Soil CO2 as a Function of Soil Properties and Tillage Systems on Loamy Soil in Lithuania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Site and Soil
2.2. Meteorological Conditions
2.3. Agrochemical Analysis
2.4. Research of CO2 Efflux from Soil, Temperature and Humidity
2.5. Statistical Analysis
3. Results
3.1. The Impact of Tillage and Soil Texture on CO2 Efflux, Volumetric Water Content and Soil Temperature
3.2. Change in Soil CO2 Efflux, Soil Temperature and Moisture
3.3. The Interaction of Soil CO2 Efflux with Volumetric Water Content and Soil Temperature
3.4. Soil Chemical Properties
3.5. The Interaction of CO2 Efflux with Different Soil Environmental Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nissan, A.; Alcolombri, U.; Peleg, N.; Galili, N.; Jimenez-Martinez, J.; Molnar, P.; Holzner, M. Global warming accelerates soil heterotrophic respiration. Nat. Commun. 2023, 14, 3452. [Google Scholar] [CrossRef] [PubMed]
- Lazdiņš, A.; Lupiķis, A. LIFE REstore project contribution to the greenhouse gas emission accounts in Latvia. In Sustainable and Responsible After-Use of Peat Extraction Areas; Priede, A., Gancone, A., Eds.; Baltijas Krasti: Riga, Latvia, 2019; pp. 21–54. [Google Scholar]
- Rodtassana, C.; Unawong, W.; Yaemphum, S.; Chanthorn, W.; Chawchai, S.; Nathalang, A.; Brockelman, W.Y.; Torngern, P. Different Responses of Soil Respiration to Environmental Factors across Forest Stages in a Southeast Asian Forest. Ecol. Evol. 2021, 11, 15430–15443. [Google Scholar] [CrossRef] [PubMed]
- Heger, A.; Becker, J.N.; Vasconez, L.K.; Holl, D.; Eschenbach, A. Soil texture and pH affect soil CO2 efflux in hardwood floodplain forests of the lower middle Elbe River. Eur. J. Soil Sci. 2022, 74, e13331. [Google Scholar] [CrossRef]
- Yang, X.; Wang, R.; Yang, M.; Liu, Q.; Zhang, W.; Guo, S. Differential responses of soil CO2 dynamics along soil depth to rainfall patterns in the Chinese Loess Plateau. Agric. Ecosyst. Environ. 2025, 378, 109306. [Google Scholar] [CrossRef]
- Buragienė, S.; Šarauskis, E.; Romaneckas, K.; Adamavičienė, A.; Kriaučiūnienė, Z.; Avižienytė, D.; Marozas, V.; Naujokienė, V. Relationship between CO2 emissions and soil properties of differently tilled soils. Sci. Total Environ. 2019, 662, 786–795. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Q.; Li, F.; Li, Z.; Qiao, Y.; Du, K.; Yue, Z.; Tian, C.; Leng, P.; Cheng, H.; et al. Soil CO2 emission reduction with no-tillage and medium nitrogen fertilizer applications in semi-humid maize cropland in North China Plain. Eur. J. Agron. 2023, 147, 126838. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, M.; Zou, J.; Hu, Z. Relationship between Basal Soil Respiration and the Temperature Sensitivity of Soil Respiration and Their Key Controlling Factors across Terrestrial Ecosystems. J. Soils Sediments 2022, 22, 769–781. [Google Scholar] [CrossRef]
- Dhital, D.; Manandhar, R.; Manandhar, P.; Maharjan, S. Soil CO2 Efflux Dynamics and Its Relationship with the Environmental Variables in a Sub-Tropical Mixed Forest. Open J. For. 2022, 12, 312–336. [Google Scholar] [CrossRef]
- Huang, Z.D.; Liu, Y.; Huang, P.F.; Li, Z.Y.; Zhang, X.X. A new concept for modelling the moisture dependence of heterotrophic soil respiration. Soil Biol. Biochem. 2023, 185, 109147. [Google Scholar] [CrossRef]
- Li, J.; Wu, J.; Yu, J.; Wang, K.; Li, J.; Cui, Y.; Shangguan, Z.; Deng, L. Soil enzyme activity and stoichiometry in response to precipitation changes in terrestrial ecosystems. Soil Biol. Biochem. 2024, 191, 109321. [Google Scholar] [CrossRef]
- Buivydiene, A.; Deveikyte, I.; Versuliene, A.; Feiza, V. Tillage Practices Effect on Root Distribution and Variation of Soil CO2 Emission under Different Cropping Strategies. Agronomy 2024, 14, 1768. [Google Scholar] [CrossRef]
- Gao, Y.; Liang, A.; Zhang, Y.; Huang, D.; McLaughlin, N.; Zhang, Y.; Wang, Y.; Chen, X.; Zhang, S. Effect of tillage practices on soil CO2 emissions, microbial C-fixation, and C-degradation functional gene abundance in Northeast China. J. Soils Sediments 2023, 23, 446–458. [Google Scholar] [CrossRef]
- Krauss, M.; Wiesmeier, M.; Don, A.; Cuperus, F.; Gattinger, A.; Gruber, S.; Haagsma, W.K.; Peigne, J.; Chiodelli Palazzoli, M.; Schulz, F.; et al. Reduced tillage in organic farming affects soil organic carbon stocks in temperate Europe. Soil Tillage Res. 2022, 216, 105262. [Google Scholar] [CrossRef]
- Silva, B.O.; Moitinho, M.R.; Santos, G.A.A.; Teixeira, D.D.B.; Fernandes, C.; La Scala, N., Jr. Soil CO2 emission and short-term soil pore class distribution after tillage operations. Soil Tillage Res. 2019, 186, 224–232. [Google Scholar] [CrossRef]
- Buragienė, S.; Šarauskis, E.; Romaneckas, K.; Sasnauskienė, J.; Masilionytė, L.; Kriaučiūnienė, Z. Experimental analysis of CO2 emissions from agricultural soils subjected to five different tillage systems in Lithuania. Sci. Total Environ. 2015, 514, 1–9. [Google Scholar] [CrossRef]
- Lu, X.; Lu, X.; Tanveer, S.; Wen, X.; Liao, Y. Effects of tillage management on soil CO2 emission and wheat yield under rain-fed conditions. Soil Res. 2016, 54, 38–48. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, J.; Liu, T.; Cao, C.; Li, C. Effects of nitrogen fertilizer sources and tillage practices on greenhouse gas emissions in paddy fields of central China. Atmos. Environ. 2016, 144, 274–281. [Google Scholar] [CrossRef]
- Huang, Y.; Ren, W.; Wang, L.; Hui, D.; Grove, J.H.; Yang, X.; Tao, B.; Goff, B. Greenhouse gas emissions and crop yield in no-tillage systems: A meta analysis. Agric. Ecosyst. Environ. 2018, 268, 144–153. [Google Scholar] [CrossRef]
- Yadav, G.S.; Das, A.; Kandpal, B.K.; Badu, S.; Lal, R.; Datta, M.; Das, B.; Singh, R.; Singh, V.K.; Mohapatra, K.P.; et al. The food-energy-water-carbon nexus in a maize-maize-mustard cropping sequence of the Indian Himalayas: An impact of tillage-cum-live mulching. Renew. Sustain. Energy Rev. 2021, 151, 111602. [Google Scholar] [CrossRef]
- Dewangan, S.K.; Shivastava, S.K.; Kumari, L.; Minj, P.; Kumari, J.; Sahu, R. The effect of soil pH on soil health and environmental sustainability: A review. J. Emerg. Technol. Innov. Res. (JETIR) 2023, 10, d611–d616. [Google Scholar]
- Jakab, G.; Madarasz, B.; Masoudi, M.; Karlik, M.; Kiraly, C.; Zachary, D.; Filep, T.; Dekemati, I.; Centeri, C.; Al-Graiti, T.; et al. Soil organic matter gain by reduced tillage intensity: Storage, pools, and chemical composition. Soil Tillage Res. 2023, 226, 105584. [Google Scholar] [CrossRef]
- Wang, C.; Kuzyakov, Y. Soil organic matter priming: The pH effects. Glob. Change Biol. 2024, 30, e17349. [Google Scholar] [CrossRef] [PubMed]
- Kochiieru, M.; Veršulienė, A.; Feiza, V.; Feizienė, D.; Shatkovska, K.; Deveikytė, I. The Action of Environmental Factors on Carbon Dioxide Efflux per Growing Season and Non-Growing Season. Sustainability 2024, 16, 4391. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Nikitin, B.A. A method for soil humus determination. Agric. Chem. 1999, 3, 156–158. [Google Scholar]
- Egner, H.; Riehm, H.; Domingo, W.R. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung desNährstoffzustandes der Böden II. Chemische Extraktionsmethoden zur Phosphor-und Kaliumbestimmung. K. Lantbrukshögskolans Ann. 1960, 26, 199–215. [Google Scholar]
- Saint-Denis, T.; Goupy, J. Optimization of a nitrogen analyser based on the Dumas method. Anal. Chim. Acta 2004, 515, 191–198. [Google Scholar] [CrossRef]
- Williams, W.A.; Jones, M.B.; Demment, M.W.A. Concise table for path analysis statistics. Agron. J. 1990, 82, 1022–1024. [Google Scholar] [CrossRef]
- Kochiieru, M.; Feiziene, D.; Feiza, V.; Volungevicius, J.; Velykis, A.; Slepetiene, A.; Deveikyte, I.; Seibutis, V. Freezing-thawing impact on aggregates stability as affected by land management, soil genesis and soil chemical and physical quality. Soil Tillage Res. 2020, 203, 104705. [Google Scholar] [CrossRef]
- Zhang, X.; Xin, X.; Yang, W.; Ding, S.; Ren, G.; Li, M.; Zhu, A. Soil respiration and net carbon flux response to long-term reduced/no-tillage with and without residues in a wheat-maize cropping system. Soil Tillage Res. 2021, 214, 105182. [Google Scholar] [CrossRef]
- Clark, L.; Strachan, I.; Strack, M.; Roulet, N.; Knorr, K.H.; Teickner, H. Duration of extraction determines CO2 and CH4 emissions from an actively extracted peatland in eastern Quebec, Canada. Biogeosciences 2023, 20, 737–751. [Google Scholar] [CrossRef]
- Tavares, R.L.M.; Souza, Z.M.; La Scala, N., Jr.; Castioni, G.A.F.; Souza, G.S.; Torres, J.L.R. Spatial and temporal variability of soil CO2 flux in sugarcane green harvest systems. Rev. Bras. Cienc. Solo 2016, 40, e0150252. [Google Scholar] [CrossRef]
- Jia, S.; Liang, A.; Zhang, S.; Chen, X.; McLaughlin, N.B.; Sun, B.; Zhang, X.; Wu, D. Effect of tillage system on soil CO2 flux, soil microbial community and maize (Zea mays L.) yield. Geoderma 2021, 384, 114813. [Google Scholar] [CrossRef]
- Wei, L.; Zhu, Z.; Liu, S.; Xiao, M.; Wang, J.; Deng, Y.; Kuzyakov, Y.; Wu, J.; Ge, T. Temperature sensitivity (Q10) of stable, primed and easily available organic matter pools during decomposition in paddy soil. Appl. Soil Ecol. 2021, 157, 103752. [Google Scholar] [CrossRef]
- Reth, S.; Reichstein, M.; Falge, E. The effect of soil water content, soil temperature, soil pH-value and the root mass on soil CO2 efflux—A modified model. Plant Soil 2005, 268, 21–33. [Google Scholar] [CrossRef]
- Chappell, C.; Johnson, A. Influence of pH and bulk density on carbon dioxide efflux in three urban wetland types. Prof. Agric. Work. J. 2015, 3, 5. Available online: https://tuspubs.tuskegee.edu/pawj/vol3/iss1/5 (accessed on 18 February 2025).
- Steponaviciene, V.; Ziuraitis, G.; Rudinskiene, A.; Jackeviciene, K.; Boguzas, V. Long-Term Effects of Different Tillage Systems and Their Impact on Soil Properties and Crop Yields. Agronomy 2024, 14, 870. [Google Scholar] [CrossRef]
- Ferduch, J.; Paul, V. A review on the possible factors influencing soil inorganic carbon under elevated CO2. Catena 2021, 204, 105434. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, C.; Zhao, M.; Liu, L.; Liang, S.; Wang, Y.; Chen, Y. Influence of extreme rainfall events on soil carbon release in the Loess Hilly Region. China Catena 2023, 220, 106652. [Google Scholar] [CrossRef]
- Raghavendra, M.; Sharma, M.P.; Ramesh, A.; Richa, A.; Billore, S.D.; Verma, R.K. Soil Health Indicators: Methods and Applications. In Soil Analysis: Recent Trends and Applications; Rakshit, A., Grosh, S., Chakraborty, S., Philip, V., Datta, A., Eds.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Liptzin, D.; Norris, C.E.; Cappellazzi, S.B.; Mac Bean, G.; Cope, M.; Greub, K.L.; Rieke, E.L.; Tracy, P.W.; Aberle, E.; Ashworth, A.; et al. An evaluation of carbon indicators of soil health in long-term agricultural experiments. Soil Biol. Biochem. 2022, 172, 108708. [Google Scholar] [CrossRef]
Field | Tillage | Soil Structure Data (%) ± Standard Error | Texture | ||
---|---|---|---|---|---|
Sand >0.050 mm | Silt 0.002–0.050 mm | Clay <0.002 mm | |||
Sandy loam | Conventional tillage | 52.12 ± 1.51 | 31.39 ± 2.80 | 16.49 ± 1.29 | Sandy loam |
Reduced tillage | 53.53 ± 0.13 | 32.65 ± 0.53 | 13.82 ± 0.50 | Sandy loam | |
No tillage | 53.38 ± 1.10 | 33.65 ± 1.66 | 12.96 ± 0.68 | Sandy loam | |
Loam | Conventional tillage | 48.69 ± 0.97 | 36.69 ± 1.89 | 14.62 ± 1.28 | Loam |
Reduced tillage | 48.20 ± 0.49 | 35.99 ± 0.71 | 15.81 ± 0.69 | Loam | |
No tillage | 49.81 ± 0.52 | 36.47 ± 1.12 | 13.73 ± 1.07 | Loam |
Soil Texture | Tillage | CO2 Efflux (µmol m–2 s–1) | Soil Temperature (°C) | Volumetric Water Content (v/v, %) | |||
---|---|---|---|---|---|---|---|
Sandy loam | 1.31 b ± 0.07 | 17.0 b ± 0.8 | 11.2 a ± 0.7 | ||||
Loam | 1.64 a ± 0.08 | 20.8 a ± 1.0 | 11.8 a ± 0.5 | ||||
Conventional tillage | 1.39 a ± 0.09 | 19.1 a ± 1.2 | 11.4 a ± 0.8 | ||||
Reduced tillage | 1.52 a ± 0.10 | 18.8 a ± 1.1 | 11.2 a ± 0.8 | ||||
No tillage | 1.52 a ± 0.08 | 18.9 a ± 1.1 | 11.9 a ± 0.6 | ||||
Actions: | F | Pr > F | F | Pr > F | F | Pr > F | |
Soil texture | 9.87 | 0.0023 | 9.05 | 0.0034 | 0.65 | 0.4235 | |
Tillage | 0.59 | 0.5582 | 0.02 | 0.9817 | 0.27 | 0.7674 |
Tillage | Parameters | Correlation Coefficient | |||
---|---|---|---|---|---|
Sandy Loam | Loam | ||||
T | VWC | T | VWC | ||
CT | CO2 efflux (µmol m–2 s–1) | 0.53 * | 0.79 ** | 0.17 ns | 0.79 ** |
T—soil temperature (°C) | 1.00 | −0.02 ns | 1.00 | −0.03 ns | |
VWC—water content (%) | 1.00 | 1.00 | |||
RT | CO2 efflux (µmol m–2 s–1) | 0.72 ** | 0.68 ** | 0.46 * | 0.72 ** |
T—soil temperature (°C) | 1.00 | 0.02 ns | 1.00 | −0.17 ns | |
VWC—water content (%) | 1.00 | 1.00 | |||
NT | CO2 efflux (µmol m–2 s–1) | 0.42 ns | 0.46 * | 0.17 ns | 0.85 ** |
T—soil temperature (°C) | 1.00 | −0.26 ns | 1.00 | −0.20 ns | |
VWC—water content (%) | 1.00 | 1.00 |
Soil Texture (A) | Tillage (B) | A × B | SOC | N | P2O5 | K2O | C/N | pH |
---|---|---|---|---|---|---|---|---|
g kg–1 | ||||||||
SL | 8.2 ± 0.3 b | 0.95 ± 0.04 b | 0.220 ± 0.03 b | 0.192 ± 0.02 a | 8.8 ± 0.3 a | 5.7 ± 0.1 b | ||
L | 11.7 ± 0.4 a | 1.34 ± 0.06 a | 0.322 ± 0.03 a | 0.228 ± 0.03 a | 8.8 ± 0.3 a | 6.9 ± 0.1 a | ||
CT | 9.6 ± 0.6 a | 1.08 ± 0.06 a | 0.218 ± 0.02 a | 0.173 ± 0.01 a | 9.0 ± 0.4 a | 6.1 ± 0.2 a | ||
RT | 9.6 ± 0.8 a | 1.13 ± 0.10 a | 0.303 ± 0.03 a | 0.234 ± 0.04 a | 8.5 ± 0.2 a | 6.5 ± 0.2 a | ||
NT | 10.6 ± 0.8 a | 1.23 ± 0.12 a | 0.293 ± 0.05 a | 0.222 ± 0.04 a | 8.8 ± 0.5 a | 6.3 ± 0.3 a | ||
SL-CT | 8.2 ± 0.5 b | 0.94 ± 0.05 bc | 0.171 ± 0.01 c | 0.167 ± 0.01 a | 8.7 ± 0.5 a | 5.5 ± 0.2 b | ||
SL-RT | 7.8 ± 0.5 b | 0.91 ± 0.04 c | 0.273 ± 0.06 abc | 0.228 ± 0.06 a | 8.6 ± 0.2 a | 6.0 ± 0.1 b | ||
SL-NT | 8.6 ± 0.6 b | 1.00 ± 0.13 bc | 0.216 ± 0.05 bc | 0.181 ± 0.04 a | 9.0 ± 0.9 a | 5.7 ± 0.3 b | ||
L-CT | 11.1 ± 0.6 a | 1.21 ± 0.07 ab | 0.265 ± 0.01 abc | 0.180 ± 0.02 a | 9.3 ± 0.8 a | 6.7 ± 0.1 a | ||
L-RT | 11.4 ± 0.7 a | 1.36 ± 0.09 a | 0.332 ± 0.01 ab | 0.241 ± 0.05 a | 8.4 ± 0.3 a | 7.0 ± 0.1 a | ||
L-NT | 12.5 ± 0.5 a | 1.46 ± 0.11 a | 0.370 ± 0.08 a | 0.263 ± 0.06 a | 8.6 ± 0.3 a | 6.9 ± 0.1 a | ||
Soil texture | F | 56.78 | 29.27 | 7.14 | 0.99 | 0.00 | 65.52 | |
Pr > F | 0.0001 | 0.0001 | 0.0139 | 0.3300 | 0.9745 | 0.0001 | ||
Tillage | F | 0.56 | 0.67 | 1.61 | 1.11 | 0.45 | 0.66 | |
Pr > F | 0.5791 | 0.5228 | 0.2234 | 0.3496 | 0.6409 | 0.5274 | ||
Soil texture × | F | 12.97 | 7.04 | 2.55 | 0.76 | 0.28 | 15.71 | |
Tillage | Pr > F | 0.0001 | 0.0008 | 0.0653 | 0.5893 | 0.9154 | 0.0001 |
Indices | Correlation Matrix | |||||||
---|---|---|---|---|---|---|---|---|
CO2 | T | VWC | SOC | N | P2O5 | K2O | C/N | |
CO2—Soil CO2 efflux (µmol m–2 s–1) | ||||||||
T—Soil temperature (°C) | 0.80 ** | |||||||
VWC—Volumetric water content (%) | 0.77 ** | 0.50 * | ||||||
SOC—Soil organic carbon (g kg–1) | 0.81 ** | 0.95 ** | 0.61 * | |||||
N—Total nitrogen (g kg–1) | 0.82 ** | 0.90 ** | 0.63 * | 0.99 ** | ||||
P2O5—Available phosphorus (g kg–1) | 0.66 * | 0.73 ** | 0.25 ns | 0.81 ** | 0.85 ** | |||
K2O—Available potassium (g kg–1) | 0.43 ns | 0.44 ns | 0.06 ns | 0.57 * | 0.67 * | 0.93 ** | ||
C/N—Ratio between SOC and N | –0.09 ns | 0.02 ns | 0.07 ns | –0.10 ns | –0.25 ns | –0.45 ns | –0.69 * | |
pH—Soil pH value | 0.83 ** | 0.94 ** | 0.40 ns | 0.92 ** | 0.92 ** | 0.90 ** | 0.69 * | –0.23 ns |
Indices | Path Coefficient | CO2 (rY) | |||||||
---|---|---|---|---|---|---|---|---|---|
T | VWC | SOC | N | P2O5 | K2O | C/N | pH | ||
T—Soil temperature (°C) | 0.490 | 0.352 | –2.820 | 1.850 | –1.963 | 0.948 | 0.019 | 1.927 | 0.80 ** |
VWC—Volumetric water content (%) | 0.245 | 0.704 | –1.816 | 1.295 | –0.664 | 0.125 | 0.055 | 0.829 | 0.77 ** |
SOC—Soil organic carbon (g kg–1) | 0.466 | 0.431 | –2.968 | 2.020 | –2.173 | 1.230 | –0.083 | 1.883 | 0.81 ** |
N—Total nitrogen (g kg–1) | 0.442 | 0.445 | –2.926 | 2.048 | –2.298 | 1.430 | –0.199 | 1.880 | 0.82 ** |
P2O5– Available phosphorus (g kg–1) | 0.357 | 0.173 | –2.390 | 1.745 | –2.697 | 1.991 | –0.361 | 1.843 | 0.66 * |
K2O—Available potassium (g kg–1) | 0.216 | 0.041 | –1.700 | 1.363 | –2.500 | 2.148 | –0.561 | 1.421 | 0.43 ns |
C/N—Ratio between SOC and N | 0.011 | 0.048 | 0.306 | –0.504 | 1.203 | –1.490 | 0.809 | –0.473 | –0.09 ns |
pH—Soil pH value | 0.460 | 0.284 | –2.722 | 1.876 | –2.421 | 1.487 | –0.186 | 2.053 | 0.83 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kochiieru, M.; Feiza, V.; Kochiieru, Y.; Volungevičius, J. Soil CO2 as a Function of Soil Properties and Tillage Systems on Loamy Soil in Lithuania. Sustainability 2025, 17, 3630. https://doi.org/10.3390/su17083630
Kochiieru M, Feiza V, Kochiieru Y, Volungevičius J. Soil CO2 as a Function of Soil Properties and Tillage Systems on Loamy Soil in Lithuania. Sustainability. 2025; 17(8):3630. https://doi.org/10.3390/su17083630
Chicago/Turabian StyleKochiieru, Mykola, Virginijus Feiza, Yuliia Kochiieru, and Jonas Volungevičius. 2025. "Soil CO2 as a Function of Soil Properties and Tillage Systems on Loamy Soil in Lithuania" Sustainability 17, no. 8: 3630. https://doi.org/10.3390/su17083630
APA StyleKochiieru, M., Feiza, V., Kochiieru, Y., & Volungevičius, J. (2025). Soil CO2 as a Function of Soil Properties and Tillage Systems on Loamy Soil in Lithuania. Sustainability, 17(8), 3630. https://doi.org/10.3390/su17083630