Supplementary materials: Evaluation of spectral indices for assessing fire severity in Australian temperate forests

Forest type	Total area within fire	Number of	Total plots by forest			
21	boundary	Unburnt	Low	Moderate	High	type
Grassy / heathy Dry Forest	59,822	37	32	238	162	469
Tall Mixed Forest	1,515	21	21	25	26	93
Foothills Forest	9,401	22	27	48	30	127
Forby Forest	95,934	60	34	205	96	395
Moist Forest (S)	36,309	29	28	40	52	149
Moist Forest (R)	106,084	41	72	448	126	687
Riparian (higher rainfall)	12,127	24	24	26	34	108
Tall Mist Forest	69,828	68	27	64	25	184
Closed-forest	8,243	22	24	23	27	96
high Altitude Shrubland / Woodland	22,899	30	23	110	158	321
Inland Plains Woodland	10,116	25	23	33	27	108
Riverine Woodland / Forest	28,788	60	132	459	211	862
lowan Mallee	5,220	31	27	27	29	114
Broombush Whipstick	2,557	30	28	29	26	113
Total plots by fire severity		500	522	1775	1029	3826

Bang Nguyen Tran, Mihai A. Tanase, Lauren T. Bennett and Cristina Aponte

Table S1. Numbers of reference plots for fire severity analysis by forest type

* Fire severity classification was adopted from Department of Environment, Water, Land and Planning of Victoria (DEWLP), Melbourne, Victoria. Unburnt: no crown scorch severity with less than 1% of eucalypt and non-eucalypt crowns are scorched; Low severity: light crown scorch with 1 - 35% of eucalypt crowns are scorched; Moderate severity: moderate crown scorch with 30 - 65% of eucalypt crowns are scorched; High severity: crown burn with 70 - 100% of eucalypt crowns are burnt.

Table S2. Landsat 5 TM images used to compute spectral indices of the reference plots (bands used: 3÷7)
--

Fire season	Path	Row	Fire start date	Days before the fire	Days after the fire
1998	091	86	10 Jan 1998	48	32
2006	092	86	24 Feb 2006	96	80
2006	093	86	16 Feb 2006	17	64
2006	094	86	07 Feb 2006	16	32
2007	095	85	29 Nov 2006	48	48
2007	095	86	21 Nov 2006	40	56
2009	091	86	16 Feb 2009	23	41
2009	092	86	16 Feb 2009	16	64

Table S3. A summary of scores for all ten spectral indices from three methods of evaluation by forest type. Higher values in all cases indicates greater capacity to discriminate between fire-severity classes (i.e. a total score of 3 indicates strong discrimination by all three evaluation methods).

_	Forest	Evaluation	Scores by index									
Forest name	Group	Methods	dND VI	dNB R	dND WI	dNB RT	dND VIT	dVI6 T	dBA I	dMS AVI	dMI RBI	dCSI
		ANOVA	0.75	1	1	1	1	1	0	0.75	0	1
Grassy / heathy Dry	OF-R	M analysis Optimality	0	1	0.75	1	0.75	0	0	0	0	0
Forest		analysis	0	0.75	0.75	0.75	0	0	0	0	0	0.75
		Total	0.75	2.75	2.5	2.75	1.75	1	0	0.75	0	1.75
		ANOVA	0.75	0.75	0.75	0	0.75	0.75	0	0.75	0	0
Tall Mixed Forest	OF-R	M analysis Optimality	0	0	0	0	0	0	0	0	0	0
rolest		analysis	0	0	0	0	0	0	0	0	0	0
		Total	0.75	0.75	0.75	0	0.75	0.75	0	0.75	0	0
		ANOVA	1	1	1	1	1	1	0.75	1	0.75	1
Foothills Forest	OF-R	M analysis Optimality	0	0.75	0.75	0.75	0.75	0.75	0	0	0	0
		analysis	0	0.75	0.75	0.75	0	0.75	0	0	0	0.75
		Total	1	2.5	2.5	2.5	1.75	2.5	0.75	1	0.75	1.75
		ANOVA	0.75	0.75	1	0.75	0.75	0.75	0	0.75	0	0.75
Forby Forest	OF-R	M analysis Optimality	0.75	1	1	0.75	0	0.75	0	0.75	0	0
		analysis Total	0	0.75	0	0	0	0	0	0	0	0
			1.5	2.5	2	1.5	0.75	1.5	0	1.5	0	0.75
		ANOVA	0.75	0.75	1	0.75	0.75	0.75	0.75	0.75	1	1
Moist Forest	OF-R	M analysis Optimality analysis	0 0	1 0.75	0.75 0	0.75 0	0 0	0.75 0	0 0	0 0	0.75 0	0 0
		Total										
		ANOVA	0.75	2.5	1.75	1.5	0.75	1.5	0.75	0.75	1.75	1
		M analysis	1	0.75	0.75	0.75	1	1	0.75	1	0	0
Moist Forest	CF-S	Optimality analysis	1 0	1 0.75	1 1	1 0.75	1 0	1 0	1 0	1 0	0 0	0.75 1
		Total	2	2.5	2.75	2.5	2	2	1.75	2	0	1.75
		ANOVA	0.75	0	0	0	0.75	- 0.75	0	_ 0.75	0	0
Riparian (higher	OF-RS	M analysis Optimality	1	0.75	0	1	0.75	0	0	0.75	0	0
rainfall)		analysis	0	0	0.75	0	0	0	0	0	0	0.75
		Total	1.75	0.75	0.75	1	1.5	0.75	0	1.5	0	0.75
		ANOVA	0	0	0.75	0.75	0	0.75	0.75	0.75	0	0
Tall Mist	CF-S	M analysis Optimality	0.75	0	0.75	0	0	0	0	0.75	0	0.75
Forest	0	analysis	0	0	0	0	0	0	0	0	0	0
		Total	0.75	0	1.5	0.75	0	0.75	0.75	1.5	0	0.75
		ANOVA	0	0	0	0	0	0	0	0	0	0
Closed- forest	CF-R	M analysis Optimality	0	0	0	0	0	0	0	0	0	0
		analysis	0	0	0	0	0	0	0	0	0	0
		Total	0	0	0	0	0	0	0	0	0	0

Remote Sens. 2018, 10, x; doi: FOR PEER REVIEW

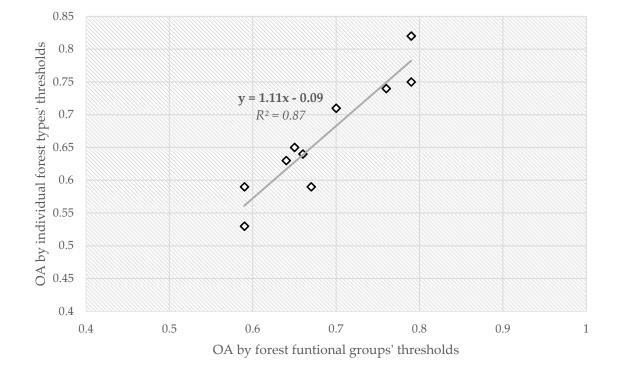
www.mdpi.com/journal/remotesensing

Remote Sens. 2018, 10, x FOR PEER REVIEW

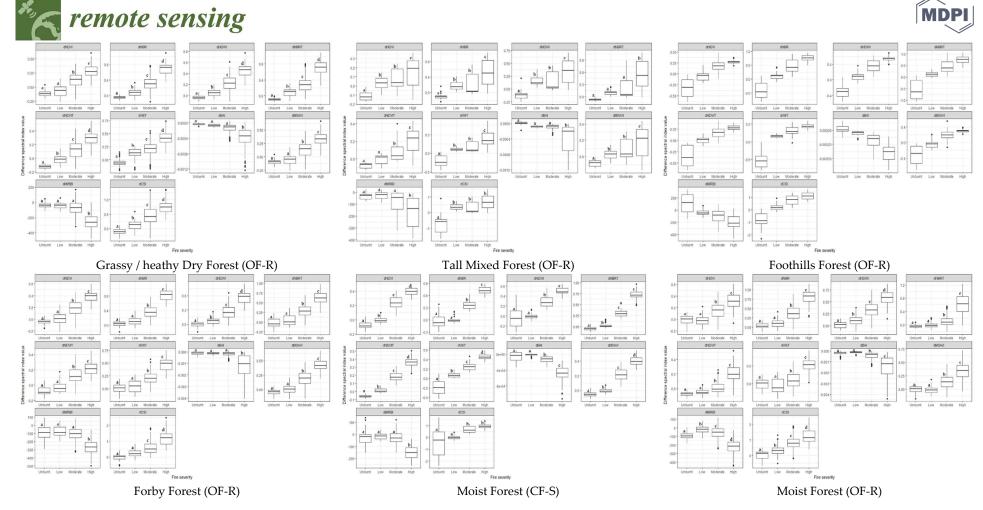
_

-

1 · 1		ANOVA	1	1	1	1	1	1	0	1	0	1
high Altitude W-R Shrubland / Woodland		M analysis	0.75	1	0.75	1	0.75	0.75	0.75	0.75	0	0
	Optimality analysis Total	0	1	1	0	0	0.75	0	0	0	1	
			1.75	3	2.75	2	1.75	2.5	0.75	1.75	0	2
		ANOVA	0.75	0.75	0.75	0.75	0.75	0.75	0	0.75	0.75	0.75
Inland		M analysis	0.75	0	0	0	0.75	0	0	0.75	0	0
Plains W-R Woodland	W-R	Optimality analysis	0	0	0	0	0	0	0	0	0	0
		Total	1.5	0.75	0.75	0.75	1.5	0.75	0	1.5	0.75	0.75
		ANOVA	1	1	1	1	1	0.75	0	1	1	1
Riverine		M analysis	0	0.75	0	0.75	0	0	0	0	0	0
Woodland /	W-R	Optimality										
Forest		analysis	0	0.75	0.75	0	0	0	0	0	0	0.75
		Total	1	2.5	1.75	1.75	1	0.75	0	1	1	1.75
		ANOVA	0.75	0.75	0	0.75	0.75	0	0	0.75	0.75	0
lowan I W-F	LW-R	M analysis Optimality	0	0	0	0	0.75	0	0	0	0.75	0
Mallee		analysis	0	0	0	0	0	0	0	0	0	0
		Total	0.75	0.75	0	0.75	1.5	0	0	0.75	1.5	0
		ANOVA	0	1	0.75	1	0	0	0	0	1	0.75
		M analysis	0	0	0	0.75	0	0	0	0	0	0
Broombush Whipstick	LW-R	Optimality										
		analysis	0	0	0	0	0	0	0	0	0	0
		Total	0	1	0.75	1.75	0	0	0	0	1	0.75


Table S4. Thresholds for selected spectral indices for fire severity assessment by forest groups or type

E-mat - man	Spectral		Thresholds*			
Forest group	index	U to L	L to M	M to H		
OF-R	dNBR	0.040	0.215	0.545		
OF-R	dNDWI	0.033	0.185	0.395		
W-R	dNBR	0.083	0.260	0.540		
W-R	dNDWI	0.050	0.190	0.375		
W-R (Inland Plains Woodland)	dNDVI	-0.050	0.035	0.263		
W-R (Inland Plains Woodland)	dNDVIT	-0.020	0.065	0.305		
W-R (Inland Plains Woodland)	dMSAVI	-0.070	0.045	0.310		
LW-R	dNBR	0.063	0.160	0.360		
LW-R	dNBRT	0.100	0.225	0.475		
OF-RS	dNDVI	-0.098	0.160	0.340		
OF-RS	dNDVIT	-0.055	0.128	0.320		
OF-RS	dMSAVI	-0.080	0.158	0.358		
CF-S	dNDWI	-0.003	0.203	0.438		
OF-R + W-R	dNBR	0.050	0.230	0.550		
OF-R + W-R	dNDWI	0.035	0.180	0.385		
OF-RS + W-R (Inland Plains Woodland)	dNDVI	-0.073	0.128	0.328		
OF-RS + W-R (Inland Plains Woodland)	dNDVIT	-0.043	0.128	0.330		
OF-RS + W-R (Inland Plains Woodland)	dMSAVI	-0.075	0.125	0.333		


* U, L, M and H stand for unburnt, low, moderate and high severity classes; values indicate the index value at the transition between two fire-severity classes (e.g. values below the 'U to L' threshold are classified as Unburnt, and those above are classified as Low-severity up to the L to M threshold etc).

0 1		
Forest group	Spectral indices	Thresholds*
OF-R	dNBR	0.230
OF-R	dNDWI	0.190
W-R	dNBR	0.273
W-R	dNDWI	0.203
W-R (Inland Plains Woodland)	dNDVI	0.125
W-R (Inland Plains Woodland)	dNDVIT	0.160
W-R (Inland Plains Woodland)	dMSAVI	0.140
LW-R	dNBR	0.218
LW-R	dNBRT	0.300
OF-RS	dNDVI	0.153
OF-RS	dNDVIT	0.108
OF-RS	dMSAVI	0.150
CF-S	dNDWI	0.230

 Table S5. Thresholds by forest type for selected spectral indices of the transition from Unburnt and Low (UL) to Moderate and High (MH) fire severity.

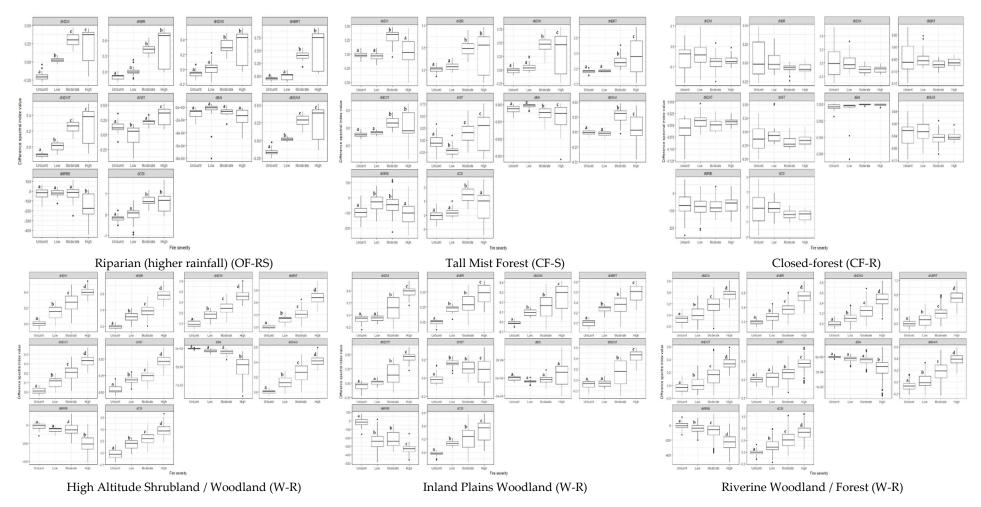


Figure S1. Scatterplot between overall accuracies (OA) estimated using defined thresholds in the bestperforming index by forest type (i.e. mean of multiple forest types per group) and by forest functional group, indicating similar levels of accuracy at the two levels of forest classification. Each point represents for each best performing index in each forest type.

Figure S2. Boxplots of 10 difference indices between pre- and post-fire spectral indices derived from Landsat satellite images at four different fire severity classes (unburnt, low, moderate and high severity) for all individual forest types. (Means that do not share a letter are statistically significant different).

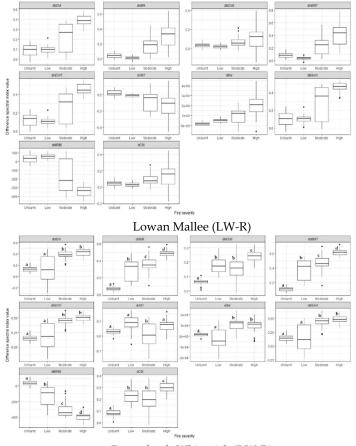
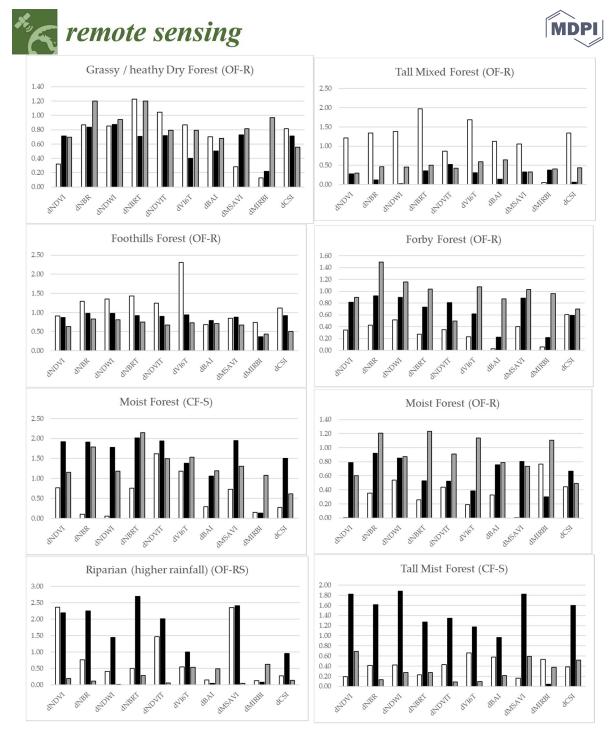
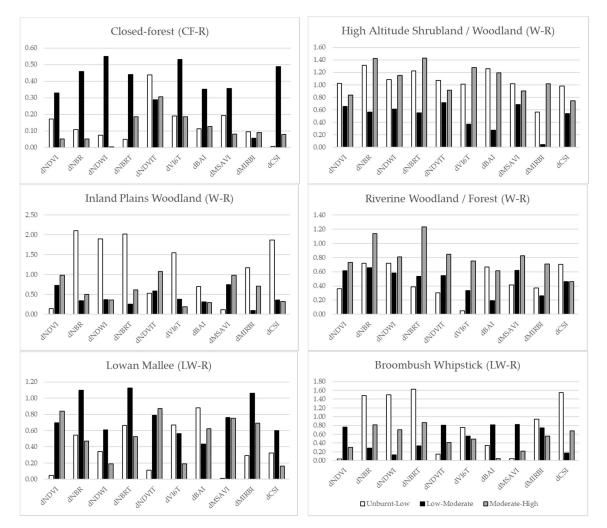
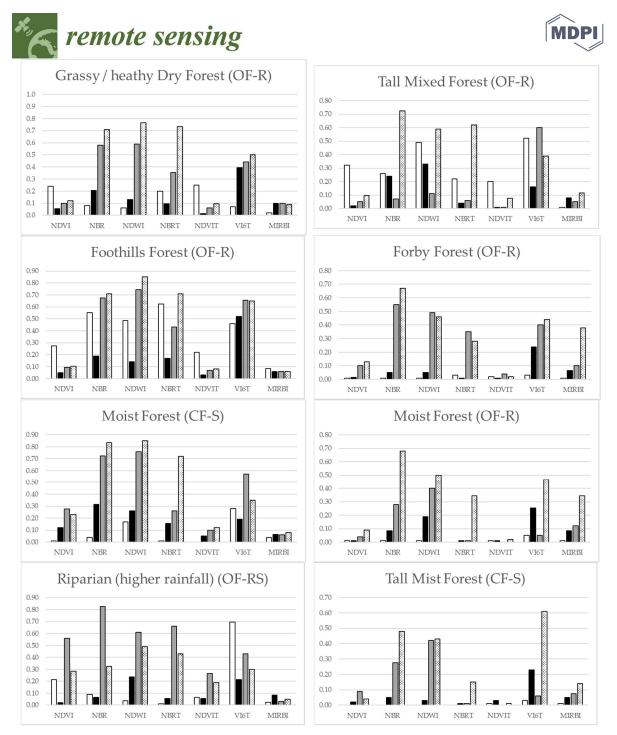

Remote Sens. 2018, 10, x FOR PEER REVIEW

Figure S2. (Continued) Boxplots of 10 difference indices between pre- and post-fire spectral indices derived from Landsat satellite images at four different fire severity classes (unburnt, low, moderate and high severity) for all individual forest types. (Means that do not share a letter are statistically significant different).





Broombush Whipstick (LW-R)


Figure S2. (Continued) Boxplots of 10 difference indices between pre- and post-fire spectral indices derived from Landsat satellite images at four different fire severity classes (unburnt, low, moderate and high severity) for all individual forest types. (Means that do not share a letter are statistically significant different).

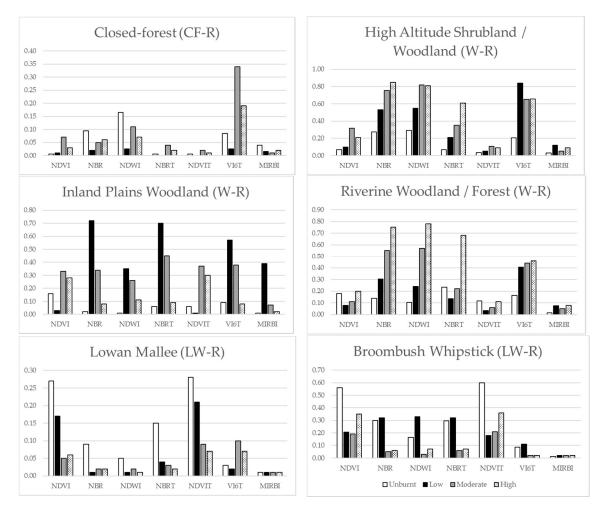

Figure S3. M values indicating the capacity of 10 spectral indices to distinguish between fire-severity classes for resprouter (R), obligate seeder (S) and mixed traits (RS) forest types; the higher the value of M, the better the discrimination between two classes.

Figure S3. (Continued) M values indicating the capacity of 10 spectral indices to distinguish between fire-severity classes for resprouter (R), obligate seeder (S) and mixed traits (RS) forest types; the higher the value of M, the better the discrimination between two classes.

Figure S4. Bar charts for median values of spectral indices' optimality derived from Landsat satellite images at four different classes: unburnt to low, moderate and high severity) for the resprouter (R), obligate seeder (S) and mixed traits (RS) forest ecosystems. Optimality values for NDVI, BAI and MSAVI are equal; Optimality values for NDWI and CSI are also equal dues to the same input bands for calculating these optimality values.

Figure S4. (Continued) Bar charts for median values of spectral indices' optimality derived from Landsat satellite images at four different classes: unburnt to low, moderate and high severity) for the resprouter (R), obligate seeder (S) and mixed traits (RS) forest ecosystems. Optimality values for NDVI, BAI and MSAVI are equal; Optimality values for NDWI and CSI are also equal dues to the same input bands for calculating these optimality values.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).