Analysis of Forest Utilization Patterns to Improve Life Satisfaction and Policy Directions
Abstract
1. Introduction
- (1)
- Do demographic characteristics (gender, age, type of residence, monthly household income, education, etc.) influence life satisfaction?
- (2)
- How do forest visit characteristics of daily (less than 4 h) visitors (e.g., visit frequency, travel distance, and presence of companion animals) affect life satisfaction?
- (3)
- How do forest visit characteristics of day (more than 4 h) visitors (e.g., diversity of visited locations, visit frequency, expenditure, and presence of companion animals) affect life satisfaction?
- (4)
- How do forest visit characteristics of overnight (more than 1 night) visitors (e.g., diversity of visited locations, number of nights, visit frequency, expenditure, and presence of companion animals) affect life satisfaction?
2. Materials and Methods
2.1. Survey Overview
2.2. Survey Instrument
2.3. Statistical Analysis
3. Results
3.1. Demographic Characteristics
3.2. Impact of Personal Characteristics on Life Satisfaction
3.3. Impact of Forest Visitation Type on Life Satisfaction
3.3.1. Characteristics of Forest Visits by Type
3.3.2. Characterization of Daily Visitors
3.3.3. Characterization of Day Visitors
3.3.4. Characterization of Overnight Visitors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haskell, W.L.; Blair, S.N.; Hill, J.O. Physical activity: Health outcomes and importance for public health policy. Prev. Med. 2009, 49, 280–282. [Google Scholar] [CrossRef] [PubMed]
- McGinnis, J.M.; Williams-Russo, P.; Knickman, J.R. The case for more active policy attention to health promotion. Health Aff. 2002, 2, 78–93. [Google Scholar] [CrossRef] [PubMed]
- Kaminsky, L.A.; German, C.; Imboden, M.; Ozemek, C.; Peterman, J.E.; Brubaker, P.H. The importance of healthy lifestyle behaviors in the prevention of cardiovascular disease. Prog. Cardiovasc. Dis. 2022, 70, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Katz, D.L. Disease prevention and health promotion: How integrative medicine fits. Am. J. Prev. Med. 2015, 49, S230–S240. [Google Scholar] [CrossRef]
- Joshanloo, M.; Weijers, D. Aversion to happiness across cultures: A review of where and why people are averse to happiness. J. Happiness Stud. 2014, 15, 717–735. [Google Scholar] [CrossRef]
- Mangra, G.I.; Mangra, M.G.; Bocean, C.G.; Vărzaru, A.A. Assessing the Relationships between Physical Activity, a Healthy Life, and Personal Happiness in European Union Countries. Healthcare 2024, 12, 1941. [Google Scholar] [CrossRef]
- Lee, B.C. A Study on Relationship between Work Life Balance and a Sense of Happiness of Leisure Sports Participants. Korean J. Phys. Educ. 2016, 55, 549–557. [Google Scholar]
- Kelliher, C.; Richardson, J.; Boiarintseva, G. All of work? All of life? Reconceptualising work-life balance for the 21st century. Hum. Resour. Manag. J. 2019, 29, 97–112. [Google Scholar] [CrossRef]
- Gragnano, A.; Simbula, S.; Miglioretti, M. Work–life balance: Weighing the importance of work–family and work–health balance. Int. J. Environ. Res. Public Health 2020, 17, 907. [Google Scholar] [CrossRef]
- Huete-Alcocer, N.; López-Ruiz, V.R.; Alfaro-Navarro, J.L.; Nevado-Peña, D. European Citizens’ happiness: Key factors and the mediating effect of quality of life, a PLS approach. Mathematics 2022, 10, 367. [Google Scholar] [CrossRef]
- Diener, E.D.; Emmons, R.A.; Larsen, R.J.; Griffin, S. The satisfaction with life scale. J. Personal. Assess. 1985, 49, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Diener, E.; Sim, J.H. Happiness/Subjective well-being. In Emotion Theory: The Routledge Comprehensive Guide; Routledge: New York, NY, USA, 2024; pp. 199–217. [Google Scholar]
- Statistics Research Institute. Quality of Life Indicators in Korea 2023; Statistics Research Institute: Daejeon, Republic of Korea, 2024. [Google Scholar]
- Hansmann, R.; Hug, S.M.; Seeland, K. Restoration and stress relief through physical activities in forests and parks. Urban For. Urban Green. 2007, 6, 213–225. [Google Scholar] [CrossRef]
- Grilli, G.; Sacchelli, S. Health benefits derived from forest: A review. Int. J. Environ. Res. Public Health 2020, 17, 6125. [Google Scholar] [CrossRef]
- Karjalainen, E.; Sarjala, T.; Raitio, H. Promoting human health through forests: Overview and major challenges. Environ. Health Prev. Med. 2010, 15, 1–8. [Google Scholar] [CrossRef]
- Townsend, M. Feel blue? Touch green! Participation in forest/woodland management as a treatment for depression. Urban For. Urban Green. 2006, 5, 111–120. [Google Scholar] [CrossRef]
- Morita, E.; Fukuda, S.; Nagano, J.; Hamajima, N.; Yamamoto, H.; Iwai, Y.; Nakashima, T.; Ohira, G.; Shirakawa, T. Sychological effects of forest environments on healthy adults: Shinrin-yoku (forest-air bathing, walking) as a possible method of stress reduction. Public Health 2007, 121, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Ochiai, H.; Ikei, H.; Song, C.; Kobayashi, M.; Miura, T.; Kagawa, T.; Li, Q.; Kumeda, S.; Imai, M.; Miyazaki, Y. Physiological and psychological effects of a forest therapy program on middle-aged females. Int. J. Environ. Res. Public Health 2015, 12, 15222–15232. [Google Scholar] [CrossRef]
- Ulrich, R.S. Visual landscapes and psychological well-being. Landsc. Res. 1979, 4, 17–23. [Google Scholar] [CrossRef]
- Brymer, E.; Davids, K.; Mallabon, L. Understanding the psychological health and well-being benefits of physical activity in nature: An ecological dynamics analysis. Ecopsychology 2014, 6, 189–197. [Google Scholar]
- Wolsko, C.; Lindberg, K. Experiencing connection with nature: The matrix of psychological well-being, mindfulness, and outdoor recreation. Ecopsychology 2013, 5, 80–91. [Google Scholar] [CrossRef]
- Sung, J.D.; Woo, J.M.; Kim, W.; Lim, S.K.; Chung, E.J. The effect of cognitive behavior therapy-based “forest therapy” program on blood pressure, salivary cortisol level, and quality of life in elderly hypertensive patients. Clin. Exp. Hypertens. 2012, 34, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Han, S.J.; Koo, C.D. Effects of healing forest walks for short breaks on mood state, quality of life, and stress reduction of university hospital workers. J. People Plants Environ. 2018, 21, 423–431. [Google Scholar] [CrossRef]
- Takayama, N.; Morikawa, T.; Bielinis, E. Relation between psychological restorativeness and lifestyle, quality of life, resilience, and stress-coping in forest settings. Int. J. Environ. Res. Public Health 2019, 16, 1456. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Forest Science. A Commentary on Forest Through the Eyes of the People Vol 4.: Use the 2022 Forest Welfare Statistics Report; National Institute of Forest Science: Seoul, Republic of Korea, 2023. [Google Scholar]
- Výbošťok, J.; Pichlerová, M.; Lamatungga, K.E.; Tamatam, D.; Önkal, D.; Halaj, D.; Pichler, V. Preferences for woodland activities and forest features as predictors of well-being after forest visits: Evidence from a nationally representative survey in Slovakia. Ambio 2024, 53, 795–807. [Google Scholar] [CrossRef]
- Agimass, F.; Lundhede, T.; Panduro, T.E.; Jacobsen, J.B. The choice of forest site for recreation: A revealed preference analysis using spatial data. Ecosyst. Serv. 2018, 31, 445–454. [Google Scholar] [CrossRef]
- Jang, Y.S.; Yoo, R.H.; Lee, J.H. The characteristics of forest leisure activities and demographic factors influencing visitor preference. J. Korean Soc. For. Sci. 2020, 109, 231–242. [Google Scholar]
- Kim, D.H.; Kang, B.H.; Lee, E.J.; Kang, H.J.; Lee, J.H. An Analysis the Relationship between User Characteristics by Forest Welfare Facilities: Focusing on Correspondence Analysis. J. Korean Soc. For. Sci. 2024, 113, 1–13. [Google Scholar]
- Jee, B.G. Influence of Tourists’ Selective Inclination of Destination on their Tour Satisfaction, Revisit and Public Relations. J. Korea Contents Assoc. 2009, 9, 417–425. [Google Scholar] [CrossRef]
- Jang, Y.S.; Lee, J.H.; Yoo, R.H. The effects of forest visit characteristics on the individual life satisfaction. J. Korean Inst. For. Recreat. 2020, 24, 17–27. [Google Scholar] [CrossRef]
- OECD. OECD Guidelines on Measuring Subjective Well-Being; OECD Publishing: Paris, France, 2013. [Google Scholar]
- Jung, S.H.; Seo, D.G. Assessing Mediated Moderation and Moderated Mediation: Guidelines and Empirical Illustration. Korean J. Psychol. Gen. 2016, 35, 257–282. [Google Scholar] [CrossRef]
- Korea Forest Service. 2nd Forest Welfare Promotion Plan (2023~2027); Korea Forest Service: Daejeon, Republic of Korea, 2023. [Google Scholar]
- Hamer, M.; Stamatakis, E.; Steptoe, A. Dose-response relationship between physical activity and mental health: The Scottish Health Survey. Br. J. Sports Med. 2009, 43, 1111–1114. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, R.; Astell-Burt, T.; Richardson, E.A. A comparison of green space indicators for epidemiological research. J. Epidemiol. Community Health 2011, 65, 853–858. [Google Scholar] [CrossRef]
- Korpela, K.M.; Ylén, M.; Tyrväinen, L.; Silvennoinen, H. Favorite Green, Waterside and Urban Environments, Restorative Experiences and Perceived Health in Finland. Health Promot. Int. 2010, 25, 200–209. [Google Scholar] [CrossRef]
- Grahn, P.; Stigsdotter, U.A. Landscape planning and stress. Urban For. Urban Green. 2003, 2, 1–18. [Google Scholar] [CrossRef]
- Maas, J.; Verheij, R.A.; Groenewegen, P.P.; De Vries, S.; Spreeuwenberg, P. Green space, urbanity, and health: How strong is the relation? J. Epidemiol. Community Health 2006, 60, 587–592. [Google Scholar] [CrossRef]
- Korcz, N.; Kamińska, A.; Ciesielski, M. Is the Level of Quality of Life Related to the Frequency of Visits to Natural Areas? Forests 2024, 15, 2257. [Google Scholar] [CrossRef]
- Xu, S.; Yuan, S.; Li, J.; Gao, X.; Hu, J. Urban park green space use analysis based on trajectory big data: Experience from a medium–sized city in China. Heliyon 2024, 10, e26445. [Google Scholar] [CrossRef]
- Roovers, P.; Hermy, M.; Gulinck, H. Visitor profile, perceptions and expectations in forests from a gradient of increasing urbanisation in central Belgium. Landsc. Urban Plan. 2002, 59, 129–145. [Google Scholar] [CrossRef]
- Neuvonen, M.; Sievänen, T.; Tönnes, S.; Koskela, T. Access to green areas and the frequency of visits–A case study in Helsinki. Urban For. Urban Green. 2007, 6, 235–247. [Google Scholar] [CrossRef]
- Kim, J.; Won, Y.; Kim, Y.; Corley, E. Preferring Local over Non-Local Parks? Green Space Visit Patterns by Urban Residents in Desert Cities, Arizona. Landsc. Urban Plan. 2025, 256, 105292. [Google Scholar] [CrossRef]
- Hoehner, C.M.; Ramirez, L.K.B.; Elliott, M.B.; Handy, S.L.; Brownson, R.C. Perceived and objective environmental measures and physical activity among urban adults. Am. J. Prev. Med. 2005, 28, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, S. The restorative benefits of nature: Toward an integrative framework. J. Environ. Psychol. 1995, 15, 169–182. [Google Scholar] [CrossRef]
- Ulrich, R.S.; Simons, R.F.; Losito, B.D.; Fiorito, E.; Miles, M.A.; Zelson, M. Stress recovery during exposure to natural and urban environments. J. Environ. Psychol. 1991, 11, 201–230. [Google Scholar] [CrossRef]
- Rantakokko, M.; Keskinen, K.E.; Kokko, K.; Portegijs, E. Nature diversity and well-being in old age. Aging Clin. Exp. Res. 2018, 30, 527–532. [Google Scholar] [CrossRef]
- Keniger, L.E.; Gaston, K.J.; Irvine, K.N.; Fuller, R.A. What are the benefits of interacting with nature? Int. J. Environ. Res. Public Health 2013, 10, 913–935. [Google Scholar] [CrossRef] [PubMed]
- Bruley, E.; Locatelli, B.; Lavorel, S. Nature’s contributions to people: Coproducing quality of life from multifunctional landscapes. Ecol. Soc. 2021, 26, 12. Available online: https://hal.science/cirad-03920160/ (accessed on 1 March 2025). [CrossRef]
- Tu, X.; Huang, G.; Wu, J.; Guo, X. How do travel distance and park size influence urban park visits? Urban For. Urban Green. 2020, 52, 126689. [Google Scholar] [CrossRef]
- Hong, S.K.; Lee, S.W.; Jo, H.K.; Yoo, M.Y. Impact of frequency of visits and time spent in urban green space on subjective well-being. Sustainability 2019, 11, 4189. [Google Scholar] [CrossRef]
- Kamitsis, I.; Francis, A.J. Spirituality mediates the relationship between engagement with nature and psychological wellbeing. J. Environ. Psychol. 2013, 36, 136–143. [Google Scholar] [CrossRef]
- Mitchell, R. Is physical activity in natural environments better for mental health than physical activity in other environments? Soc. Sci. Med. 2013, 91, 130–134. [Google Scholar] [CrossRef]
- Morris, E.A.; Guerra, E. Are we there yet? Trip duration and mood during travel. Transp. Res. Part F Traffic Psychol. Behav. 2015, 33, 38–47. [Google Scholar] [CrossRef]
- Triguero-Mas, M.; Donaire-Gonzalez, D.; Seto, E.; Valentín, A.; Martínez, D.; Smith, G.; Hurst, G.; Carrasco-Turigas, G.; Masterson, D.; Berg, M.v.D.; et al. Natural outdoor environments and mental health: Stress as a possible mechanism. Environ. Res. 2017, 159, 629–638. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, G. Urban residential quarter green space and life satisfaction. Urban For. Urban Green. 2022, 69, 127510. [Google Scholar] [CrossRef]
- Jang, Y.S.; Yoo, R.H.; Lee, J.H. The effects of visit characteristics in neighborhood forest on individual life satisfaction. J. People Plants Environ. 2019, 22, 677–690. [Google Scholar] [CrossRef]
- Kim, J.H.; Chun, B.C. Association between companion animal ownership and overall life satisfaction in Seoul, Korea. PLoS ONE 2021, 16, e0258034. [Google Scholar] [CrossRef] [PubMed]
- Scoresby, K.J.; Strand, E.B.; Ng, Z.; Brown, K.C.; Stilz, C.R.; Strobel, K.; Barroso, C.S.; Souza, M. Pet ownership and quality of life: A systematic review of the literature. Vet. Sci. 2021, 8, 332. [Google Scholar] [CrossRef] [PubMed]
- Teo, J.T.; Thomas, S.J. Psychological mechanisms predicting wellbeing in pet owners: Rogers’ core conditions versus Bowlby’s attachment. Anthrozoös 2019, 32, 399–417. [Google Scholar] [CrossRef]
- Bock, J.L.; Nesbitt, L.; Mavoa, S.; Meitner, M.J. Attributes and benefits of urban green space visits–Insights from the City of Vancouver. Urban For. Urban Green. 2024, 98, 128399. [Google Scholar] [CrossRef]
- Toohey, A.M.; Rock, M.J.; O’Brien, C. Dog-Walking and Sense of Community in Neighborhoods: Implications for Promoting Regular Physical Activity in Adults 50 Years and Older. Health Place 2013, 22, 75–81. [Google Scholar] [CrossRef]
- McConnell, A.R.; Brown, C.M.; Shoda, T.M.; Stayton, L.E.; Martin, C.E. Friends with Benefits: On the Positive Consequences of Pet Ownership. J. Pers. Soc. Psychol. 2011, 101, 1239–1252. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Food and Rural Affairs. 2022 Public Awareness Survey of Animal Protection Report; Ministry of Agriculture, Food and Rural Affairs: Sejong, Republic of Korea, 2022. [Google Scholar]
- Choung, Y.; Pak, T.Y.; Chatterjee, S. Consumption and life satisfaction: The Korean evidence. Int. J. Consum. Stud. 2021, 45, 1007–1019. [Google Scholar] [CrossRef]
- Yu, H.S.; Ha, S.Y. influence of marketing mix factors of service quality on participation-satisfaction and re-purchase intention in marine Leisure sports. Korean J. Phys. Educ. 2007, 46, 485–494. [Google Scholar]
- Jeon, J.R.; Jeon, H.M. The Relationships among Tourism Experience, Tourism Satisfaction, Quality of Life, and Revisit Intention in Historical and Culture Tourism Sites—Focused on MZ Generation. Foodserv. Ind. J. 2022, 18, 243–256. [Google Scholar]
- Rittichainuwat, B.N.; Qu, H.; Mongknonvanit, C. A study of the impact of travel satisfaction on the likelihood of travelers to revisit Thailand. J. Travel Tour. Mark. 2002, 12, 19–43. [Google Scholar] [CrossRef]
- Ozili, P.K. The Acceptable R-Square in Empirical Modelling for Social Science Research. In Social Research Methodology and Publishing Results: A Guide to Non-Native English Speakers; IGI Global: Hershey, PA, USA, 2023; pp. 134–143. [Google Scholar]
Variables | N | % | |
---|---|---|---|
Sex | Male | 4297 | 45.5 |
Female | 5140 | 54.5 | |
Age | 15–19 | 317 | 3.4 |
20–29 | 890 | 9.4 | |
30–39 | 1408 | 14.9 | |
40–49 | 1393 | 14.8 | |
50–59 | 1969 | 20.9 | |
Over 60 | 3460 | 36.7 | |
Monthly Household Income (million won) | Under 200 | 644 | 6.8 |
200–400 | 1294 | 13.7 | |
400–600 | 1400 | 14.8 | |
Over 600 | 6099 | 64.6 | |
Type of Residence | Single-Family House | 2021 | 21.4 |
Apartment | 5695 | 60.3 | |
Townhouse/Rowhouse | 1574 | 16.7 | |
Other | 147 | 1.6 | |
Occupation | Have | 3075 | 32.6 |
Not | 6362 | 67.4 | |
Education | <University | 4431 | 47.0 |
>University | 5006 | 53.0 | |
Spouse | With | 3303 | 35.0 |
Without | 6134 | 65.0 | |
Children | With | 7626 | 80.8 |
Without | 1811 | 19.2 | |
Total | 9437 | 100 |
Variables | Mean | SD | T | p | |
---|---|---|---|---|---|
Sex | Male | 6.70 | 1.378 | 1.839 | 0.066 |
Female | 6.64 | 1.399 | |||
Occupation | Have | 6.74 | 1.362 | 6.937 | 0.000 ** |
Not | 6.52 | 1.435 | |||
Education | <University | 6.47 | 1.377 | 13.270 | 0.000 ** |
>University | 6.85 | 1.377 | |||
Spouse | With | 6.69 | 1.377 | 2.253 | 0.024 * |
Without | 6.62 | 1.412 | |||
Children | With | 6.72 | 1.368 | −6.894 | 0.000 ** |
Without | 6.46 | 1.458 |
Variables | Mean | SD | F | P | |
---|---|---|---|---|---|
Age | 15–19 | 6.57 | 1.438 | 27.936 | 0.000 ** |
20–29 | 6.87 | 1.368 | |||
30–39 | 6.88 | 1.367 | |||
40–49 | 6.75 | 1.328 | |||
50–59 | 6.74 | 1.363 | |||
Over 60 | 6.46 | 1.412 | |||
Monthly Household Income (million won) | Under 200 | 6.14 | 1.487 | 49.070 | 0.000 ** |
200–400 | 6.48 | 1.397 | |||
400–600 | 6.78 | 1.364 | |||
Over 600 | 6.74 | 1.367 | |||
Type of Residence | Single-Family House | 6.57 | 1.393 | 8.431 | 0.000 ** |
Apartment | 6.72 | 1.400 | |||
Townhouse/Rowhouse | 6.58 | 1.331 | |||
Other | 6.72 | 1.451 |
Daily (Mean ± SD) | Day (Mean ± SD) | Overnight (Mean ± SD) | |
---|---|---|---|
Number of visits (year) | 115.91 ± 85.82 | 3.34 ± 8.53 | 1.84 ± 1.58 |
Distance (minutes) | 16.41 ± 12.50 | - | - |
Number of visited areas (year) | - | 2.10 ± 1.09 | 1.46 ± 0.75 |
Number of nights stayed (year) | - | - | 3.94 ± 2.89 |
Expenditure (KRW) | - | 65,930 ± 43,799 | 183,043 ± 128,750 |
Companion animal (yes) | 16.62% | 7.43% | 8.18% |
Total | 6241 | 4870 | 2456 |
Independent Variable | Model 1 | Model 2 | ||||||
---|---|---|---|---|---|---|---|---|
SE | β | t-Value (p-Value) | SE | β | t-Value (p-Value) | |||
Constant | 0.156 | 41.474 (0.000 **) | 0.162 | 38.406 (0.000 **) | ||||
Number of Visits | 0.000 | 0.086 | 6.288 (0.000 **) | |||||
Distance | 0.001 | −0.003 | −0.254 (0.799) | |||||
Companion Animal | 0.048 | 0.027 | 2.148 (0.032 *) | |||||
Control Variable | Age | Over 60 | ||||||
15–19 | 0.128 | 0.047 | 3.369 (0.001 *) | 0.129 | 0.061 | 4.349 (0.000 **) | ||
20–29 | 0.093 | 0.051 | 3.207 (0.001 *) | 0.094 | 0.070 | 4.311 (0.000 **) | ||
30–39 | 0.071 | 0.029 | 1.782 (0.075) | 0.072 | 0.039 | 2.396 (0.017 *) | ||
40–49 | 0.064 | 0.007 | 0.440 (0.660) | 0.064 | 0.016 | 1.065 (0.287) | ||
50–59 | 0.053 | 0.028 | 1.804 (0.071) | 0.053 | 0.034 | 2.215 (0.027 *) | ||
Type of Residence | Other | |||||||
Single-Family House | 0.138 | −0.067 | −1.623 (0.105) | 0.138 | −0.061 | −1.487 (0.137) | ||
Apartment | 0.135 | −0.019 | −0.413 (0.680) | 0.134 | −0.014 | −0.306 (0.760) | ||
Townhouse/Rowhouse | 0.140 | −0.051 | −1.421 (0.155) | 0.140 | −0.048 | −1.360 (0.174) | ||
Monthly Household Income (million won) | Over 600 | |||||||
Under 200 | 0.092 | −0.071 | −3.777 (0.000 **) | 0.092 | −0.076 | −4.047 (0.000 **) | ||
200–400 | 0.066 | −0.053 | −3.126 (0.002 *) | 0.066 | −0.051 | −3.042 (0.002 *) | ||
400–600 | 0.057 | −0.002 | −0.131 (0.896) | 0.057 | −0.001 | −0.089 (0.929) | ||
Occupation | 0.043 | 0.041 | 2.815 (0.005 *) | 0.043 | 0.051 | 3.498 (0.000 **) | ||
Education | 0.046 | 0.093 | 5.728 (0.000 **) | 0.046 | 0.099 | 6.117 (0.000 **) | ||
Spouse | 0.049 | 0.060 | 3.737 (0.000 **) | 0.049 | 0.065 | 4.004 (0.000 **) | ||
Children | 0.065 | −0.023 | −1.168 (0.243) | 0.065 | −0.016 | −0.822 (0.411) | ||
Statistic | R2 = 0.039, adj R2 = 0.037, F = 16.871, p = 0.000 ** | R2 = 0.047, adj R2 = 0.044, F = 16.971, p = 0.000 ** Durbin-Watson = 1.632 |
Independent Variable | Model 1 | Model 2 | ||||||
---|---|---|---|---|---|---|---|---|
SE | β | t-Value (p-Value) | SE | β | t-Value (p-Value) | |||
Constant | 0.186 | 37.491 (0.000 **) | 0.189 | 34.712 (0.000 **) | ||||
Number of Visited Areas | 0.017 | 0.089 | 5.711 (0.000 **) | |||||
Number of Visits | 0.006 | 0.036 | 2.290 (0.022 *) | |||||
Expenditure | 0.005 | 0.081 | 5.532 (0.000 **) | |||||
Companion Animal | 0.069 | 0.032 | 2.195 (0.028 *) | |||||
Control Variable | Age | Over 60 | ||||||
15–19 | 0.125 | 0.020 | 1.190 (0.234) | 0.125 | 0.024 | 1.385 (0.166) | ||
20–29 | 0.086 | 0.089 | 4.018 (0.000 **) | 0.085 | 0.102 | 4.625 (0.000 **) | ||
30–39 | 0.066 | 0.055 | 2.575 (0.010 *) | 0.066 | 0.058 | 2.757 (0.006 *) | ||
40–49 | 0.059 | 0.018 | 0.937 (0.349) | 0.059 | 0.023 | 1.194 (0.233) | ||
50–59 | 0.051 | 0.037 | 1.960 (0.050*) | 0.051 | 0.036 | 1.930 (0.054) | ||
Type of Residence | Other | |||||||
Single-Family House | 0.170 | −0.062 | −1.080 (0.280) | 0.168 | −0.066 | −1.163 (0.245) | ||
Apartment | 0.167 | −0.082 | −1.179 (0.238) | 0.165 | −0.085 | −1.235 (0.217) | ||
Townhouse/Rowhouse | 0.170 | −0.135 | −2.426 (0.015*) | 0.169 | −0.141 | −2.552 (0.011 *) | ||
Monthly Household Income (million won) | Over 600 | |||||||
Under 200 | 0.127 | −0.024 | −1.387 (0.165) | 0.126 | −0.020 | −1.180 (0.238) | ||
200–400 | 0.063 | −0.066 | −3.689 (0.000 **) | 0.062 | −0.060 | −3.410 (0.001 **) | ||
400–600 | 0.051 | −0.042 | −2.588 (0.010 *) | 0.051 | −0.038 | −2.359 (0.018 *) | ||
Occupation | 0.045 | 0.064 | 3.810 (0.000 **) | 0.044 | 0.054 | 3.202 (0.001 **) | ||
Education | 0.044 | 0.095 | 5.184 (0.000 **) | 0.044 | 0.078 | 4.237 (0.000 **) | ||
Spouse | 0.052 | 0.043 | 2.080 (0.038 *) | 0.025 | 0.034 | 1.671 (0.095) | ||
Children | 0.064 | −0.072 | −3.723 (0.000 **) | 0.064 | −0.059 | −3.081 (0.002 **) | ||
Statistic | R2 = 0.032, adj R2 = 0.029, F = 10.070, p = 0.000 ** | R2 = 0.050, adj R2 = 0.046, F = 12.582, p = 0.000 ** Durbin-Watson = 1.833 |
Independent Variable | Model 1 | Model 2 | ||||||
---|---|---|---|---|---|---|---|---|
SE | β | t-Value (p-Value) | SE | β | t-Value (p-Value) | |||
Constant | 0.257 | 28.415 (0.000 **) | 0.264 | 27.407 (0.000 **) | ||||
Number of Visited Areas | 0.051 | 0.045 | 1.496 (0.135) | |||||
Number of Nights Stayed | 0.023 | −0.207 | −4.392 (0.000 **) | |||||
Number of Visits | 0.043 | 0.088 | 1.970 (0.049 *) | |||||
Expenditure | 0.002 | 0.049 | 2.289 (0.022 *) | |||||
Companion Animal | 0.097 | −0.010 | −0.512 (0.609) | |||||
Control Variable | Age | Over 60 | ||||||
15–19 | 0.159 | 0.002 | 0.088 (0.930) | 0.159 | 0.018 | 0.693 (0.488) | ||
20–29 | 0.123 | 0.013 | 0.376 (0.707) | 0.122 | 0.027 | 0.788 (0.431) | ||
30–39 | 0.098 | 0.048 | 1.443 (0.149) | 0.098 | 0.056 | 1.706 (0.088) | ||
40–49 | 0.094 | 0.027 | 0.916 (0.360) | 0.093 | 0.034 | 1.145 (0.252) | ||
50–59 | 0.088 | 0.012 | 0.441 (0.659) | 0.088 | 0.021 | 0.769 (0.442) | ||
Type of Residence | Other | |||||||
Single-Family House | 0.228 | −0.077 | −1.106 (0.269) | 0.227 | −0.062 | −0.899 (0.369) | ||
Apartment | 0.222 | −0.147 | −1.703 (0.089) | 0.221 | −0.133 | −1.541 (0.124) | ||
Townhouse/Rowhouse | 0.227 | −0.143 | −1.970 (0.049 *) | 0.226 | −0.128 | −1.768 (0.077) | ||
Monthly Household Income (million won) | Over 600 | |||||||
Under 200 | 0.204 | −0.057 | −2.532 (0.011 *) | 0.203 | −0.055 | −2.426 (0.015 *) | ||
200–400 | 0.093 | −0.082 | −3.627 (0.000 **) | 0.092 | −0.079 | −3.477 (0.001 **) | ||
400–600 | 0.078 | −0.014 | −0.643 (0.520) | 0.078 | −0.011 | −0.475 (0.635) | ||
Occupation | 0.069 | 0.040 | 1.615 (0.106) | 0.069 | 0.042 | 1.689 (0.091) | ||
Education | 0.070 | 0.085 | 3.303 (0.001 **) | 0.071 | 0.088 | 3.410 (0.001 **) | ||
Spouse | 0.075 | −0.015 | −0.511 (0.609) | 0.074 | −0.010 | −0.356 (0.722) | ||
Children | 0.097 | −0.069 | −2.879 (0.004 **) | 0.096 | −0.064 | −2.654 (0.008 **) | ||
Statistic | R2 = 0.027, adj R2 = 0.021, F = 4.376, p = 0.000 ** | R2 = 0.040, adj R2 = 0.032, F = 4.969, p = 0.000 ** Durbin-Watson = 1.894 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.; Lee, J. Analysis of Forest Utilization Patterns to Improve Life Satisfaction and Policy Directions. Sustainability 2025, 17, 3689. https://doi.org/10.3390/su17083689
Lee M, Lee J. Analysis of Forest Utilization Patterns to Improve Life Satisfaction and Policy Directions. Sustainability. 2025; 17(8):3689. https://doi.org/10.3390/su17083689
Chicago/Turabian StyleLee, Mijin, and Jeonghee Lee. 2025. "Analysis of Forest Utilization Patterns to Improve Life Satisfaction and Policy Directions" Sustainability 17, no. 8: 3689. https://doi.org/10.3390/su17083689
APA StyleLee, M., & Lee, J. (2025). Analysis of Forest Utilization Patterns to Improve Life Satisfaction and Policy Directions. Sustainability, 17(8), 3689. https://doi.org/10.3390/su17083689