Feasibility and Implications of Biodegradable Diaper Alternatives
Abstract
1. Introduction
2. Conventional Diapers and Their Environmental Impact
2.1. Composition and Materials Used in Conventional Diapers
2.2. Environmental Impact and Disposal Challenges
3. Biodegradable Diaper Alternatives
3.1. Definition and Key Characteristics
3.2. Types of Biodegradable Diaper Materials
3.2.1. Bamboo and Organic Cotton
3.2.2. Polybutylene Adipate-Co-Butylene Terephthalate
3.2.3. Polylactic Acid
3.2.4. Other Biopolymers Explored
3.3. Manufacturing Processes and Sustainability Considerations
3.4. Biodegradability Mechanisms and Sustainable Considerations
4. Performance and Safety
4.1. Absorbency and Leakage Prevention
4.2. Comfort and Skin Health
4.3. Consumer Perception and Acceptance
4.4. Health and Safety Considerations
5. Environmental and Economic Barriers
5.1. Cost and Affordability: Comparison of Biodegradable Polymers vs. Conventional Polymers
5.2. Production Scalability and Supply Chain Constraints
5.3. Performance Consistency and Product Design
6. Policy, Waste Infrastructure, and Social Acceptance
6.1. Material Innovation and Optimization
6.2. Safety and Toxicity Assessment
6.3. Biodegradation Pathways and Environmental Fate
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ndifreke, E. Disposable Diapers: Impact of Disposal Methods on Public Health and the Environment. Am. J. Med. Public Health 2020, 1, 1009. [Google Scholar]
- Meseldzija, J.; Poznanovic, D.; Frank, R. Assessment of the Differing Environmental Impacts Between Reusable and Disposable Diapers. Dufferin Res. 2013, 1–11. Available online: https://www.dufferinresearch.com/images/sampledata/documents/Environmental%20Impact%20Report%20-%20Cloth%20vs%20Disposible.pdf (accessed on 1 September 2025).
- Płotka-Wasylka, J.; Makoś-Chełstowska, P.; Kurowska-Susdorf, A.; Treviño, M.J.S.; Guzmán, S.Z.; Mostafa, H.; Cordella, M. End-of-life management of single-use baby diapers: Analysis of technical, health and environment aspects. Sci. Total Environ. 2022, 836, 155339. [Google Scholar] [CrossRef]
- Wambui, K.E.; Joseph, M.; Makindi, S. Soiled Diapers Disposal Practices among Caregivers in Poor and Middle Income Urban Settings. Int. J. Sci. Res. Publ. 2014, 5, 1–10. [Google Scholar]
- Kordecki, H.; Antrobus-Wuth, R.; Uys, M.T.; van Wyk, I.; Root, E.D.; Berrian, A.M. Disposable diaper waste accumulation at the human-livestock-wildlife interface: A one health approach. Environ. Chall. 2022, 8, 100589. [Google Scholar] [CrossRef]
- Shah, D.R.S.I.; Ramli, F.F.; Anuar, N.F.; Daud, W.M.A.W.; Aghamohammadi, N. A systematic review on employing thermochemical techniques for the production of exceptionally efficient biochar from discarded disposable diapers (D3). J. Anal. Appl. Pyrolysis 2024, 180, 106527. [Google Scholar] [CrossRef]
- Shah, D.R.S.I.; Anuar, N.F.; Jaafar, M.I.; Daud, W.M.A.W.; Aghamohammadi, N. Towards a greener future of sustainable and circular practices in resource recovery from discarded disposable diaper (D3): A systematic review and meta-analysis. J. Mater. Cycles Waste Manag. 2025, 27, 3033–3054. [Google Scholar] [CrossRef]
- Jesca, M.; Junior, M. Practices Regarding Disposal of Soiled Diapers among Women of Child Bearing Age in Poor Resource Urban Setting. J. Nurs. Health Sci. 2015, 4, 63–67. [Google Scholar]
- Zhang, M.; Buekens, A.; Li, X. Open burning as a source of dioxins. Crit. Rev. Environ. Sci. Technol. 2017, 47, 543–620. [Google Scholar] [CrossRef]
- Fu, Y.; Wu, G.; Bian, X.; Zeng, J.; Weng, Y. Biodegradation Behavior of Poly(Butylene Adipate-Co-Terephthalate) (PBAT), Poly(Lactic Acid) (PLA), and Their Blend in Freshwater with Sediment. Molecules 2020, 25, 3946. [Google Scholar] [CrossRef] [PubMed]
- Gadtya, A.S.; Tripathy, D.; Moharana, S. Recycling and Reuse of Superabsorbent Polymers. In Bio-Based Superabsorbents; Engineering Materials; Springer: Singapore, 2023; pp. 161–183. [Google Scholar] [CrossRef]
- Czarnecka, E.; Nowaczyk, J. Semi-Natural superabsorbents based on Starch-g-poly(acrylic acid): Modification, synthesis and application. Polymers 2020, 12, 1794. [Google Scholar] [CrossRef]
- Lertsarawut, P.; Laksee, S.; Rattanawongwiboon, T.; Hemvichian, K. Eco-friendly alginate-starch-based water super-absorbent beads spherically shaped and uniformly fabricated via spherification and radiation-assisted polymerization. Carbohydr. Polym. Technol. Appl. 2024, 7, 100456. [Google Scholar] [CrossRef]
- Li, W.; Chen, H.; Xu, Q.; Yang, D.; Zhang, C.; Cai, S.; Wang, Y.; Luo, J. Waste treatment by waste: High-value utilization of superabsorbent polymer in disposable diapers as efficient adsorbent for heavy metal. Sep. Purif. Technol. 2024, 340, 126819. [Google Scholar] [CrossRef]
- Baldwin, S.; Odio, M.R.; Haines, S.L.; O’Connor, R.J.; Englehart, J.S.; Lane, A.T. Skin benefits from continuous topical administration of a zinc oxide/petrolatum formulation by a novel disposable diaper. J. Eur. Acad. Dermatol. Venereol. 2001, 15 (Suppl. 1), 5–11. [Google Scholar] [CrossRef]
- Patel, P.N.; Parmar, K.G.; Nakum, A.N.; Patel, M.N.; Patel, P.R.; Patel, V.R.; Sen, D.J. Biodegradable Polymers: An Ecofriendly Approach In Newer Millenium. Asian J. Biomed. Pharm. Sci. 2011, 1, 23–39. [Google Scholar]
- Asian Development Bank Institute; Jagath, P.; Gamaralalage, D. Derek Hondo. Solid Waste Management in Developing Asia: Prioritizing Waste Separation. Available online: https://www.adb.org/sites/default/files/publication/652121/adbi-pb2020-7.pdf (accessed on 30 November 2020).
- Cruvinel, V.R.N.; Zolnikov, T.R.; Obara, M.T.; de Oliveira, V.T.L.; Vianna, E.N.; Santos, F.S.G.D.; de Oliveira, K.C.; Scott, J.A. Vector-borne diseases in waste pickers in Brasilia, Brazil. Waste Manag. 2020, 105, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Imam, A.; Mohammed, B.; Wilson, D.C.; Cheeseman, C.R. Solid waste management in Abuja, Nigeria. Waste Manag. 2008, 28, 468–472. [Google Scholar] [CrossRef]
- Nayak, P.L. Biodegradable polymers: Opportunities and challenges. J. Macromol. Sci. Part C Polym. Rev. 1999, 39, 481–505. [Google Scholar] [CrossRef]
- Kržan, A. Biodegradable Polymers and Plastics; Innovative Value Chain Development for Sustainable Plastics in Central Europe (Plastice): Vienna, Austria, 2012. [Google Scholar]
- Mirabella, N.; Castellani, V.; Sala, S. Life cycle assessment of bio-based products: A disposable diaper case study. Int. J. Life Cycle Assess. 2013, 18, 1036–1047. [Google Scholar] [CrossRef]
- Myalenko, D.; Fedotova, O. Physical, Mechanical, and Structural Properties of the Polylactide and Polybutylene Adipate Terephthalate (PBAT)-Based Biodegradable Polymer During Compost Storage. Polymers 2023, 15, 1619. [Google Scholar] [CrossRef]
- Amjad, A.I. Bamboo fibre: A sustainable solution for textile manufacturing. Adv. Bamboo Science. 2024, 7, 100088. [Google Scholar] [CrossRef]
- Shanmugasundaram, O.L.; Gowda, R.V.M. Development and characterization of bamboo and organic cotton fibre blended baby diapers. Indian J. Fibre Text. Res. 2010, 35, 201–205. [Google Scholar]
- Tamta, M.; Kamboj, A. Cultural Influences on Consumption: Insights from India. In Consumption and Production in the Textile and Garment Industry; Springer: Singapore, 2024; pp. 87–99. [Google Scholar] [CrossRef]
- Malarvizhi, G. Development of Herbal Finished Baby Diapers with Bamboo Fiber. BEST Int. J. Humanit. Arts Med. Sci. 2015, 3, 41–46. [Google Scholar]
- Rovira, J.; Domingo, J.L. Human health risks due to exposure to inorganic and organic chemicals from textiles: A review. Environ. Res. 2019, 168, 62–69. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, J.; Yao, Y.; Peters, G.; Macdonald, B.; La Rosa, A.D.; Wang, Z.; Scherer, L. Environmental impacts of cotton and opportunities for improvement. Nat. Rev. Earth Environ. 2023, 4, 703–715. [Google Scholar] [CrossRef]
- Roy, S.; Ghosh, T.; Zhang, W.; Rhim, J.W. Recent progress in PBAT-based films and food packaging applications: A mini-review. Food Chem. 2023, 437, 137822. [Google Scholar] [CrossRef] [PubMed]
- Xing, Q.; Buono, P.; Ruch, D.; Dubois, P.; Wu, L.; Wang, W.J. Biodegradable UV-Blocking Films through Core-Shell Lignin-Melanin Nanoparticles in Poly(butylene adipate-co-terephthalate). ACS Sustain. Chem. Eng. 2019, 7, 4147–4157. [Google Scholar] [CrossRef]
- Jian, J.; Xiangbin, Z.; Xianbo, H. An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)—PBAT. Adv. Ind. Eng. Polym. Res. 2020, 3, 19–26. [Google Scholar] [CrossRef]
- ASTM D6400; Standard Specification for Labelling Plastics Designed to be Aerobically Composted in Municipal or Industrial Facilities. American Society for Testing and Materials: Conshocken, PA, USA, 2023.
- EN 13432; Packin-Requirements for packaging recoverable through composting and biodegradation-Test scheme and evaluation criteria for the final acceptance of packaging. European Committee for Standardization: Brussels, Belgium, 2000.
- Touchaleaume, F.; Martin-Closas, L.; Angellier-Coussy, H.; Chevillard, A.; Cesar, G.; Gontard, N.; Gastaldi, E. Performance and environmental impact of biodegradable polymers as agricultural mulching films. Chemosphere 2016, 144, 433–439. [Google Scholar] [CrossRef]
- Henton, D.E.; Gruber, P.; Lunt, J.; Randall, J. Polylactic Acid Technology. In Natural Fibers, Biopolymers, and Biocomposites; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Zhao, G.; Gomes, F.P.C.; Marway, H.; Thompson, M.R.; Zhu, Z. Physical Aging as the Driving Force for Brittle–Ductile Transition of Polylactic Acid. Macromol. Chem. Phys. 2020, 221, 1900475. [Google Scholar] [CrossRef]
- Olonisakin, K.; Mohanty, A.K.; Thimmanagari, M.; Misra, M. Recent advances in biodegradable polymer blends and their biocomposites: A comprehensive review. Green Chem. 2025, 27, 11656–11704. [Google Scholar] [CrossRef]
- Kaptan, A.; Kartal, F. Advancements in polylactic acid research: From material properties to sustainable applications. Eur. Mech. Sci. 2024, 8, 104–114. [Google Scholar] [CrossRef]
- Barletta, M.; Aversa, C.; Ayyoob, M.; Gisario, A.; Hamad, K.; Mehrpouya, M.; Vahabi, H. Poly(butylene succinate) (PBS): Materials, processing, and industrial applications. Prog. Polym. Sci. 2022, 132, 101579. [Google Scholar] [CrossRef]
- Rafiqah, S.A.; Khalina, A.; Harmaen, A.S.; Tawakkal, I.A.; Zaman, K.; Asim, M.; Nurrazi, M.; Lee, C.H. A review on properties and application of bio-based poly(Butylene succinate). Polymers 2021, 13, 1436. [Google Scholar] [CrossRef]
- Philip, S.; Keshavarz, T.; Roy, I. Polyhydroxyalkanoates: Biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. 2007, 82, 233–247. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, J.; Chen, G.Q. Polyhydroxyalkanoates, challenges and opportunities. Curr. Opin. Biotechnol. 2014, 30, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Mohsen, A.H.; Ali, N.A. Mechanical, Color and Barrier, Properties of Biodegradable Nanocomposites Polylactic Acid/Nanoclay. J. Bioremediat. Biodegrad. 2018, 9, 455. [Google Scholar] [CrossRef]
- Debeli, D.K.; Wu, L.; Huang, F. PBAT-based biodegradable nanocomposite coating films with ultra-high oxygen barrier and balanced mechanical properties. Polym. Degrad. Stab. 2023, 216, 110489. [Google Scholar] [CrossRef]
- Elhamnia, M.; Motlagh, G.H.; Jafari, S.H. Improved barrier properties of biodegradable PBAT films for packaging applications using EVOH: Morphology, permeability, biodegradation, and mechanical properties. J. Appl. Polym. Sci. 2023, 140, e53855. [Google Scholar] [CrossRef]
- Jayarathna, S.; Andersson, M.; Andersson, R. Recent Advances in Starch-Based Blends and Composites for Bioplastics Applications. Polymers 2022, 14, 4557. [Google Scholar] [CrossRef] [PubMed]
- Nautiyal, M.; Vasugi, N. Evaluating the performance attributes of single jersey conventional and organic cotton. Int. J. Home Sci. 2018, 4, 202–207. [Google Scholar]
- Tiwari, A.; Turner, A.P.F. Biosensors Nanotechnology; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Meshram, I.; Kanade, V.; Nandanwar, N.; Ingle, P. Super-Absorbent Polymer: A Review on the Characteristics and Application. Int. J. Adv. Res. Chem. Sci. 2020, 7, 8–21. [Google Scholar] [CrossRef]
- Michalik, R.; Wandzik, I. A mini-review on chitosan-based hydrogels with potential for sustainable agricultural applications. Polymers 2020, 12, 2425. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, F.; Oveisi, Z.; Samani, S.M.; Amoozgar, Z. Chitosan based hydrogels: Characteristics and pharmaceutical applications. Res. Pharm. Sci. 2015, 10, 1–16. [Google Scholar]
- Ragab, M.M.; Othman, H.; Hassabo, A.G. Natural polymers and their application in the textile sector (Review). J. Text. Color. Polym. Sci. 2025, 22, 93–113. [Google Scholar] [CrossRef]
- Chen, J.; Chan, D.Y.; Yang, T.; Parisi, D.; Reuvers, B.; Veldhuis, T.; Picchioni, F.; Wu, J.; Raffa, P.; Koning, C. Bio-degradable, fully bio-based, thermally cross-linked superabsorbent polymers from citric acid and glycerol. Green Chem. 2025, 27, 3234–3247. [Google Scholar] [CrossRef]
- Wang, G.; Innes, J.L.; Dai, S.; He, G. Achieving sustainable rural development in Southern China: The contribution of bamboo forestry. Int. J. Sustain. Dev. World Ecol. 2008, 15, 484–495. [Google Scholar] [CrossRef]
- Adnan Ali, M.; Imran Sarwar, M. Sustainable and Environmental Friendly Fibers in Textile Fashion (A Study of Organic Cotton and Bamboo Fibers). Master’s Thesis, University of Borås/Swedish School of Textiles, Borås, Sweden, 2010. [Google Scholar]
- Feghali, E.; Tauk, L.; Ortiz, P.; Vanbroekhoven, K.; Eevers, W. Catalytic chemical recycling of biodegradable polyesters. Polym. Degrad. Stab. 2020, 179, 109241. [Google Scholar] [CrossRef]
- Ghomi, E.R.; Khosravi, F.; Ardahaei, A.S.; Dai, Y.; Neisiany, R.E.; Foroughi, F.; Wu, M.; Das, O.; Ramakrishna, S. The life cycle assessment for polylactic acid (PLA) to make it a low-carbon material. Polymers 2021, 13, 1854. [Google Scholar] [CrossRef]
- Hossain, W.; Kasprzak, J. Application of Economic Aspects of Life Cycle Management to Biodegradable Plastics Made Products. Master’s Thesis, Poznan University of Technology, Poznan, Poland, 2024. [Google Scholar] [CrossRef]
- Weng, Y.X.; Jin, Y.J.; Meng, Q.Y.; Wang, L.; Zhang, M.; Wang, Y.Z. Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polym. Test. 2013, 32, 918–926. [Google Scholar] [CrossRef]
- Ghorpade, V.M.; Gennadios, A.; Hanna, M.A. Laboratory composting of extruded poly(lactic acid) sheets. Bioresour. Technol. 2001, 76, 57–61. [Google Scholar] [CrossRef]
- Park, K.I.; Xanthos, M. A study on the degradation of polylactic acid in the presence of phosphonium ionic liquids. Polym. Degrad. Stab. 2009, 94, 834–844. [Google Scholar] [CrossRef]
- Rudnik, E.; Briassoulis, D. Degradation behaviour of poly(lactic acid) films and fibres in soil under Mediterranean field conditions and laboratory simulations testing. Ind. Crops Prod. 2011, 33, 648–658. [Google Scholar] [CrossRef]
- Leejarkpai, T.; Suwanmanee, U.; Rudeekit, Y.; Mungcharoen, T. Biodegradable kinetics of plastics under controlled composting conditions. Waste Manag. 2011, 31, 1153–1161. [Google Scholar] [CrossRef]
- Bher, A.; Mayekar, P.C.; Auras, R.A.; Schvezov, C.E. Biodegradation of Biodegradable Polymers in Mesophilic Aerobic Environments. Int. J. Mol. Sci. 2022, 23, 12165. [Google Scholar] [CrossRef]
- Lin, L.; Joe, M.; Dang, Q.A.; Park, H.E. Enhancing Biodegradation of Poly(lactic acid) in Compost at Room Temperature by Compounding Jade Particles. Polymers 2025, 17, 2037. [Google Scholar] [CrossRef]
- Ferronato, N.; Pinedo, M.L.N.; Torretta, V. Assessment of used baby diapers composting in Bolivia. Sustainability 2020, 12, 5055. [Google Scholar] [CrossRef]
- Mendoza, J.M.F.; D’Aponte, F.; Gualtieri, D.; Azapagic, A. Disposable baby diapers: Life cycle costs, eco-efficiency and circular economy. J. Clean. Prod. 2019, 211, 455–467. [Google Scholar] [CrossRef]
- Saifudeen, A.; Kumar, M.; Mani, M. Sustainability Asessment in Disposable Baby Diapers by Adopting a Systems Approach. Environ. Eng. Manag. J. (EEMJ) 2022, 11, 21. [Google Scholar]
- Dey, S.; Purdon, M.; Kirsch, T.; Helbich, H.; Kerr, K.; Li, L.; Zhou, S. Exposure Factor considerations for safety evaluation of modern disposable diapers. Regul. Toxicol. Pharmacol. 2016, 81, 183–193. [Google Scholar] [CrossRef]
- Konstantopoulos, S.; Hueber, C.; Antoniadis, I.; Summerscales, J.; Schledjewski, R. Liquid composite molding reproducibility in real-world production of fiber reinforced polymeric composites: A review of challenges and solutions. Adv. Manuf. Polym. Compos. Sci. 2019, 5, 85–99. [Google Scholar] [CrossRef]
- Maraveas, C. Production of sustainable and biodegradable polymers from agricultural waste. Polymers 2020, 12, 1127. [Google Scholar] [CrossRef] [PubMed]
- White, H.L.; Mwapasa, T.; Mphasa, M.; Kalonde, P.K.; Feasey, N.; Oliver, D.M.; Ormsby, M.J.; Morse, T.; Chidziwisano, K.; Quilliam, R.S. Open defaecation by proxy: Tackling the increase of disposable diapers in waste piles in informal settlements. Int. J. Hyg. Environ. Health 2023, 250, 114171. [Google Scholar] [CrossRef]
- Mondal, M.I.H. Antimicrobial Textiles from Natural Resources; Woodhead Publishing: Sawston, UK, 2021. [Google Scholar]
- Makoś-Chełstowska, P.; Kurowska-Susdorf, A.; Płotka-Wasylka, J. Environmental problems and health risks with disposable baby diapers: Monitoring of toxic compounds by application of analytical techniques and need of education. TrAC Trends Anal. Chem. 2021, 143, 116408. [Google Scholar] [CrossRef]
- Dey, S.; Helmes, C.T.; White, J.C.; Zhou, S. Safety of disposable diaper materials: Extensive evaluations validate use. Clin. Pediatr. 2014, 53, 17S–19S. [Google Scholar] [CrossRef] [PubMed]
- Tamta, M. Organic Cotton. Available online: https://www.researchgate.net/publication/384499073 (accessed on 1 September 2025).
- Gundlapalli, M.; Ganesan, S. Polyhydroxyalkanoates (PHAs): Key Challenges in production and sustainable strategies for cost reduction within a circular economy framework. Results Eng. 2025, 26, 105345. [Google Scholar] [CrossRef]
- Tsang, Y.F.; Kumar, V.; Samadar, P.; Yang, Y.; Lee, J.; Ok, Y.S.; Song, H.; Kim, K.-H.; Kwon, E.E.; Jeon, Y.J. Production of bioplastic through food waste valorization. Environ. Int. 2019, 127, 625–644. [Google Scholar] [CrossRef]
- Hernández, B.; Kots, P.; Selvam, E.; Vlachos, D.G.; Ierapetritou, M.G. Techno-Economic and Life Cycle Analyses of Thermochemical Upcycling Technologies of Low-Density Polyethylene Waste. ACS Sustain. Chem. Eng. 2023, 11, 7170–7181. [Google Scholar] [CrossRef]
- Dallaev, R.; Papež, N.; Allaham, M.M.; Holcman, V. Biodegradable Polymers: Properties, Applications, and Environmental Impact. Polymers 2025, 17, 1981. [Google Scholar] [CrossRef]
- Tripathi, N.; Misra, M.; Mohanty, A.K. Durable Polylactic Acid (PLA)-Based Sustainable Engineered Blends and Biocomposites: Recent Developments, Challenges, and Opportunities. ACS Eng. Au 2021, 1, 7–38. [Google Scholar] [CrossRef]
- Wu, F.; Misra, M.; Mohanty, A.K. Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog. Polym. Sci. 2021, 117, 101395. [Google Scholar] [CrossRef]
- Naser, A.Z.; Deiab, I.; Darras, B.M. Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: A review. RSC Adv. 2021, 11, 17151–17196. [Google Scholar] [CrossRef] [PubMed]
- Sikorska, W.; Musioł, M.; Zawidlak-Wȩgrzyńska, B.; Rydz, J. End-of-Life Options for (Bio)degradable Polymers in the Circular Economy. Adv. Polym. Technol. 2021, 2021, 6695140. [Google Scholar] [CrossRef]
- Xulu, T.M.; Mkhize, N.M.; Iwarere, S.A.; Nkomo, S.L. Life Cycle and End-of-Life Waste Management of Disposable Diapers: A Mini-Review. Detritus 2023, 22, 86–98. [Google Scholar] [CrossRef]



| Material | Barrier Strength | Water Vapor Transmission Rate (WVTR) | Flexibility | References |
|---|---|---|---|---|
| Low-density polyethylene | Good | Very low | High | [3,7] |
| Polylactic acid | Moderate | High | Low | [44] |
| Polybutylene adipate-co-terephthalate | Good | Lower than PLA | Very high | [45,46] |
| Bamboo fibre | Good | High | Very low | [47,48] |
| Organic cotton | Good | Very high | Moderate | [47,48] |
| Material | Absorbency Capacity | Retention | Biodegradability | References |
|---|---|---|---|---|
| SAPs | Very high | Excellent | Non-biodegradable | [3,50] |
| Cellulose | Moderate | Moderate | Biodegradable | [51,52] |
| Chitosan hydrogels | High | Good | Biodegradable | [53] |
| Material | Decomposition Time in Landfills (Years/Months) | Decomposition Time in Composting Facilities (Months) | References |
|---|---|---|---|
| Low-density polyethylene | 500+ years | Not compostable | [2] |
| Polylactic acid | 2–5 years | 6–12 months under industrial composting conditions | [61,64] |
| Polybutylene adipate-co-terephthalate | 3–6 months | 3 months | [32] |
| Bamboo fibre | 6 months | 3 months | [25] |
| Organic cotton | 5 months | 2–3 months | [26] |
| Material | Absorbency and Leakage Prevention | Comfort and Skin Health | Consumer Perception and Acceptance | Health & Safety Considerations | Integration with Waste Management | References |
|---|---|---|---|---|---|---|
| Low-density polyethylene | Good | Smooth | Positive | Contain toxins | Limited waste management approach | [6,15,17,76] |
| Polylactic acid | Good when blended | Rough, copolymerisation required | Positive, limited by lack of information | Low toxicity and safe | Numerous treatment options. | [10,25,36,37,67,72,74] |
| Polybutylene adipate-co-terephthalate | Better | Rough, copolymerisation required | Positive, limited by lack of information | Low toxicity and safe | Numerous treatment options. | [37,67,73,74] |
| Bamboo fibre | Good | Smooth | Positive, limited by lack of information | Low toxicity and safe | Numerous treatment options. | [10,25,36,67,72,74] |
| Cotton | Good | Smooth | Positive, limited by lack of information | Low toxicity and safe | Numerous treatment options. | [25,36,73,74,75,77] |
| Material | Cost and Affordability | Production Scalability and Supply Chain Constraints | Performance Consistency and Product Design | References |
|---|---|---|---|---|
| Polyhydroxyalkanoates | Highly expensive | Limited | Flexible | [83] |
| Polylactic acid | Less expensive | Limited | Not flexible, require reinforcement | [36,37,84] |
| Polybutylene adipate-co-terephthalate | Moderately expensive | Limited | Flexible | [36,37] |
| Bamboo fibre | Moderately expensive | Limited | Flexible | [27] |
| Cotton | Moderately expensive | Limited | Flexible | [27,77] |
| Element | Strategies | References |
|---|---|---|
| Material Innovation and Optimization | Improve biopolymer mechanical properties, explore surface and modification techniques. | [36,37,60] |
| Safety and Toxicity Assessment | Identification of by-products, allergic risks assessment, safety testing and eco-toxicity protocols. | [6,17,70] |
| Biodegradation Pathways and Environmental Fate | Expansion of LCA models, monitoring potential release of microplastics during degradation. | [22,76,85,86] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mulungo, V.; Gumede, T.P. Feasibility and Implications of Biodegradable Diaper Alternatives. Sustainability 2025, 17, 10072. https://doi.org/10.3390/su172210072
Mulungo V, Gumede TP. Feasibility and Implications of Biodegradable Diaper Alternatives. Sustainability. 2025; 17(22):10072. https://doi.org/10.3390/su172210072
Chicago/Turabian StyleMulungo, Vintia, and Thandi Patricia Gumede. 2025. "Feasibility and Implications of Biodegradable Diaper Alternatives" Sustainability 17, no. 22: 10072. https://doi.org/10.3390/su172210072
APA StyleMulungo, V., & Gumede, T. P. (2025). Feasibility and Implications of Biodegradable Diaper Alternatives. Sustainability, 17(22), 10072. https://doi.org/10.3390/su172210072

