Methods | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
dNDVI | dNBR | dNDWI | dNBRT | dNDVIT | dVI6T | dBAI | dMSAVI | dMIRBI | dCSI | |||
Moist Forest (S) | CF-S | 6 | 2 | 2.5 | 2.75 | 2.5 | 2 | 2 | 1.75 | 2 | 0 | 1.75 |
Tall Mist Forest | CF-S | 6 | 0.75 | 0 | 1.5 | 0.75 | 0 | 0.75 | 0.75 | 1.5 | 0 | 0.75 |
AVG for CF-S | 1.38 | 1.25 | 2.13 | 1.63 | 1.00 | 1.38 | 1.25 | 1.75 | 0.00 | 1.25 | ||
Closed-forest | CF-R | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Grassy/heathy Dry Forest | OF-R | 1 | 0.75 | 2.75 | 2.5 | 2.75 | 1.75 | 1 | 0 | 0.75 | 0 | 1.75 |
Tall Mixed Forest | OF-R | 1 | 0.75 | 0.75 | 0.75 | 0 | 0.75 | 0.75 | 0 | 0.75 | 0 | 0 |
Foothills Forest | OF-R | 1 | 1 | 2.5 | 2.5 | 2.5 | 1.75 | 2.5 | 0.75 | 1 | 0.75 | 1.75 |
Forby Forest | OF-R | 1 | 1.5 | 2.5 | 2 | 1.5 | 0.75 | 1.5 | 0 | 1.5 | 0 | 0.75 |
Moist Forest (R) | OF-R | 1 | 0.75 | 2.5 | 1.75 | 1.5 | 0.75 | 1.5 | 0.75 | 0.75 | 1.75 | 1 |
AVG for OF-R | 0.95 | 2.2 | 1.9 | 1.65 | 1.15 | 1.45 | 0.3 | 0.95 | 0.5 | 1.05 | ||
High Altitude Shrubland/Woodland | W-R | 3 | 1.75 | 3 | 2.75 | 2 | 1.75 | 2.5 | 0.75 | 1.75 | 0 | 2 |
Inland Plains Woodland | W-R | 3 | 1.5 | 0.75 | 0.75 | 0.75 | 1.5 | 0.75 | 0 | 1.5 | 0.75 | 0.75 |
Riverine Woodland/Forest | W-R | 3 | 1 | 2.5 | 1.75 | 1.75 | 1 | 0.75 | 0 | 1 | 1 | 1.75 |
AVG for W-R | 1.42 | 2.08 | 1.75 | 1.50 | 1.42 | 1.33 | 0.25 | 1.42 | 0.58 | 1.50 | ||
Lowan Mallee | LW-R | 4 | 0.75 | 0.75 | 0 | 0.75 | 1.5 | 0 | 0 | 0.75 | 1.5 | 0 |
Broombush Whipstick | LW-R | 4 | 0 | 1 | 0.75 | 1.75 | 0 | 0 | 0 | 0 | 1 | 0.75 |
AVG for LW-R | 0.38 | 0.88 | 0.38 | 1.25 | 0.75 | 0.00 | 0.00 | 0.38 | 1.25 | 0.38 | ||
Riparian | OF-RS | 5 | 1.75 | 0.75 | 0.75 | 1 | 1.5 | 0.75 | 0 | 1.5 | 0 | 0.75 |
Forest Group | Spectral Indices | OA | Kappa | Commission Error * | Omission Errors * | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
U | L | M | H | U | L | M | H | ||||
Forest functional groups | |||||||||||
OF-R | dNBR | 0.68 | 0.53 | 0.41 | 0.69 | 0.12 | 0.32 | 0.25 | 0.45 | 0.41 | 0.11 |
OF-R | dNDWI | 0.60 | 0.44 | 0.38 | 0.7 | 0.18 | 0.42 | 0.16 | 0.43 | 0.54 | 0.18 |
W-R | dNBR | 0.69 | 0.56 | 0.54 | 0.68 | 0.13 | 0.16 | 0.03 | 0.53 | 0.43 | 0.09 |
W-R | dNDWI | 0.62 | 0.47 | 0.57 | 0.7 | 0.21 | 0.25 | 0.08 | 0.55 | 0.53 | 0.14 |
W-R (Inland Plains Woodland) | dNDVI | 0.56 | 0.41 | 0.62 | 0.55 | 0.17 | 0.33 | 0.5 | 0.5 | 0.64 | 0.09 |
W-R (Inland Plains Woodland) | dNDVIT | 0.56 | 0.41 | 0.56 | 0.53 | 0.33 | 0.33 | 0.6 | 0.3 | 0.71 | 0.09 |
W-R (Inland Plains Woodland) | dMSAVI | 0.58 | 0.44 | 0.58 | 0.5 | 0.17 | 0.33 | 0.5 | 0.4 | 0.64 | 0.09 |
LW-R | dNBR | 0.52 | 0.36 | 0.43 | 0.64 | 0.43 | 0.5 | 0.2 | 0.77 | 0.43 | 0.55 |
LW-R | dNBRT | 0.50 | 0.33 | 0.42 | 0.76 | 0.44 | 0.47 | 0.28 | 0.82 | 0.39 | 0.55 |
OF-RS | dNDVI | 0.78 | 0.70 | 0.1 | 0.37 | 0 | 0.25 | 0.1 | 0 | 0.36 | 0.36 |
OF-RS | dNDVIT | 0.82 | 0.77 | 0.17 | 0.4 | 0 | 0 | 0 | 0.1 | 0.09 | 0.43 |
OF-RS | dMSAVI | 0.78 | 0.71 | 0.1 | 0.44 | 0 | 0.1 | 0.1 | 0 | 0.36 | 0.36 |
CF-S | dNDWI | 0.52 | 0.37 | 0.39 | 0.69 | 0.28 | 0.46 | 0.49 | 0.45 | 0.57 | 0.35 |
Combinations of forest groups ** | |||||||||||
OF-R + W-R | dNBR | 0.67 | 0.52 | 0.45 | 0.74 | 0.17 | 0.22 | 0.17 | 0.56 | 0.42 | 0.13 |
OF-R + W-R | dNDWI | 0.60 | 0.44 | 0.42 | 0.72 | 0.22 | 0.35 | 0.2 | 0.49 | 0.53 | 0.17 |
OF-RS + W-R(Inland Plains Woodland) | dNDVI | 0.67 | 0.56 | 0.3 | 0.47 | 0.21 | 0.23 | 0.3 | 0.11 | 0.54 | 0.32 |
OF-RS + W-R(Inland Plains Woodland) | dNDVIT | 0.72 | 0.62 | 0.28 | 0.49 | 0.07 | 0.1 | 0.35 | 0.05 | 0.46 | 0.24 |
OF-RS + W-R(Inland Plains Woodland) | dMSAVI | 0.74 | 0.65 | 0.27 | 0.41 | 0.07 | 0.17 | 0.2 | 0.11 | 0.46 | 0.24 |
Forest Group | Spectral Indices | OA | Kappa | Commission Error * | Omission Errors * | ||
---|---|---|---|---|---|---|---|
UL | MH | UL | MH | ||||
OF-R | dNBR | 0.84 | 0.61 | 0.43 | 0.02 | 0.05 | 0.19 |
OF-R | dNDWI | 0.82 | 0.58 | 0.45 | 0.02 | 0.07 | 0.2 |
W-R | dNBR | 0.81 | 0.56 | 0.47 | 0.02 | 0.07 | 0.22 |
W-R | dNDWI | 0.79 | 0.51 | 0.5 | 0.03 | 0.1 | 0.23 |
W-R (Inland Plains Woodland) | dNDVI | 0.84 | 0.70 | 0.26 | 0 | 0 | 0.28 |
W-R (Inland Plains Woodland) | dNDVIT | 0.82 | 0.65 | 0.29 | 0 | 0 | 0.32 |
W-R (Inland Plains Woodland) | dMSAVI | 0.84 | 0.70 | 0.26 | 0 | 0 | 0.28 |
LW-R | dNBR | 0.77 | 0.54 | 0.27 | 0.17 | 0.13 | 0.33 |
LW-R | dNBRT | 0.77 | 0.54 | 0.27 | 0.17 | 0.13 | 0.33 |
OF-RS | dNDVI | 0.87 | 0.74 | 0.23 | 0 | 0 | 0.24 |
OF-RS | dNDVIT | 0.87 | 0.74 | 0.23 | 0 | 0 | 0.24 |
OF-RS | dMSAVI | 0.82 | 0.65 | 0.29 | 0 | 0 | 0.32 |
CF-S | dNDWI | 0.88 | 0.82 | 0.21 | 0 | 0 | 0.22 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, B.N.; Tanase, M.A.; Bennett, L.T.; Aponte, C. Evaluation of Spectral Indices for Assessing Fire Severity in Australian Temperate Forests. Remote Sens. 2018, 10, 1680. https://doi.org/10.3390/rs10111680
Tran BN, Tanase MA, Bennett LT, Aponte C. Evaluation of Spectral Indices for Assessing Fire Severity in Australian Temperate Forests. Remote Sensing. 2018; 10(11):1680. https://doi.org/10.3390/rs10111680
Chicago/Turabian StyleTran, Bang Nguyen, Mihai A. Tanase, Lauren T. Bennett, and Cristina Aponte. 2018. "Evaluation of Spectral Indices for Assessing Fire Severity in Australian Temperate Forests" Remote Sensing 10, no. 11: 1680. https://doi.org/10.3390/rs10111680
APA StyleTran, B. N., Tanase, M. A., Bennett, L. T., & Aponte, C. (2018). Evaluation of Spectral Indices for Assessing Fire Severity in Australian Temperate Forests. Remote Sensing, 10(11), 1680. https://doi.org/10.3390/rs10111680