Assessing Human Exposure to Fire Smoke in Underground Spaces: Challenges and Prospects for Protective Technologies
Abstract
1. Introduction
2. Smoke Diffusion Patterns in Underground Space Fires
3. Human Exposure Risk Assessments in Underground Space Fires
3.1. Risk Factors for Human Casualties in Underground Space Fire Cases
3.2. Interaction Characteristics Between Human Respiratory and Fire Smoke
4. Fire Smoke Protective Technologies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, S.-C.; Peng, F.-L.; Qiao, Y.-K.; Dong, Y.-H. Quantitative Evaluation of the Contribution of Underground Space to Urban Resilience: A Case Study in China. Undergr. Space 2024, 17, 1–24. [Google Scholar] [CrossRef]
- Lattimer, B.Y.; McKinnon, M. A Review of Fire Growth and Fully Developed Fires in Railcars. Fire Mater. 2018, 42, 603–619. [Google Scholar] [CrossRef]
- Li, X.; Chang, C.-T.; Zhu, Y.-Y.; Li, L.-L. Key Influence Factors on the Evacuation Route Selection for Fire Emergencies in Urban Underground Complexes. Eng. Constr. Archit. Manag. 2023, 31, 2630–2647. [Google Scholar] [CrossRef]
- Wei, J.; Deng, Q.; Zhang, L. Study on Emergency Evacuation in Underground Urban Complexes. PLoS ONE 2022, 17, e0278521. [Google Scholar] [CrossRef]
- Weng, W.; Yang, J.; Wu, J.; Fu, M.; He, Z.; Chen, W. Human Thermoregulation and Injury Evaluation in Fire Environments: A Review. Fire Technol. 2024, 60, 991–1025. [Google Scholar] [CrossRef]
- Hurley, M.J.; Gottuk, D.; Hall, J.R.; Harada, K.; Kuligowski, E.; Puchovsky, M.; Torero, J.; Watts, J.M.; Wieczorek, C. (Eds.) SFPE Handbook of Fire Protection Engineering; Springer: New York, NY, USA, 2016; ISBN 978-1-4939-2564-3. [Google Scholar]
- Cui, C.; Shao, Q.; Liu, Y.; Han, G.; Liu, F.; Han, X. A Review of the Evolution and Trends in Research on the Emergency Evacuation of Urban Underground Spaces. Buildings 2023, 13, 1325. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Li, Q.; Wu, J.; Wang, Y.; Jiang, J. Optimization of Emergency Shelter Layout with Consideration of Toxic Gas Leakage Based on a Cell Transmission Model. Saf. Sci. 2025, 185, 106810. [Google Scholar] [CrossRef]
- Guo, Y.; Xiao, G.; Chen, J.; Xiong, X.; Deng, H.; Liu, X.; Wang, L.; Li, Y. Characterizing Burning Behaviour of Convection-Controlled Pool Fires at Sub-Atmospheric Pressure by Stagnation Theory. Energy 2024, 287, 129689. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, R.; Wang, Y.; Shi, L.; Zhang, S.; Liu, J. Experimental Study on Combustion Characteristics of Pool Fires in a Sealed Environment. Energy 2023, 283, 128497. [Google Scholar] [CrossRef]
- Luan, D.; Chu, T.; Bielawski, J.; Fan, C.; Węgrzyński, W.; Huang, X. Smoke Movement and Stratification of Tunnel Fires under Coupled Effects of Rainfall and Ventilation. Fire Saf. J. 2025, 152, 104323. [Google Scholar] [CrossRef]
- Wang, K.; Cai, W.; Zhang, Y.; Hao, H.; Wang, Z. Numerical Simulation of Fire Smoke Control Methods in Subway Stations and Collaborative Control System for Emergency Rescue. Process Saf. Environ. Prot. 2021, 147, 146–161. [Google Scholar] [CrossRef]
- Alpert, R.L. Calculation of Response Time of Ceiling-Mounted Fire Detectors. Fire Technol. 1972, 8, 181–195. [Google Scholar] [CrossRef]
- Cong, W.; Shi, L.; Shi, Z.; Peng, M.; Yang, H.; Zhang, S.; Cheng, X. Effect of Train Fire Location on Maximum Smoke Temperature beneath the Subway Tunnel Ceiling. Tunn. Undergr. Space Technol. 2020, 97, 103282. [Google Scholar] [CrossRef]
- Wang, Y.F.; Li, Y.L.; Yan, P.N.; Zhang, B.; Jiang, J.C.; Zhang, L. Maximum Temperature of Smoke beneath Ceiling in Tunnel Fire with Vertical Shafts. Tunn. Undergr. Space Technol. 2015, 50, 189–198. [Google Scholar] [CrossRef]
- Tang, F.; Mei, F.Z.; Wang, Q.; He, Z.; Fan, C.G.; Tao, C.F. Maximum Temperature beneath the Ceiling in Tunnel Fires with Combination of Ceiling Mechanical Smoke Extraction and Longitudinal Ventilation. Tunn. Undergr. Space Technol. 2017, 68, 231–237. [Google Scholar] [CrossRef]
- Huang, Y.; Li, Y.; Dong, B.; Li, J.; Liang, Q. Numerical Investigation on the Maximum Ceiling Temperature and Longitudinal Decay in a Sealing Tunnel Fire. Tunn. Undergr. Space Technol. 2018, 72, 120–130. [Google Scholar] [CrossRef]
- Delichatsios, M. The Flow of Fire Gases under a Beamed Ceiling. Combust. Flame 1981, 43, 1–10. [Google Scholar] [CrossRef]
- He, Y. Smoke Temperature and Velocity Decays along Corridors. Fire Saf. J. 1999, 33, 71–74. [Google Scholar] [CrossRef]
- Hu, L.H.; Huo, R.; Li, Y.Z.; Wang, H.B.; Chow, W.K. Full-Scale Burning Tests on Studying Smoke Temperature and Velocity along a Corridor. Tunn. Undergr. Space Technol. 2005, 20, 223–229. [Google Scholar] [CrossRef]
- Fan, C.G.; Ji, J.; Gao, Z.H.; Sun, J.H. Experimental Study on Transverse Smoke Temperature Distribution in Road Tunnel Fires. Tunn. Undergr. Space Technol. 2013, 37, 89–95. [Google Scholar] [CrossRef]
- Liu, C.; Zhong, M.; Tian, X.; Zhang, P.; Xiao, Y.; Mei, Q. Experimental and Numerical Study on Fire-Induced Smoke Temperature in Connected Area of Metro Tunnel under Natural Ventilation. Int. J. Therm. Sci. 2019, 138, 84–97. [Google Scholar] [CrossRef]
- Han, J.; Wang, Z.; Geng, P.; Wang, F.; Wen, J.; Liu, F. The Effect of Blockage and Tunnel Slope on Smoke Spread and Ceiling Temperature Distribution in a Natural-Ventilated Metro Depot. Energy Build. 2021, 253, 111540. [Google Scholar] [CrossRef]
- Wang, K.; Liu, Y.; Zhang, P.; Guo, Y. Numerical Study on the Impact of Wall Thermal Inertia on Maximum Smoke Temperature and Longitudinal Attenuation in Long Channel Fires. Int. J. Therm. Sci. 2023, 184, 107940. [Google Scholar] [CrossRef]
- Meng, N.; Hu, L.; Zhu, S.; Yang, L. Effect of Smoke Screen Height on Smoke Flow Temperature Profile beneath Platform Ceiling of Subway Station: An Experimental Investigation and Scaling Correlation. Tunn. Undergr. Space Technol. 2014, 43, 204–212. [Google Scholar] [CrossRef]
- Tang, F.; Chen, L.; Chen, Y.; Pang, H. Experimental Study on the Effect of Ceiling Mechanical Smoke Extraction System on Transverse Temperature Decay Induced by Ceiling Jet in the Tunnel. Int. J. Therm. Sci. 2020, 152, 106294. [Google Scholar] [CrossRef]
- Hu, L.H.; Chen, L.F.; Tang, W. A Global Model on Temperature Profile of Buoyant Ceiling Gas Flow in a Channel with Combining Mass and Heat Loss Due to Ceiling Extraction and Longitudinal Forced Air Flow. Int. J. Heat Mass Transf. 2014, 79, 885–892. [Google Scholar] [CrossRef]
- Ji, J.; Guo, F.; Gao, Z.; Zhu, J.; Sun, J. Numerical Investigation on the Effect of Ambient Pressure on Smoke Movement and Temperature Distribution in Tunnel Fires. Appl. Therm. Eng. 2017, 118, 663–669. [Google Scholar] [CrossRef]
- Long, Z.; Yang, Y.; Liu, C.; Zhong, M. Study on the Optimal Operation Mode of Ventilation System during Metro Double-Island Platform Fire. Build. Simul. 2021, 14, 779–792. [Google Scholar] [CrossRef]
- Ji, J.; Fan, C.G.; Zhong, W.; Shen, X.B.; Sun, J.H. Experimental Investigation on Influence of Different Transverse Fire Locations on Maximum Smoke Temperature under the Tunnel Ceiling. Int. J. Heat Mass Transf. 2012, 55, 4817–4826. [Google Scholar] [CrossRef]
- Yao, Y.; Cheng, X.; Zhang, S.; Zhu, K.; Zhang, H.; Shi, L. Maximum Smoke Temperature beneath the Ceiling in an Enclosed Channel with Different Fire Locations. Appl. Therm. Eng. 2017, 111, 30–38. [Google Scholar] [CrossRef]
- Tang, F.; Li, L.; Chen, W.; Tao, C.; Zhan, Z. Studies on Ceiling Maximum Thermal Smoke Temperature and Longitudinal Decay in a Tunnel Fire with Different Transverse Gas Burner Locations. Appl. Therm. Eng. 2017, 110, 1674–1681. [Google Scholar] [CrossRef]
- Li, Y.Z.; Lei, B.; Ingason, H. The Maximum Temperature of Buoyancy-Driven Smoke Flow beneath the Ceiling in Tunnel Fires. Fire Saf. J. 2011, 46, 204–210. [Google Scholar] [CrossRef]
- Weng, M.; Xiong, K.; Liu, F.; Xie, J. Improved Temperature-Based Methods and Deep Learning-Based Method for Identifying the Smoke Layer Height in Tunnel with Longitudinal Ventilation. J. Wind Eng. Ind. Aerodyn. 2024, 252, 105833. [Google Scholar] [CrossRef]
- Li, X.; Zhu, G.; He, L.; Peng, M. On Smoke Layer Thickness in Short Naturally Ventilated Tunnels with Arched Roof. Case Stud. Therm. Eng. 2023, 52, 103661. [Google Scholar] [CrossRef]
- Du, T.; Yu, H.; Lu, X.; Yang, D. Brine-Water Experimental Study on the Propagation of Stratified Smoke Flow in Tunnel Fires under Subcritical Longitudinal Ventilation. Tunn. Undergr. Space Technol. 2023, 138, 105176. [Google Scholar] [CrossRef]
- Guo, Y.; Yuan, Z.; Yuan, Y.; Cao, X.; Zhao, P. Numerical Simulation of Smoke Stratification in Tunnel Fires under Longitudinal Velocities. Undergr. Space 2021, 6, 163–172. [Google Scholar] [CrossRef]
- Tang, F.; Li, L.J.; Dong, M.S.; Wang, Q.; Mei, F.Z.; Hu, L.H. Characterization of Buoyant Flow Stratification Behaviors by Richardson (Froude) Number in a Tunnel Fire with Complex Combination of Longitudinal Ventilation and Ceiling Extraction. Appl. Therm. Eng. 2017, 110, 1021–1028. [Google Scholar] [CrossRef]
- Gannouni, S.; Zinoubi, J.; Ben Maad, R. Numerical Study on the Thermal Buoyant Flow Stratification in Tunnel Fires with Longitudinal Imposed Airflow: Effect of an Upstream Blockage. Int. J. Therm. Sci. 2019, 136, 230–242. [Google Scholar] [CrossRef]
- Li, L.J.; Tang, F.; Dong, M.S.; Tao, C.F. Effect of Ceiling Extraction System on the Smoke Thermal Stratification in the Longitudinal Ventilation Tunnel. Appl. Therm. Eng. 2016, 109, 312–317. [Google Scholar] [CrossRef]
- Huang, D.F.; Li, S.C. An Experimental Investigation of Stratification Characteristic of Fire Smoke in the Corridor under the Effect of Outdoor Wind. J. Wind Eng. Ind. Aerodyn. 2018, 179, 173–183. [Google Scholar] [CrossRef]
- Deng, T.; Norris, S.; Sharma, R.N. Numerical Investigation on the Stability of Tunnel Smoke Stratification under the Effect of Water Spray and Longitudinal Ventilation. Tunn. Undergr. Space Technol. 2021, 112, 103901. [Google Scholar] [CrossRef]
- Vetter, M.; Dinkov, I.; Schelb, D.; Trimis, D. Experimental Study on the Effects of Sprinkler Activation on the Stratified Smoke Layer inside a 36 M2 Enclosure. Fire Saf. J. 2021, 121, 103313. [Google Scholar] [CrossRef]
- Awad, A.S.; Calay, R.K.; Badran, O.O.; Holdo, A.E. An Experimental Study of Stratified Flow in Enclosures. Appl. Therm. Eng. 2008, 28, 2150–2158. [Google Scholar] [CrossRef]
- Motevalli, V.; Marks, C.H. Characterizing the Unconfined Ceiling Jet under Steady-State Conditions: A Reassessment. In Fire Safety Science; Routledge: Oxfordshire, UK, 1991. [Google Scholar]
- Rafinazari, A.; Hadjisophocleous, G. An Investigation of the Effect of Make-up Air Velocity on Smoke Layer Height with Asymmetric Openings and Rotational Air Flow in Atrium Fires. J. Build. Eng. 2020, 27, 100933. [Google Scholar] [CrossRef]
- Yi, L.; Chen, Y.; Bu, R.; Luo, C.; Zhou, Y. Visualization Study on the Effect of Ambient Wind on Smoke Layer Height in Chamber Fires under Natural Smoke Exhaust Condition. J. Wind Eng. Ind. Aerodyn. 2021, 208, 104458. [Google Scholar] [CrossRef]
- He, L.; Xu, Z.; Markert, F.; Zhao, J.; Xie, E.; Liu, Q.; Tao, H.; Tagne Sylvain Marcial, S.; Wang, Z.; Fan, C. Study on the Effect of Tunnel Dimensions on the Smoke Layer Thickness in Naturally Ventilated Short Tunnel Fires. Tunn. Undergr. Space Technol. 2021, 112, 103941. [Google Scholar] [CrossRef]
- Xu, Z.; Zhao, J.; Liu, Q.; Chen, H.; Liu, Y.; Geng, Z.; He, L. Experimental Investigation on Smoke Spread Characteristics and Smoke Layer Height in Tunnels. Fire Mater. 2019, 43, 303–309. [Google Scholar] [CrossRef]
- Long, Z.; Chen, J.; Qiu, P.; Zhong, M. Study on the Smoke Layer Height in Subway Platform Fire under Natural Ventilation. J. Build. Eng. 2022, 56, 104758. [Google Scholar] [CrossRef]
- Huo, R.; Chow, W.K.; Jin, X.H.; Li, Y.Z.; Fong, N.K. Experimental Studies on Natural Smoke Filling in Atrium Due to a Shop Fire. Build. Environ. 2005, 40, 1185–1193. [Google Scholar] [CrossRef]
- Xi, Y.; Zhou, Z.; Mao, J.; Chow, W.; Tang, F. Maximum Ceiling Temperature and Longitudinal Distribution in a Corridor-like Enclosure with Opening. Tunn. Undergr. Space Technol. 2023, 134, 104994. [Google Scholar] [CrossRef]
- Reynolds, A.J. The Scaling of Flows of Energy and Mass through Stairwells. Build. Environ. 1986, 21, 149–153. [Google Scholar] [CrossRef]
- Ergin-Ozkan, S.; Mokhtarzadeh-Dehghan, M.R.; Reynolds, A.J. The Effect of Different Air InletSizes on the Air Flow through aStairwell. Indoor Built Environ. 1993, 2, 350–359. [Google Scholar] [CrossRef]
- Chen, J.; Li, G.; Pan, R.; Long, Z.; Zhong, M. Numerical Study on the Airflow Characteristics and Smoke Control Condition in Stair Area of Subway Stations. J. Build. Eng. 2024, 84, 108577. [Google Scholar] [CrossRef]
- Chen, J.; Liu, J.; Tian, X.; Zhang, L.; Cheng, H.; Zhong, M. Study on the Effect of Obstacles on Smoke Diffusion and Airflow Structure in Subway Stations. Build. Environ. 2023, 242, 110553. [Google Scholar] [CrossRef]
- Lu, H.; Li, J.; Sun, S.; Wang, J.; Ye, R.; Wu, J.; Wang, Y. Study on the Propagation Characteristics of Shockwave in Dense Crowd in Corner Passage. Int. J. Disaster Risk Reduct. 2024, 113, 104826. [Google Scholar] [CrossRef]
- Fu, W.; Li, J.; Wang, J.; Wu, J. Risk Assessment of Fire Casualty in Underground Commercial Building Based on FFTA-BN Model. J. Saf. Sci. Resil. 2024, 5, 470–485. [Google Scholar] [CrossRef]
- Wang, J.; Yu, X.; Zong, R.; Lu, S. Evacuation Route Optimization under Real-Time Toxic Gas Dispersion through CFD Simulation and Dijkstra Algorithm. J. Loss Prev. Process Ind. 2022, 76, 104733. [Google Scholar] [CrossRef]
- Wang, J.; Yu, X.; Zong, R. A Dynamic Approach for Evaluating the Consequences of Toxic Gas Dispersion in the Chemical Plants Using CFD and Evacuation Modelling. J. Loss Prev. Process Ind. 2020, 65, 104156. [Google Scholar] [CrossRef]
- Yuan, S.; Cai, J.; Reniers, G.; Yang, M.; Chen, C.; Wu, J. Safety Barrier Performance Assessment by Integrating Computational Fluid Dynamics and Evacuation Modeling for Toxic Gas Leakage Scenarios. Reliab. Eng. Syst. Saf. 2022, 226, 108719. [Google Scholar] [CrossRef]
- Si, J.; Li, L.; Li, Z.; Zhao, S. Experimental Analysis of Smoke Dispersion in Belt Fires by Using a Real-Size Model of the Underground Space. Case Stud. Therm. Eng. 2024, 53, 103839. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Q.; Sun, S.; Ye, R.; Wu, J. Evolution Law of Selfish Psychology in Evacuating Crowd and Its Influence on Emergency Escape. J. Loss Prev. Process Ind. 2025, 96, 105644. [Google Scholar] [CrossRef]
- Masalegooyan, Z.; Piadeh, F.; Behzadian, K. A Comprehensive Framework for Risk Probability Assessment of Landfill Fire Incidents Using Fuzzy Fault Tree Analysis. Process Saf. Environ. Prot. 2022, 163, 679–693. [Google Scholar] [CrossRef]
- Kong, D.; Lu, S.; Kang, Q.; Lo, S.; Xie, Q. Fuzzy Risk Assessment for Life Safety Under Building Fires. Fire Technol. 2014, 50, 977–991. [Google Scholar] [CrossRef]
- Qie, Z.; Yan, H. A Causation Analysis of Chinese Subway Construction Accidents Based on Fault Tree Analysis-Bayesian Network. Front. Psychol. 2022, 13, 887073. [Google Scholar] [CrossRef]
- Jafari, M.J.; Pouyakian, M.; Khanteymoori, A.; Hanifi, S.M. Reliability Evaluation of Fire Alarm Systems Using Dynamic Bayesian Networks and Fuzzy Fault Tree Analysis. J. Loss Prev. Process Ind. 2020, 67, 104229. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, X.; Qiao, W.; Luo, H.; He, P. Human Factor Risk Modeling for Shipyard Operation by Mapping Fuzzy Fault Tree into Bayesian Network. Int. J. Environ. Res. Public Health 2022, 19, 297. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Zhu, H.; Zhang, X.; Zhang, B.; Zhang, X. An Integrated Quantitative Risk Assessment Method for Underground Engineering Fires. Int. J. Environ. Res. Public Health 2022, 19, 16934. [Google Scholar] [CrossRef]
- Chen, J.; Ji, J.; Ding, L.; Wu, J. Fire Risk Assessment in Cotton Storage Based on Fuzzy Comprehensive Evaluation and Bayesian Network. Fire Mater. 2020, 44, 683–692. [Google Scholar] [CrossRef]
- Wu, J.; Hu, Z.; Chen, J.; Li, Z. Risk Assessment of Underground Subway Stations to Fire Disasters Using Bayesian Network. Sustainability 2018, 10, 3810. [Google Scholar] [CrossRef]
- Wang, N.; Gao, Y.; Li, C.-Y.; Gao, W.-M. Integrated Agent-Based Simulation and Evacuation Risk-Assessment Model for Underground Building Fire: A Case Study. J. Build. Eng. 2021, 40, 102609. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.; Wang, C.; Kassem, M.A. Study on Evacuation Behavior of Urban Underground Complex in Fire Emergency Based on System Dynamics. Sustainability 2022, 14, 1343. [Google Scholar] [CrossRef]
- Wang, D.; Yang, Y.; Zhou, T.; Yang, F. An Investigation of Fire Evacuation Performance in Irregular Underground Commercial Building Affected by Multiple Parameters. J. Build. Eng. 2021, 37, 102146. [Google Scholar] [CrossRef]
- Lu, T.; Zeng, Y.; Zheng, Z.; Zhang, Y.; Huang, X.; Lu, X. AI-Powered Safe Egress Time Assessment for Complex Building Fire Evacuation. J. Build. Eng. 2025, 110, 113013. [Google Scholar] [CrossRef]
- Abouelhamd, I.M.S.; Kuga, K.; Saito, K.; Takai, M.; Kikuchi, T.; Ito, K. Experimental and Computational Predictions of Odorant Transport Dynamics from Indoor Environment to Olfactory Tissue. Sustain. Cities Soc. 2025, 126, 106397. [Google Scholar] [CrossRef]
- Farahmand, K.; Srinivasan, R.; Hamidi, M. CFD Heat Transfer Simulation of the Human Upper Respiratory Tract for Oronasal Breathing Condition. IJIEC 2012, 3, 63–70. [Google Scholar] [CrossRef]
- Goodarzi-Ardakani, V.; Taeibi-Rahni, M.; Salimi, M.R.; Ahmadi, G. Computational Simulation of Temperature and Velocity Distribution in Human Upper Respiratory Airway during Inhalation of Hot Air. Respir. Physiol. Neurobiol. 2016, 223, 49–58. [Google Scholar] [CrossRef]
- Phuong, N.L.; Yamashita, M.; Yoo, S.-J.; Ito, K. Prediction of Convective Heat Transfer Coefficient of Human Upper and Lower Airway Surfaces in Steady and Unsteady Breathing Conditions. Build. Environ. 2016, 100, 172–185. [Google Scholar] [CrossRef]
- Xu, X.; Shang, Y.; Tian, L.; Weng, W.; Tu, J. Fate of the Inhaled Smoke Particles from Fire Scenes in the Nasal Airway of a Realistic Firefighter: A Simulation Study. J. Occup. Environ. Hyg. 2019, 16, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Ni, S.; Fu, M.; Zheng, X.; Luo, N.; Weng, W. Numerical Investigation of Airflow, Heat Transfer and Particle Deposition for Oral Breathing in a Realistic Human Upper Airway Model. J. Therm. Biol. 2017, 70, 53–63. [Google Scholar] [CrossRef]
- Xu, X.; Shang, Y.; Tian, L.; Weng, W.; Tu, J. A Numerical Study on Firefighter Nasal Airway Dosimetry of Smoke Particles from a Realistic Composite Deck Fire. J. Aerosol Sci. 2018, 123, 91–104. [Google Scholar] [CrossRef]
- Xu, X.; Wu, J.; Weng, W.; Fu, M. Investigation of Inhalation and Exhalation Flow Pattern in a Realistic Human Upper Airway Model by PIV Experiments and CFD Simulations. Biomech. Model. Mechanobiol. 2020, 19, 1679–1695. [Google Scholar] [CrossRef]
- Cui, X.; Song, W.; Xue, Y.; Jing, H.; Lei, M.; Ma, H.; He, X.; Zou, P.; Wu, B.; Wang, J. Numerical Analysis of Micro Lunar Dust Deposition in the Human Nasal Airway. J. Hazard. Mater. 2024, 461, 132682. [Google Scholar] [CrossRef]
- Li, J.; Ma, J.; Dong, J.; Yang, W.; Ahmadi, G.; Tu, J.; Tian, L. Microfiber Transport Characterization in Human Nasal Cavity—Effect of Fiber Length. J. Aerosol Sci. 2022, 160, 105908. [Google Scholar] [CrossRef]
- Yan, Y.; Li, X.; Tao, Y.; Fang, X.; Yan, P.; Tu, J. Numerical Investigation of Pilots’ Micro-Environment in an Airliner Cockpit. Build. Environ. 2022, 217, 109043. [Google Scholar] [CrossRef]
- Xu, X.; Shang, Y.; Tian, L.; Weng, W.; Tu, J. Inhalation Health Risk Assessment for the Human Tracheobronchial Tree under PM Exposure in a Bus Stop Scene. Aerosol Air Qual. Res. 2019, 19, 1365–1376. [Google Scholar] [CrossRef]
- Zhao, Y.; Kong, J.; Wang, X.; Cao, Y.; You, W.; Liu, H. Bibliometric Analysis of Subway Fire under Longitudinal Ventilation. Emerg. Manag. Sci. Technol. 2025, 5, e015. [Google Scholar] [CrossRef]
- Lyu, H.-F.; Wang, C.-P.; Deng, J.; Xiao, Y.; Wang, W.-F. Human Behaviour and Evacuation Time for Large Underground Comprehensive Buildings during Fire Risk Process. J. Loss Prev. Process Ind. 2023, 84, 105134. [Google Scholar] [CrossRef]
- Han, Z.Y.; Weng, W.G.; Huang, Q.Y. Numerical and Experimental Investigation on the Dynamic Airflow of Human Movement in a Full-Scale Cabin. HVACR Res. 2014, 20, 444–457. [Google Scholar] [CrossRef]
- Han, Z.Y.; Weng, W.G.; Huang, Q.Y.; Fu, M.; Yang, J.; Luo, N. Aerodynamic Characteristics of Human Movement Behaviours in Full-Scale Environment: Comparison of Limbs Pendulum and Body Motion. Indoor Built Environ. 2013, 24, 87–100. [Google Scholar] [CrossRef]
- Luo, N.; Weng, W.; Xu, X.; Fu, M. Experimental and Numerical Investigation of the Wake Flow of a Human-Shaped Manikin: Experiments by PIV and Simulations by CFD. Build. Simul. 2018, 11, 1189–1205. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, Y.; Ma, L. Impacts of Human Movement and Ventilation Mode on the Indoor Environment, Droplet Evaporation, and Aerosol Transmission Risk at Airport Terminals. Build. Environ. 2022, 224, 109527. [Google Scholar] [CrossRef]
- Kalliomäki, P.; Saarinen, P.; Tang, J.W.; Koskela, H. Airflow Patterns through Single Hinged and Sliding Doors in Hospital Isolation Rooms—Effect of Ventilation, Flow Differential and Passage. Build. Environ. 2016, 107, 154–168. [Google Scholar] [CrossRef]
- Wu, J.; Weng, W.; Fu, M.; Li, Y.; Lan, M. Enhancement Effect of Human Movement on the High Risk Range of Viral Aerosols Exhaled by a Sitting Person. Build. Environ. 2022, 218, 109136. [Google Scholar] [CrossRef]
- Wu, J.; Weng, W.; Fu, M.; Li, Y. Numerical Study of Transient Indoor Airflow and Virus-Laden Droplet Dispersion: Impact of Interactive Human Movement. Sci. Total Environ. 2023, 869, 161750. [Google Scholar] [CrossRef]
- Han, Z.; Weng, W.; Huang, Q. Numerical Investigation on the Effects of Human Movements on Smoke Propagation in Building Fire. Procedia Eng. 2013, 62, 470–477. [Google Scholar] [CrossRef][Green Version]
- Luo, N.; Weng, W.; Xu, X.; Hong, T.; Fu, M.; Sun, K. Assessment of Occupant-Behavior-Based Indoor Air Quality and Its Impacts on Human Exposure Risk: A Case Study Based on the Wildfires in Northern California. Sci. Total Environ. 2019, 686, 1251–1261. [Google Scholar] [CrossRef]
- Benabed, A.; Boulbair, A.; Limam, K. Experimental Study of the Human Walking-Induced Fine and Ultrafine Particle Resuspension in a Test Chamber. Build Environ. 2020, 171, 106655. [Google Scholar] [CrossRef]
- Qian, J.; Peccia, J.; Ferro, A.R. Walking-Induced Particle Resuspension in Indoor Environments. Atmos. Environ. 2014, 89, 464–481. [Google Scholar] [CrossRef]
- Wu, J.; Geng, J.; Fu, M.; Weng, W. Multi-person Movement-induced Airflow and the Effects on Virus-laden Expiratory Droplet Dispersion in Indoor Environments. Indoor Air 2022, 32, 13119. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Weng, W.; Shen, L.; Fu, M. Transient and Continuous Effects of Indoor Human Movement on Nanoparticle Concentrations in a Sitting Person’s Breathing Zone. Sci. Total Environ. 2022, 805, 149970. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Bisschop, R.; Niu, H.; Huang, X. A Review of Battery Fires in Electric Vehicles. Fire Technol. 2020, 56, 1361–1410. [Google Scholar] [CrossRef]
- Wang, J. Inhibition Effect and Kinetics Studies on the Deflagration Characteristics of Hydrogen Compressed Natural Gas (HCNG) by C6F12O and CO2. Int. J. Hydrogen Energy 2025, 113, 523–534. [Google Scholar] [CrossRef]
- Shoshe, M.A.M.S.; Rahman, M.A. Improvement of Heat and Smoke Confinement Using Air Curtains in Informal Shopping Malls. J. Build. Eng. 2022, 46, 103676. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Q.; Liu, Y. Investigation of the Quasi-Periodic Airflow Oscillation and Ventilation Performance of an Enclosed Environment with a Jet Air Supply. Energy Build. 2022, 265, 112104. [Google Scholar] [CrossRef]
- Liu, C.; Zhong, M.; Song, S.; Xia, F.; Tian, X.; Yang, Y.; Long, Z. Experimental and Numerical Study on Critical Ventilation Velocity for Confining Fire Smoke in Metro Connected Tunnel. Tunn. Undergr. Space Technol. 2020, 97, 103296. [Google Scholar] [CrossRef]
- Seuntjens, O.; Belmans, B.; Buyle, M.; Audenaert, A. A Critical Review on the Adaptability of Ventilation Systems: Current Problems, Solutions and Opportunities. Build. Environ. 2022, 212, 108816. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Li, J.; Li, X.; Huang, Y. Study on Smoke Control under Mechanical Exhaust Strategy in a Cross-Type Interchange Subway Station. Tunn. Undergr. Space Technol. 2021, 112, 103897. [Google Scholar] [CrossRef]
- Chen, L.F.; Hu, L.H.; Zhang, X.L.; Zhang, X.Z.; Zhang, X.C.; Yang, L.Z. Thermal Buoyant Smoke Back-Layering Flow Length in a Longitudinal Ventilated Tunnel with Ceiling Extraction at Difference Distance from Heat Source. Appl. Therm. Eng. 2015, 78, 129–135. [Google Scholar] [CrossRef]
- Li, Y.Z.; Lei, B.; Ingason, H. Study of Critical Velocity and Backlayering Length in Longitudinally Ventilated Tunnel Fires. Fire Saf. J. 2010, 45, 361–370. [Google Scholar] [CrossRef]
- Guo, Q.; Li, Y.Z.; Ingason, H.; Yan, Z.; Zhu, H. Theoretical and Numerical Study on Mass Flow Rates of Smoke Exhausted from Short Vertical Shafts in Naturally Ventilated Urban Road Tunnel Fires. Tunn. Undergr. Space Technol. 2021, 111, 103782. [Google Scholar] [CrossRef]
- Zhang, S.; Cheng, X.; Yao, Y.; Zhu, K.; Li, K.; Lu, S.; Zhang, R.; Zhang, H. An Experimental Investigation on Blockage Effect of Metro Train on the Smoke Back-Layering in Subway Tunnel Fires. Appl. Therm. Eng. 2016, 99, 214–223. [Google Scholar] [CrossRef]
- Wu, F.; Zhou, R.; Shen, G.; Jiang, J.; Li, K. Effects of Ambient Pressure on Smoke Back-Layering in Subway Tunnel Fires. Tunn. Undergr. Space Technol. 2018, 79, 134–142. [Google Scholar] [CrossRef]
- Li, Y.Z.; Ingason, H. Effect of Cross Section on Critical Velocity in Longitudinally Ventilated Tunnel Fires. Fire Saf. J. 2017, 91, 303–311. [Google Scholar] [CrossRef]
- Lee, S.R.; Ryou, H.S. An Experimental Study of the Effect of the Aspect Ratio on the Critical Velocity in Longitudinal Ventilation Tunnel Fires. J. Fire Sci. 2005, 23, 119–138. [Google Scholar] [CrossRef]
- Ko, G.H.; Kim, S.R.; Ryou, H.S. An Experimental Study on the Effect of Slope on the Critical Velocity in Tunnel Fires. J. Fire Sci. 2010, 28, 27–47. [Google Scholar] [CrossRef]
- Yi, L.; Xu, Q.; Xu, Z.; Wu, D. An Experimental Study on Critical Velocity in Sloping Tunnel with Longitudinal Ventilation under Fire. Tunn. Undergr. Space Technol. 2014, 43, 198–203. [Google Scholar] [CrossRef]
- Du, T.; Yang, D.; Ding, Y. Driving Force for Preventing Smoke Backlayering in Downhill Tunnel Fires Using Forced Longitudinal Ventilation. Tunn. Undergr. Space Technol. 2018, 79, 76–82. [Google Scholar] [CrossRef]
- Zhong, W.; Li, Z.; Wang, T.; Liang, T.; Liu, Z. Experimental Study on the Influence of Different Transverse Fire Locations on the Critical Longitudinal Ventilation Velocity in Tunnel Fires. Fire Technol. 2015, 51, 1217–1230. [Google Scholar] [CrossRef]
- Yao, Y.; Cheng, X.; Zhang, S.; Zhu, K.; Shi, L.; Zhang, H. Smoke Back-Layering Flow Length in Longitudinal Ventilated Tunnel Fires with Vertical Shaft in the Upstream. Appl. Therm. Eng. 2016, 107, 738–746. [Google Scholar] [CrossRef]
- Wang, Y.F.; Yan, P.N.; Zhang, B.; Jiang, J.C. Thermal Buoyant Smoke Back-Layering Length in a Naturally Ventilated Tunnel with Vertical Shafts. Appl. Therm. Eng. 2016, 93, 947–957. [Google Scholar] [CrossRef]
- Huang, L.; Ma, J.; Li, A.; Wu, Y. Scale Modeling Experiments of Fire-Induced Smoke and Extraction via Mechanical Ventilation in an Underground Hydropower Plant. Sustain. Cities Soc. 2019, 44, 536–549. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.Z.; Ingason, H.; Liu, F. Control of Thermal-Driven Smoke Flow at Stairways in a Subway Platform Fire. Int. J. Therm. Sci. 2021, 165, 106937. [Google Scholar] [CrossRef]
- Acherar, L.; Wang, H.-Y.; Garo, J.-P.; Coudour, B. Impact of Air Intake Position on Fire Dynamics in Mechanically Ventilated Compartment. Fire Saf. J. 2020, 118, 103210. [Google Scholar] [CrossRef]
- Magnognou, B.; Garo, J.P.; Coudour, B.; Wang, H.Y. Risk Analysis of Unburnt Gas Ignition in an Exhaust System Connected to a Confined and Mechanically Ventilated Enclosure Fire. Fire Saf. J. 2017, 91, 291–302. [Google Scholar] [CrossRef]
- Razeghi, S.M.J.; Safarzadeh, M.; Pasdarshahri, H. Evaluation of Air Curtain and Emergency Exhaust System for Smoke Confinement of an Enclosure. J. Build. Eng. 2021, 33, 101650. [Google Scholar] [CrossRef]
- Huo, Y.; Zhang, Q.; Jia, Y.; Liu, D.; Guan, J.; Lin, G.; Zhang, Y. A Deep Separable Convolutional Neural Network for Multiscale Image-Based Smoke Detection. Fire Technol. 2022, 58, 1445–1468. [Google Scholar] [CrossRef]
- Huo, Y.; Zhang, Q.; Zhang, Y.; Zhu, J.; Wang, J. 3DVSD: An End-to-End 3D Convolutional Object Detection Network for Video Smoke Detection. Fire Saf. J. 2022, 134, 103690. [Google Scholar] [CrossRef]
- Ding, S.; Zhang, H.; Zhang, Y.; Huang, X.; Song, W. Hyper Real-Time Flame Detection: Dynamic Insights from Event Cameras and FlaDE Dataset. Expert Syst. Appl. 2025, 263, 125746. [Google Scholar] [CrossRef]
- Dlouha, D.; Pokorny, J.; Podkul, M.; Brumarova, L.; Szurgacz, D.; Tomaskova, M.; Vlcek, V.; Zhironkin, S. Calculation Technique CSN for Smoke Layer Interface Assessment during Fires in Industry. J. Loss Prev. Process Ind. 2025, 94, 105564. [Google Scholar] [CrossRef]
- Geng, J.; Wu, J.; Yang, J.; Fu, M.; Weng, W. Numerical Simulation of Cooling Effect of Human-PCM-Clothing Model in Hot Environments. Int. J. Therm. Sci. 2023, 192, 108393. [Google Scholar] [CrossRef]
- He, F.; Wu, J.; Li, Y.; Fu, M.; He, S.; Weng, W. The Impact of Leak Gap Size and Position on Surgical Mask Performance of Source Control: A Numerical Study. Build. Environ. 2025, 267, 112241. [Google Scholar] [CrossRef]
- Lutsenko, N.A.; Kim, A.S.; Fetsov, S.S. Performance of Two-Layer Filters for Innovative Respiratory Protective Devices Containing Granular Phase Change Materials. Int. J. Therm. Sci. 2025, 217, 110029. [Google Scholar] [CrossRef]
- GB/T 38451-2019; Respiratory Protection—Self-Contained Open-Circuit Compressed Air Breathing Apparatus for Escape. State Administration for Market Regulation: Beijing, China, 2019.
- Zhu, J.; Zhu, R.; Hu, Y.; Wang, Z. Low-Cost and Temperature-Resistant Mullite Fiber Sponges with Superior Thermal Insulation and High-Temperature PM Filtration. Sep. Purif. Technol. 2023, 305, 122445. [Google Scholar] [CrossRef]
- Li, L.; Jia, C.; Liu, Y.; Fang, B.; Zhu, W.; Li, X.; Schaefer, L.; Li, Z.; Zhang, F.; Feng, X.; et al. Nanograin–Glass Dual-Phasic, Elasto-Flexible, Fatigue-Tolerant, and Heat-Insulating Ceramic Sponges at Large Scales. Mater. Today 2022, 54, 72–82. [Google Scholar] [CrossRef]
- Fu, T.; Wang, Y.-Z. Design and Development of Fire-Safety Materials in Artificial Intelligence Era. Acc. Mater. Res. 2025, 6, 544–549. [Google Scholar] [CrossRef]

| Time | Location | Reason | Consequence |
|---|---|---|---|
| 18 November 1987 | King’s Cross St. Pancras Station, London Underground, UK | Escalator fire | 31 fatalities |
| 25 December 2000 | Dongdu Commercial Building, Luoyang, China | Illegal hot work (welding) operations | 309 fatalities, 7 injured |
| 18 February 2003 | Jungangno Station, Daegu Metro, South Korea | Arson | 198 fatalities, 298 missing |
| 5 June 2013 | Moscow Metro, Russia | Cable fire | 66 injured |
| 12 January 2015 | L’Enfant Plaza Station, Washington D.C. Metro, USA | Train carriage fire | 1 fatality, multiple injuries |
| 26 January 2016 | Ginza Station, Tokyo Metro, Japan | Combustion of unknown substance at station ventilation shaft | 68,000 passengers affected |
| 10 February 2017 | Tsim Sha Tsui Station, Hong Kong, China | Arson | 18 injured |
| 27 March 2020 | 110th Street Station, New York City Subway, USA | Train carriage fire | 1 fatality, 16 injured |
| 2 January 2022 | Xinchangxing Market, Dalian, China | Unauthorized welding ignited polyurethane foam in underground cold storage during construction | 8 fatalities, 5 injured, 1 firefighter fatality |
| 23 January 2023 | Barranca del Muerto Station, Mexico City Metro, Mexico | Electrical short circuit | 26 cases of respiratory discomfort |
| 24 January 2024 | Jialeyuan Street Shops, Xinyu, China | Violation of hot work regulations during cold storage construction | 39 fatalities, 9 injured |
| Previous Studies | Maximum Temperature Models | Fire Scene Characteristics |
|---|---|---|
| Alpert [13] | Ceiling without boundary | |
| Ji et al. [30] | Restriction of side wall | |
| Yao et al. [31] | Enclosed channel | |
| Tang et al. [32] | Effect of transverse fire position | |
| Li et al. [33] | Effect of wind speed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Liu, M.; Tang, Y.; Xu, Y.; He, F.; Wang, J.; Tsai, Y.; Yang, Y.; Long, Z. Assessing Human Exposure to Fire Smoke in Underground Spaces: Challenges and Prospects for Protective Technologies. Sustainability 2025, 17, 9922. https://doi.org/10.3390/su17229922
Wu J, Liu M, Tang Y, Xu Y, He F, Wang J, Tsai Y, Yang Y, Long Z. Assessing Human Exposure to Fire Smoke in Underground Spaces: Challenges and Prospects for Protective Technologies. Sustainability. 2025; 17(22):9922. https://doi.org/10.3390/su17229922
Chicago/Turabian StyleWu, Jialin, Meijie Liu, Yongqi Tang, Yehui Xu, Feifan He, Jinghong Wang, Yunting Tsai, Yi Yang, and Zeng Long. 2025. "Assessing Human Exposure to Fire Smoke in Underground Spaces: Challenges and Prospects for Protective Technologies" Sustainability 17, no. 22: 9922. https://doi.org/10.3390/su17229922
APA StyleWu, J., Liu, M., Tang, Y., Xu, Y., He, F., Wang, J., Tsai, Y., Yang, Y., & Long, Z. (2025). Assessing Human Exposure to Fire Smoke in Underground Spaces: Challenges and Prospects for Protective Technologies. Sustainability, 17(22), 9922. https://doi.org/10.3390/su17229922

