NDVI Performance for Monitoring Agricultural Energy Inputs Using Landsat Imagery: A Study in the Ecuadorian Andes (2012–2023)
Abstract
:1. Introduction
1.1. Background
1.2. Problem Statement
1.3. Research Objectives and Relevance
2. Materials and Methods
2.1. Study Site
2.1.1. Agricultural Scenarios
2.1.2. Field Data Collection/Inventory
2.2. Satellite Imagery
2.3. Energy Inputs
2.4. Image Processing
Input | Unit | MJ/Unit | Source |
---|---|---|---|
Animal work (bovine) | h | 5.05 | [67] |
Biol | L | 0.26 | [68] |
Boron | kg | 18.20 | [69] |
Calcium | kg | 8.80 | [70] |
Chicken manure | kg | 0.30 | [71] |
Compost | kg | 0.48 | [68] |
Abonaza | kg | 13.38 | [72] |
Fuel | L | 46.24 | [73] |
Fungicides | kg | 276 | [74] |
Herbicides | kg | 288 | [74] |
Insecticides | kg | 278 | [74] |
Irrigation water | m3 | 1.02 | [75] |
Work (labor) | h | 1.96 | [73] |
Lime | kg | 4.94 | [72] |
Livestock work | h | 0.58 | [76] |
Machinery | h | 62.70 | [77] |
Magnesium | kg | 8.80 | [69] |
Microelements | kg | 120 | [78] |
Nitrogen | kg | 66.14 | [74] |
Oilseeds | kg | 3.60 | [67] |
Organic matter | kg | 16.70 | [79] |
Phosphorus | kg | 12.44 | [74] |
Potassium | kg | 11.15 | [74] |
Seedlings | qty | 0.80 | [80] |
Cereal and legume seeds | kg | 25 | [67] |
Sulfur | kg | 1.12 | [63] |
Tuber seeds | kg | 14.70 | [67] |
Zinc | kg | 8.40 | [70] |
2.5. Data Analysis
3. Results
3.1. Relationship Between NDVI and Energy Input Data to Production Systems
3.2. Changes in the NDVI over Time (2012–2023) in the Three Studied Agricultural Scenarios in the Andes of Ecuador
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NDVI | Normalized difference vegetation index |
HAFS | High-mountain agroforestry system |
SHC | Short-cycle production system |
LAFS | Low-mountain agroforestry system |
GEE | Google Earth Engine |
GJ | Giga Joule |
ha | Hectare |
SR | Surface reflectance |
TOA | Top of atmosphere |
C | Composite |
SLC-off | SLC-off defect of a Landsat 7 image collected after 31 May 2003 |
h | Hour |
L | Liter |
kg | Kilogram |
m3 | Cubic meter |
USGS | United States Geological Survey |
References
- See, L.; Fritz, S.; You, L.; Ramankutty, N.; Herrero, M.; Justice, C.; Becker-Reshef, I.; Thornton, P.; Erb, K.; Gong, P.; et al. Improved Global Cropland Data as an Essential Ingredient for Food Security. Glob. Food Secur. 2015, 4, 37–45. [Google Scholar] [CrossRef]
- Pérez-Hoyos, A.; Rembold, F.; Kerdiles, H.; Gallego, J. Comparison of Global Land Cover Datasets for Cropland Monitoring. Remote Sens. 2017, 9, 1118. [Google Scholar] [CrossRef]
- Wijesingha, J.; Dzene, I.; Wachendorf, M. Evaluating the Spatial–Temporal Transferability of Models for Agricultural Land Cover Mapping Using Landsat Archive. ISPRS J. Photogramm. Remote Sens. 2024, 213, 72–86. [Google Scholar] [CrossRef]
- Stips, A.; Macias, D.; Coughlan, C.; Garcia-Gorriz, E.; Liang, X.S. On the Causal Structure between CO2 and Global Temperature. Sci. Rep. 2016, 6, 21691. [Google Scholar] [CrossRef] [PubMed]
- Bigerna, S.; Bollino, C.A.; Polinori, P. Convergence of Ecological Footprint and Sustainable Policy Options. J. Policy Model 2022, 44, 564–577. [Google Scholar] [CrossRef]
- John, M.A.; Ugwuoke, W.O.; Okwanya, I. Climate Change and Food Security Causality in ECOWAS Region: Do Countries Interdependence Matter? Food Humanit. 2024, 3, 100393. [Google Scholar] [CrossRef]
- Ayaviri-Nina, D.; Quispe-Fernández, G.; Romero-Flores, M.; Fierro-López, P. Avances y Progresos de Las Políticas y Estrategias de Seguridad Alimentaria En Ecuador. Rev. Investig. Altoandin. 2016, 18, 213–222. [Google Scholar] [CrossRef]
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A Simple Method for Reconstructing a High-Quality NDVI Time-Series Data Set Based on the Savitzky–Golay Filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Imeson, A.C.; Prinsen, H.A.M. Vegetation Patterns as Biological Indicators for Identifying Runoff and Sediment Source and Sink Areas for Semi-Arid Landscapes in Spain. Agric. Ecosyst. Environ. 2004, 104, 333–342. [Google Scholar] [CrossRef]
- Liepa, A.; Thiel, M.; Taubenböck, H.; Steffan-Dewenter, I.; Abu, I.-O.; Singh Dhillon, M.; Otte, I.; Otim, M.H.; Lutaakome, M.; Meinhof, D.; et al. Harmonized NDVI Time-Series from Landsat and Sentinel-2 Reveal Phenological Patterns of Diverse, Small-Scale Cropping Systems in East Africa. Remote Sens. Appl. Soc. Environ. 2024, 35, 101230. [Google Scholar] [CrossRef]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current Status of Landsat Program, Science, and Applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Jiang, N.; Li, P.; Feng, Z. Remote Sensing of Swidden Agriculture in the Tropics: A Review. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102876. [Google Scholar] [CrossRef]
- Zhao, H.; Zhou, Y.; Zhang, G.; Chen, X.; Chang, Y.; Luo, Y.; Jin, Y.; Pan, Z.; An, P. Mapping the Dynamics of Intensive Forage Acreage during 2008–2022 in Google Earth Engine Using Time Series Landsat Images and a Phenology-Based Algorithm. Comput. Electron. Agric. 2024, 221, 108983. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Miettinen, J.; Shi, C.; Liew, S.C. Land Cover Distribution in the Peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with Changes since 1990. Glob. Ecol. Conserv. 2016, 6, 67–78. [Google Scholar] [CrossRef]
- Padarian, J.; Minasny, B.; McBratney, A.B. Chile and the Chilean Soil Grid: A Contribution to GlobalSoilMap. Geoderma Reg. 2017, 9, 17–28. [Google Scholar] [CrossRef]
- Hird, J.; DeLancey, E.; McDermid, G.; Kariyeva, J. Google Earth Engine, Open-Access Satellite Data, and Machine Learning in Support of Large-Area Probabilistic Wetland Mapping. Remote Sens. 2017, 9, 1315. [Google Scholar] [CrossRef]
- Asner, G.P.; Brodrick, P.G.; Philipson, C.; Vaughn, N.R.; Martin, R.E.; Knapp, D.E.; Heckler, J.; Evans, L.J.; Jucker, T.; Goossens, B.; et al. Mapped Aboveground Carbon Stocks to Advance Forest Conservation and Recovery in Malaysian Borneo. Biol. Conserv. 2018, 217, 289–310. [Google Scholar] [CrossRef]
- Bunting, E.L.; Munson, S.M.; Bradford, J.B. Assessing Plant Production Responses to Climate across Water-Limited Regions Using Google Earth Engine. Remote Sens. Environ. 2019, 233, 111379. [Google Scholar] [CrossRef]
- Ge, Y.; Hu, S.; Ren, Z.; Jia, Y.; Wang, J.; Liu, M.; Zhang, D.; Zhao, W.; Luo, Y.; Fu, Y.; et al. Mapping Annual Land Use Changes in China’s Poverty-Stricken Areas from 2013 to 2018. Remote Sens. Environ. 2019, 232, 111285. [Google Scholar] [CrossRef]
- Wong, B.A.; Thomas, C.; Halpin, P. Automating Offshore Infrastructure Extractions Using Synthetic Aperture Radar & Google Earth Engine. Remote Sens. Environ. 2019, 233, 111412. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W.; et al. Annual Maps of Global Artificial Impervious Area (GAIA) between 1985 and 2018. Remote Sens. Environ. 2020, 236, 111510. [Google Scholar] [CrossRef]
- DeVries, B.; Huang, C.; Armston, J.; Huang, W.; Jones, J.W.; Lang, M.W. Rapid and Robust Monitoring of Flood Events Using Sentinel-1 and Landsat Data on the Google Earth Engine. Remote Sens. Environ. 2020, 240, 111664. [Google Scholar] [CrossRef]
- Bey, A.; Jetimane, J.; Lisboa, S.N.; Ribeiro, N.; Sitoe, A.; Meyfroidt, P. Mapping Smallholder and Large-Scale Cropland Dynamics with a Flexible Classification System and Pixel-Based Composites in an Emerging Frontier of Mozambique. Remote Sens. Environ. 2020, 239, 111611. [Google Scholar] [CrossRef]
- Tian, J.; Wang, L.; Yin, D.; Li, X.; Diao, C.; Gong, H.; Shi, C.; Menenti, M.; Ge, Y.; Nie, S.; et al. Development of Spectral-Phenological Features for Deep Learning to Understand Spartina Alterniflora Invasion. Remote Sens. Environ. 2020, 242, 111745. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Devaux, N.; Crestey, T.; Leroux, C.; Tisseyre, B. Potential of Sentinel-2 Satellite Images to Monitor Vine Fields Grown at a Territorial Scale. OENO One 2019, 53, 52–59. [Google Scholar] [CrossRef]
- Wang, L.; Diao, C.; Xian, G.; Yin, D.; Lu, Y.; Zou, S.; Erickson, T.A. A Summary of the Special Issue on Remote Sensing of Land Change Science with Google Earth Engine. Remote Sens. Environ. 2020, 248, 112002. [Google Scholar] [CrossRef]
- Prudente, V.H.R.; Martins, V.S.; Vieira, D.C.; Silva, N.R.D.F.E.; Adami, M.; Sanches, I.D. Limitations of Cloud Cover for Optical Remote Sensing of Agricultural Areas across South America. Remote Sens. Appl. Soc. Environ. 2020, 20, 100414. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-Based Cloud and Cloud Shadow Detection in Landsat Imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the Satellite-Derived NDVI to Assess Ecological Responses to Environmental Change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gao, J.; Liu, L.; Wang, Z.; Ding, M.; Yang, X. NDVI-Based Vegetation Changes and Their Responses to Climate Change from 1982 to 2011: A Case Study in the Koshi River Basin in the Middle Himalayas. Glob. Planet. Change 2013, 108, 139–148. [Google Scholar] [CrossRef]
- Radočaj, D.; Šiljeg, A.; Marinović, R.; Jurišić, M. State of Major Vegetation Indices in Precision Agriculture Studies Indexed in Web of Science: A Review. Agriculture 2023, 13, 707. [Google Scholar] [CrossRef]
- Blaes, X.; Chomé, G.; Lambert, M.-J.; Traoré, P.; Schut, A.; Defourny, P. Quantifying Fertilizer Application Response Variability with VHR Satellite NDVI Time Series in a Rainfed Smallholder Cropping System of Mali. Remote Sens. 2016, 8, 531. [Google Scholar] [CrossRef]
- Cavalli, S.; Penzotti, G.; Amoretti, M.; Caselli, S. A Machine Learning Approach for NDVI Forecasting Based on Sentinel-2 Data. In Proceedings of the 16th International Conference on Software Technologies, Virtual Event, 6–8 July 2021; pp. 473–480. Available online: https://www.scitepress.org/PublishedPapers/2021/105445/105445.pdf (accessed on 12 September 2024).
- Ahmad, R.; Yang, B.; Ettlin, G.; Berger, A.; Rodríguez-Bocca, P. A Machine-learning Based ConvLSTM Architecture for NDVI Forecasting. Int. Trans. Oper. Res. 2023, 30, 2025–2048. [Google Scholar] [CrossRef]
- Qiu, S.; Zhu, Z.; Olofsson, P.; Woodcock, C.E.; Jin, S. Evaluation of Landsat Image Compositing Algorithms. Remote Sens. Environ. 2023, 285, 113375. [Google Scholar] [CrossRef]
- Heinemann, P.; Haug, S.; Schmidhalter, U. Evaluating and Defining Agronomically Relevant Detection Limits for Spectral Reflectance-Based Assessment of N Uptake in Wheat. Eur. J. Agron. 2022, 140, 126609. [Google Scholar] [CrossRef]
- Vélez, S.; Rançon, F.; Barajas, E.; Brunel, G.; Rubio, J.A.; Tisseyre, B. Potential of Functional Analysis Applied to Sentinel-2 Time-Series to Assess Relevant Agronomic Parameters at the within-Field Level in Viticulture. Comput. Electron. Agric. 2022, 194, 106726. [Google Scholar] [CrossRef]
- Ouazaa, S.; Jaramillo-Barrios, C.I.; Chaali, N.; Amaya, Y.M.Q.; Carvajal, J.E.C.; Ramos, O.M. Towards Site Specific Management Zones Delineation in Rotational Cropping System: Application of Multivariate Spatial Clustering Model Based on Soil Properties. Geoderma Reg. 2022, 30, e00564. [Google Scholar] [CrossRef]
- Sandonís-Pozo, L.; Oger, B.; Tisseyre, B.; Llorens, J.; Escolà, A.; Pascual, M.; Martínez-Casasnovas, J.A. Leafiness-LiDAR Index and NDVI for Identification of Temporal Patterns in Super-Intensive Almond Orchards as Response to Different Management Strategies. Eur. J. Agron. 2024, 159, 127278. [Google Scholar] [CrossRef]
- Gopp, N.V.; Savenkov, O.A. Relationships between the NDVI, Yield of Spring Wheat, and Properties of the Plow Horizon of Eluviated Clay-Illuvial Chernozems and Dark Gray Soils. Eurasian Soil Sci. 2019, 52, 339–347. [Google Scholar] [CrossRef]
- Mazur, P.; Gozdowski, D.; Wójcik-Gront, E. Soil Electrical Conductivity and Satellite-Derived Vegetation Indices for Evaluation of Phosphorus, Potassium and Magnesium Content, pH, and Delineation of Within-Field Management Zones. Agriculture 2022, 12, 883. [Google Scholar] [CrossRef]
- Zanaganeh, M.; Mousavi, S.J.; Etemad Shahidi, A.F. A Hybrid Genetic Algorithm–Adaptive Network-Based Fuzzy Inference System in Prediction of Wave Parameters. Eng. Appl. Artif. Intell. 2009, 22, 1194–1202. [Google Scholar] [CrossRef]
- Hosseinzadeh-Bandbafha, H.; Nabavi-Pelesaraei, A.; Khanali, M.; Ghahderijani, M.; Chau, K. Application of Data Envelopment Analysis Approach for Optimization of Energy Use and Reduction of Greenhouse Gas Emission in Peanut Production of Iran. J. Clean. Prod. 2018, 172, 1327–1335. [Google Scholar] [CrossRef]
- Yin, Y.; Gulzar, F.; Mamadiyarov, Z.; Aizhan, A.; Yadav, R.S.; Chen, C. An Analysis of the Rebound Impact of Energy Consumption and the Factors That Influence It in China’s Agricultural Productivity. Energy Strategy Rev. 2024, 56, 101585. [Google Scholar] [CrossRef]
- Basavalingaiah, K.; Paramesh, V.; Parajuli, R.; Girisha, H.C.; Shivaprasad, M.; Vidyashree, G.V.; Thoma, G.; Hanumanthappa, M.; Yogesh, G.S.; Misra, S.D.; et al. Energy Flow and Life Cycle Impact Assessment of Coffee-Pepper Production Systems: An Evaluation of Conventional, Integrated and Organic Farms in India. Environ. Impact Assess. Rev. 2022, 92, 106687. [Google Scholar] [CrossRef]
- Kouchaki-Penchah, H.; Sharifi, M.; Mousazadeh, H.; Zarea-Hosseinabadi, H.; Nabavi-Pelesaraei, A. Gate to Gate Life Cycle Assessment of Flat Pressed Particleboard Production in Islamic Republic of Iran. J. Clean. Prod. 2016, 112, 343–350. [Google Scholar] [CrossRef]
- Kaab, A.; Sharifi, M.; Mobli, H.; Nabavi-Pelesaraei, A.; Chau, K. Combined Life Cycle Assessment and Artificial Intelligence for Prediction of Output Energy and Environmental Impacts of Sugarcane Production. Sci. Total Environ. 2019, 664, 1005–1019. [Google Scholar] [CrossRef]
- Yan, J.; Kong, Z.; Liu, Y.; Li, N.; Yang, X.; Zhuang, M. A High-Resolution Energy Use Efficiency Assessment of China’s Staple Food Crop Production and Associated Improvement Potential. Renew. Sustain. Energy Rev. 2023, 188, 113789. [Google Scholar] [CrossRef]
- Iqbal, J.; Khaliq, T.; Ahmad, A.; Khan, K.S.; Haider, M.A.; Ali, M.M.; Ahmad, N.; Rehmani, M.I.A. Productivity, Profitability and Energy Use Efficiency of Wheat-Maize Cropping under Different Tillage Systems. Farming Syst. 2024, 2, 100085. [Google Scholar] [CrossRef]
- Brenya, R.; Jiang, Y.; Sampene, A.K.; Zhu, J. Food Security in Sub-Sahara Africa: Exploring the Nexus between Nutrition, Innovation, Circular Economy, and Climate Change. J. Clean. Prod. 2024, 438, 140805. [Google Scholar] [CrossRef]
- Alwang, J.; Norton, G.W.; Barrera, V.; Botello, R. Conservation Agriculture in the Andean Highlands: Promise and Precautions. In The Future of Mountain Agriculture; Mann, S., Ed.; Springer Geography; Springer: Berlin/Heidelberg, Germany, 2013; pp. 21–38. ISBN 978-3-642-33583-9. [Google Scholar]
- Barrera, V.H.; Delgado, J.A.; Alwang, J.R. Conservation Agriculture Can Help the South American Andean Region Achieve Food Security. Agron. J. 2021, 113, 4494–4509. [Google Scholar] [CrossRef]
- Ministerio del Interior. Análisis del Flujo Migratorio de Población Ecuatoriana Hacia el Extrajero; OIM Onu Migrations: Quito, Ecuador, 2024; p. 5. Available online: https://ecuador.iom.int/sites/g/files/tmzbdl776/files/documents/2024-08/flujo-migratorio-de-poblacion-ecuatoriana_0.pdf (accessed on 28 November 2024).
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Ministerio de Agricultura y Ganadería. Mapa de Cobertura y Uso de la Tierra y Sistemas Productivos Agropecuarios Versión Editada 2020—Datos Abiertos Ecuador. Available online: https://datosabiertos.gob.ec/dataset/mapa-de-cobertura-y-uso-de-la-tierra-y-sistemas-productivos-agropecuarios/resource/5ba7393f-3522-467b-ac38-8c6402422977 (accessed on 4 November 2024).
- Mobtaker, H.G.; Akram, A.; Keyhani, A. Energy Use and Sensitivity Analysis of Energy Inputs for Alfalfa Production in Iran. Energy Sustain. Dev. 2012, 16, 84–89. [Google Scholar] [CrossRef]
- Carrasco, L.; Fujita, G.; Kito, K.; Miyashita, T. Historical Mapping of Rice Fields in Japan Using Phenology and Temporally Aggregated Landsat Images in Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2022, 191, 277–289. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, L.; Zhao, F.R.; Cai, X.; Zhao, J.; Lu, H.; Gong, P. Tracking Annual Cropland Changes from 1984 to 2016 Using Time-Series Landsat Images with a Change-Detection and Post-Classification Approach: Experiments from Three Sites in Africa. Remote Sens. Environ. 2018, 218, 13–31. [Google Scholar] [CrossRef]
- Jin, S.; Dewitz, J.; Danielson, P.; Granneman, B.; Costello, C.; Smith, K.; Zhu, Z. National Land Cover Database 2019: A New Strategy for Creating Clean Leaf-On and Leaf-Off Landsat Composite Images. J. Remote Sens 2023, 3, 0022. [Google Scholar] [CrossRef]
- Kaab, A.; Sharifi, M.; Mobli, H.; Nabavi-Pelesaraei, A.; Chau, K. Use of Optimization Techniques for Energy Use Efficiency and Environmental Life Cycle Assessment Modification in Sugarcane Production. Energy 2019, 181, 1298–1320. [Google Scholar] [CrossRef]
- Kumar, A.; Vachan Tirkey, J.; Kumar Shukla, S. Comparative Energy and Economic Analysis of Different Vegetable Oil Plants for Biodiesel Production in India. Renew. Energy 2021, 169, 266–282. [Google Scholar] [CrossRef]
- Viani, A.; Orusa, T.; Borgogno-Mondino, E.; Orusa, R. A One Health Google Earth Engine Web-GIS Application to Evaluate and Monitor Water Quality Worldwide. Euro-Mediterr. J. Environ. Integr. 2024, 9, 1873–1886. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, D.; Zhang, F.; Zhang, Q. Monitoring the Spatio-Temporal Dynamics of Shale Oil/Gas Development with Landsat Time Series: Case Studies in the USA. Remote Sens. 2022, 14, 1236. [Google Scholar] [CrossRef]
- Ozkan, B.; Akcaoz, H.; Fert, C. Energy Input–Output Analysis in Turkish Agriculture. Renew. Energy 2004, 29, 39–51. [Google Scholar] [CrossRef]
- Astier, M.; Merlín-Uribe, Y.; Villamil-Echeverri, L.; Garciarreal, A.; Gavito, M.E.; Masera, O.R. Energy Balance and Greenhouse Gas Emissions in Organic and Conventional Avocado Orchards in Mexico. Ecol. Indic. 2014, 43, 281–287. [Google Scholar] [CrossRef]
- Kavargiris, S.E.; Mamolos, A.P.; Tsatsarelis, C.A.; Nikolaidou, A.E.; Kalburtji, K.L. Energy Resources’ Utilization in Organic and Conventional Vineyards: Energy Flow, Greenhouse Gas Emissions and Biofuel Production. Biomass Bioenergy 2009, 33, 1239–1250. [Google Scholar] [CrossRef]
- Strapatsa, A.V.; Nanos, G.D.; Tsatsarelis, C.A. Energy Flow for Integrated Apple Production in Greece. Agric. Ecosyst. Environ. 2006, 116, 176–180. [Google Scholar] [CrossRef]
- Canakci, M.; Akinci, I. Energy Use Pattern Analyses of Greenhouse Vegetable Production. Energy 2006, 31, 1243–1256. [Google Scholar] [CrossRef]
- Agrocalidad Lista de Plaguicidas y Productos Afines de Uso Agrícola Registrados En Ecuador-Ministerio de Agricultura y Ganadería Del Ecuador 2022. Available online: https://faolex.fao.org/docs/pdf/ecu19845.pdf (accessed on 26 October 2023).
- 5. Uluslararasi tarimsal mekanizasyon ve enerji kongresi bildirileri = Proceedings of the 5th International Congress on Mechanization and Energy in Agriculture; np, 1993; ISBN 978-975-483-232-7.
- Unakitan, G.; Hurma, H.; Yilmaz, F. An Analysis of Energy Use Efficiency of Canola Production in Turkey. Energy 2010, 35, 3623–3627. [Google Scholar] [CrossRef]
- Mohammadi, A.; Rafiee, S.; Mohtasebi, S.S.; Rafiee, H. Energy Inputs—Yield Relationship and Cost Analysis of Kiwifruit Production in Iran. Renew. Energy 2010, 35, 1071–1075. [Google Scholar] [CrossRef]
- Pérez Neira, D.; Soler Montiel, M.; Fernández, X.S. Energy Indicators for Organic Livestock Production: A Case Study from Andalusia, Southern Spain. Agroecol. Sustain. Food Syst. 2014, 38, 317–335. [Google Scholar] [CrossRef]
- Yaldiz, O.; Ozturk, H.; Zeren, Y.; Bascetomcelik, A. Energy Usage in Production of Field Crops in Turkey. In Proceedings of the 5th International Congress on Mechanization and Energy Use in Agriculture, Kusadasi, Turkey, 11–14 October 1993. [Google Scholar]
- Mandal, K.G.; Saha, K.P.; Ghosh, P.K.; Hati, K.M.; Bandyopadhyay, K.K. Bioenergy and Economic Analysis of Soybean-Based Crop Production Systems in Central India. Biomass Bioenergy 2002, 23, 337–345. [Google Scholar] [CrossRef]
- Margalef, R. Teoria de Los Sitemas Ecológicos; Edicions Universitat Barcelona: Barcelona, Spain, 1993; Volume 1, ISBN 84-475-0213-9. [Google Scholar]
- Romanelli, T.L.; Milan, M. Energy Performance of a Production System of Eucalyptus. Rev. Bras. Eng. Agríc. Ambient. 2010, 14, 896–903. [Google Scholar] [CrossRef]
- Carvalho, E.A.; Ushizima, D.M.; Medeiros, F.N.S.; Martins, C.I.O.; Marques, R.C.P.; Oliveira, I.N.S. SAR Imagery Segmentation by Statistical Region Growing and Hierarchical Merging. Digit. Signal Process. 2010, 20, 1365–1378. [Google Scholar] [CrossRef]
- Holben, B.N. Characteristics of Maximum-Value Composite Images from Temporal AVHRR Data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Carreiras, J.M.B.; Pereira, J.M.C.; Shimabukuro, Y.E.; Stroppiana, D. Evaluation of Compositing Algorithms over the Brazilian Amazon Using SPOT-4 VEGETATION Data. Int. J. Remote Sens. 2003, 24, 3427–3440. [Google Scholar] [CrossRef]
- Li, S.; Xu, L.; Jing, Y.; Yin, H.; Li, X.; Guan, X. High-Quality Vegetation Index Product Generation: A Review of NDVI Time Series Reconstruction Techniques. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102640. [Google Scholar] [CrossRef]
- DeFries, R.; Hansen, M.; Townshend, J. Global Discrimination of Land Cover Types from Metrics Derived from AVHRR Pathfinder Data. Remote Sens. Environ. 1995, 54, 209–222. [Google Scholar] [CrossRef]
- Cao, R.; Chen, Y.; Shen, M.; Chen, J.; Zhou, J.; Wang, C.; Yang, W. A Simple Method to Improve the Quality of NDVI Time-Series Data by Integrating Spatiotemporal Information with the Savitzky-Golay Filter. Remote Sens. Environ. 2018, 217, 244–257. [Google Scholar] [CrossRef]
- Ghebrezgabher, M.G.; Yang, T.; Yang, X.; Eyassu Sereke, T. Assessment of NDVI Variations in Responses to Climate Change in the Horn of Africa. Egypt. J. Remote Sens. Space Sci. 2020, 23, 249–261. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. 2023. Available online: https://www.R-project.org/ (accessed on 20 February 2024).
- Korkmaz, S.; Goksuluk, D.; Zararsiz, G. MVN: An R Package for Assessing Multivariate Normality. R J. 2014, 6, 151–162. Available online: https://journal.r-project.org/archive/2014-2/korkmaz-goksuluk-zararsiz.pdf (accessed on 23 November 2023). [CrossRef]
- De Mendiburu, F. Una Herramienta de Analisis Estadistico Para La Investigacion Agricola. Universidad Nacional de Ingenieria (UNI-PERU). Universidad Nacional Agraria La Molina, Lima-PERU. Facultad de Economia y Planificacion Departamento Academico de Estadistica e Informatica: Perú, 2009. Available online: https://cran.r-project.org/web/packages/agricolae/agricolae.pdf (accessed on 23 November 2023).
- Ogle, D.H. Introductory Fisheries Analyses with R.; Routledge: Boca Raton, FL, USA, 2016. [Google Scholar]
- Hadley Wickham Elegant Graphics for Data Analysis 2016. Available online: https://link.springer.com/book/10.1007/978-3-319-24277-4 (accessed on 20 February 2024).
- Alastair, R. Inspectdf: Inspection, Comparison and Visualisation of Data Frames 2022. Available online: https://alastairrushworth.r-universe.dev/inspectdf/inspectdf.pdf (accessed on 23 November 2023).
- García-Montero, L.G.; Pascual, C.; Martín-Fernández, S.; Sanchez-Paus Díaz, A.; Patriarca, C.; Martín-Ortega, P.; Mollicone, D. Medium- (MR) and Very-High-Resolution (VHR) Image Integration through Collect Earth for Monitoring Forests and Land-Use Changes: Global Forest Survey (GFS) in the Temperate FAO Ecozone in Europe (2000–2015). Remote Sens. 2021, 13, 4344. [Google Scholar] [CrossRef]
- Farbo, A.; Sarvia, F.; De Petris, S.; Basile, V.; Borgogno-Mondino, E. Forecasting Corn NDVI through AI-Based Approaches Using Sentinel 2 Image Time Series. ISPRS J. Photogramm. Remote Sens. 2024, 211, 244–261. [Google Scholar] [CrossRef]
- Martín-Ortega, P.; García-Montero, L.G.; Sibelet, N. Temporal Patterns in Illumination Conditions and Its Effect on Vegetation Indices Using Landsat on Google Earth Engine. Remote Sens. 2020, 12, 211. [Google Scholar] [CrossRef]
- Anyimah, F.O.; Osei Jnr, E.M.; Nyamekye, C. Detection of Stress Areas in Cocoa Farms Using GIS and Remote Sensing: A Case Study of Offinso Municipal & Offinso North District, Ghana. Environ. Chall. 2021, 4, 100087. [Google Scholar] [CrossRef]
- Yao, B.; Gong, X.; Li, Y.; Li, Y.; Lian, J.; Wang, X. Spatiotemporal Variation and GeoDetector Analysis of NDVI at the Northern Foothills of the Yinshan Mountains in Inner Mongolia over the Past 40 Years. Heliyon 2024, 10, e39309. [Google Scholar] [CrossRef]
- Feng, M.; Sexton, J.O.; Huang, C.; Masek, J.G.; Vermote, E.F.; Gao, F.; Narasimhan, R.; Channan, S.; Wolfe, R.E.; Townshend, J.R. Global Surface Reflectance Products from Landsat: Assessment Using Coincident MODIS Observations. Remote Sens. Environ. 2013, 134, 276–293. [Google Scholar] [CrossRef]
- Nourzadeh, N.; Rahimi, A.; Dadrasi, A. Comparative Evaluation of Bio-Fertilizer Replacement with Chemical Fertilizer in Sesame (Sesamum Indicum L) Production under Drought Stress and Normal Irrigation Condition. Heliyon 2025, 11, e42743. [Google Scholar] [CrossRef]
- Caycho-Ronco, J.; Arias-Mesia, A.; Oswald, A.; Esprella-Elias, R. Tecnologías Sostenibles y Su Uso En La Producción de Papa En La Región Altoandina. Rev. Latinoam. Papa 2016, 15, 19–37. [Google Scholar] [CrossRef]
- Yao, Y.; Miao, Y.; Cao, Q.; Wang, H.; Gnyp, M.L.; Bareth, G.; Khosla, R.; Yang, W.; Liu, F.; Liu, C. In-Season Estimation of Rice Nitrogen Status with an Active Crop Canopy Sensor. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4403–4413. [Google Scholar] [CrossRef]
- Maresma, A.; Chamberlain, L.; Tagarakis, A.; Kharel, T.; Godwin, G.; Czymmek, K.J.; Shields, E.; Ketterings, Q.M. Accuracy of NDVI-Derived Corn Yield Predictions Is Impacted by Time of Sensing. Comput. Electron. Agric. 2020, 169, 105236. [Google Scholar] [CrossRef]
- Guo, X.; Zhu, A.L.; Zhu, X.; Liang, Z.; Zhao, X.; Cui, C.; Zhuang, M.; Wang, C.; Zhang, F. Contributing to Sustainable Smallholder Agriculture through Optimizing Key Agricultural Inputs in China. J. Clean. Prod. 2024, 471, 143429. [Google Scholar] [CrossRef]
- Saha, K.K.; Weltzien, C.; Bookhagen, B.; Zude-Sasse, M. Chlorophyll Content Estimation and Ripeness Detection in Tomato Fruit Based on NDVI from Dual Wavelength LiDAR Point Cloud Data. J. Food Eng. 2024, 383, 112218. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Q.; Wang, Z.; Wang, L.; Li, X.; Fan, Z.; Zhang, Y.; Li, J.; Gao, X.; Shi, J.; et al. Effects of Nitrogen Fertilizer on Photosynthetic Characteristics, Biomass, and Yield of Wheat under Different Shading Conditions. Agronomy 2021, 11, 1989. [Google Scholar] [CrossRef]
- Benalcázar-Carranza, B.P.; López-Caiza, V.C.; Gutiérrez-León, F.A.; Alvarado-Ochoa, S.; Portilla-Narváez, A.R. Efecto de La Fertilización Nitrogenada En El Crecimiento de Cinco Pastos Perennes En Ecuador. Pastos Y Forrajes 2021, 44, eI05. Available online: http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S0864-03942021000100005&lng=es&nrm=iso&tlng=es (accessed on 4 December 2024).
- Cai, S.; Zhao, X.; Pittelkow, C.M.; Fan, M.; Zhang, X.; Yan, X. Optimal Nitrogen Rate Strategy for Sustainable Rice Production in China. Nature 2023, 615, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Gomiero, T.; Pimentel, D.; Paoletti, M.G. Environmental Impact of Different Agricultural Management Practices: Conventional vs. Organic Agriculture. Crit. Rev. Plant Sci. 2011, 30, 95–124. [Google Scholar] [CrossRef]
Region | Scenario | Parish | No. of Production Systems Sampled | Characteristics |
---|---|---|---|---|
Andean Highlands | Highland agroforestry crops (HFASs) | Bulán | 115 | Subsistence farming and local trade. Deciduous and annual fruit tree crops (mainly apples, pears, peaches, and avocados). Steep slopes. Altitudinal range 2265–2870 m.a.s.l. Average temperatures of 11.1 °C, and annual rainfall average of 964 mm. Managed by smallholders. |
Cutchil | 32 | |||
Principal | 44 | |||
Short-cycle crops (SHCs) | Bulán | 62 | Subsistence farming and local trade. Short-cycle crops (mainly corn associated with beans, squash, barley, vegetables, tree tomatoes, and potatoes). Steep slopes. Altitudinal range 2265–2870 m.a.s.l. Average temperature of 11.1 °C, and annual rainfall average 964 mm. Managed by smallholders. | |
Cutchil | 39 | |||
Principal | 47 | |||
Andean Lowlands | Lowland agroforestry crops (LFASs) | La Troncal | 67 | Agriculture for local and national trade. Crops of cocoa often associated with other fruit trees, such as mangos and lemons. Gentler slopes or flat lands. Altitudinal range 90–110 m.a.s.l. Average temperature of 24.6 °C, and annual rainfall average of 1274 mm. Managed by small and medium producers. |
Balao | 9 | Agriculture for local, national, and export trade. Cocoa monocultures. Flat lands. Altitudinal range 0–10 m.a.s.l. Average temperature of 24.6 °C, and annual rainfall of 1274 mm. Managed by companies. |
Period | Imagen Format | No. Images | Sensor Landsat |
---|---|---|---|
2021–2023 | TOA | 404 | Landsat 8 |
83 | Landsat 9 | ||
SR | 85 | Landsat 8 | |
51 | Landsat 9 | ||
C | 1 | Landsat 7–8 | |
2018–2020 | TOA | 294 | Landsat 8 |
SR | 72 | Landsat 8 | |
C | 1 | Landsat 7–8 | |
2015–2017 | TOA | 175 | Landsat 8 |
SR | 75 | Landsat 8 | |
C | 1 | Landsat 7–8 | |
2012–2014 | TOA | 0 | Landsat 5 |
11 | Landsat 7 | ||
56 | Landsat 8 | ||
0 | Landsat 5 | ||
SR | 11 | Landsat 7 | |
39 | Landsat 8 | ||
C | 1 | Landsat 7–8 |
HAFS | LAFS | SHC | Total | |||||
---|---|---|---|---|---|---|---|---|
Mean | % | Mean | % | Mean | % | Mean | % | |
Work | 1.75 | 26.30 | 2.24 | 19.90 | 6.76 | 20.50 | 6.24 | 21.60 |
Fertilizers | 3.15 | 47.40 | 8.58 | 76.30 | 12.89 | 39.00 | 16.02 | 55.46 |
Pesticides | 0.67 | 10.10 | 0.42 | 3.80 | 2.25 | 6.80 | 1.84 | 6.38 |
Vegetal issues | 1.01 | 15.20 | 0.00 | 0.00 | 10.80 | 32.70 | 4.61 | 15.95 |
Irrigation water | 0.07 | 1.00 | 0.00 | 0.00 | 0.32 | 1.00 | 0.18 | 0.61 |
Tot Inputs | 6.65 | 100.00 | 11.24 | 100.00 | 33.01 | 100.00 | 28.89 | 100.00 |
Total | Work | Fertilizer | Pesticide | Vegetal issues | Irrigation water | |||||||
GJ ha−1 | 2498.91 | 4066.56 | 640.52 | 2090.60 | 68.41 | |||||||
Inputs | Human | Animal | Machine | Fuel | Synthetic | Organic | Insect. | Fung. | Herb. | Seeds | Plants | Irrigation water |
GJ ha−1 | 723.80 | 99.61 | 61.85 | 1613.64 | 2711.15 | 1355.40 | 142.58 | 376.08 | 121.85 | 2014.00 | 76.60 | 68.41 |
% | 28.96 | 3.99 | 2.48 | 64.57 | 66.67 | 33.33 | 22.26 | 58.72 | 19.02 | 96.34 | 3.66 | 100 |
NDVI Image | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
System | SR_Mean | sd | p-Value | Range | Comp_Mean | sd | p-Value | Range | TOA_Mean | sd | p-Value | Range |
LAFS | 0.85 | 0.05 | 2.20 × 10−6 | a | 0.76 | 0.09 | 8.57 × 10−11 | a | 0.68 | 0.08 | 0.08 | ab |
HAFS | 0.79 | 0.08 | b | 0.67 | 0.08 | b | 0.69 | 0.06 | b | |||
SHC | 0.79 | 0.08 | b | 0.66 | 0.11 | b | 0.69 | 0.08 | a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zea, P.; Pascual, C.; García-Montero, L.G.; Cedillo, H. NDVI Performance for Monitoring Agricultural Energy Inputs Using Landsat Imagery: A Study in the Ecuadorian Andes (2012–2023). Sustainability 2025, 17, 3480. https://doi.org/10.3390/su17083480
Zea P, Pascual C, García-Montero LG, Cedillo H. NDVI Performance for Monitoring Agricultural Energy Inputs Using Landsat Imagery: A Study in the Ecuadorian Andes (2012–2023). Sustainability. 2025; 17(8):3480. https://doi.org/10.3390/su17083480
Chicago/Turabian StyleZea, Pedro, Cristina Pascual, Luis G. García-Montero, and Hugo Cedillo. 2025. "NDVI Performance for Monitoring Agricultural Energy Inputs Using Landsat Imagery: A Study in the Ecuadorian Andes (2012–2023)" Sustainability 17, no. 8: 3480. https://doi.org/10.3390/su17083480
APA StyleZea, P., Pascual, C., García-Montero, L. G., & Cedillo, H. (2025). NDVI Performance for Monitoring Agricultural Energy Inputs Using Landsat Imagery: A Study in the Ecuadorian Andes (2012–2023). Sustainability, 17(8), 3480. https://doi.org/10.3390/su17083480