Bridging Vehicle-to-Home Technology and Equity: Enhancing Household Resilience for Disaster Preparedness and Response
Abstract
1. Introduction
2. Analytical Framework
3. V2H Technology Overview
4. Relevance to Disaster Resilience
5. Equity and Resilience Nexus
6. Policy and Technological Solutions
6.1. Addressing Barriers to Access
6.2. Promoting Cross-Sector Collaboration
7. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2023: Synthesis Report. In Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Global EV Outlook 2023—Catching Up with Climate Ambitions; IEA: Paris, France, 2023; Available online: https://www.iea.org/reports/global-ev-outlook-2023 (accessed on 21 July 2025).
- U.S. Department of Energy (DoE). Vehicle-Grid Integration Assessment Report; Department of Energy: Washington, DC, USA, 2025. Available online: https://www.energy.gov/sites/default/files/2025-01/Vehicle_Grid_Integration_Asseessment_Report_01162025.pdf (accessed on 21 July 2025).
- International Energy Agency (IEA). Global EV Data Explorer; International Energy Agency: Paris, France, 2025; Available online: https://www.iea.org/data-and-statistics/data-tools/global-ev-data-explorer (accessed on 21 July 2025).
- Varghese, A.M.; Menon, N.; Ermagun, A. Equitable distribution of electric vehicle charging infrastructure: A systematic review. Renew. Sustain. Energy Rev. 2024, 206, 114825. [Google Scholar] [CrossRef]
- Tarekegne, B.; O’Neil, R.; Twitchell, J. Energy storage as an equity asset. Curr. Sustain. Renew. Energy Rep. 2021, 8, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Tarroja, B.; Schoenung, J.M.; Ogunseitan, O.; Kendall, A.; Qiu, Y.; Malloy, T.; Peters, J.; Cha, J.M.; Mulvaney, D.; Heidrich, O.; et al. Overcoming barriers to improved decision-making for battery deployment in the clean energy transition. iScience 2024, 27, 109898. [Google Scholar] [CrossRef]
- Rouhana, F.; Zhu, J.; Chacon-Hurtado, D.; Hertel, S.; Bagtzoglou, A.C. Ensuring a just transition: The electric vehicle revolution from a human rights perspective. J. Clean. Prod. 2024, 435, 142667. [Google Scholar] [CrossRef]
- Bayani, R.; Soofi, A.F.; Waseem, M.; Manshadi, S.D. Impact of transportation electrification on the electricity grid—A review. Vehicles 2022, 4, 880–903. [Google Scholar] [CrossRef]
- Loni, A.; Asadi, S. Power system resilience: The role of electric vehicles and social disparities in mitigating the US power outages. Smart Grids Energy 2024, 9, 23. [Google Scholar] [CrossRef]
- Rehman, M.A.; Numan, M.; Tahir, H.; Rahman, U.; Khan, M.W.; Iftikhar, M.Z. A comprehensive overview of vehicle to everything (V2X) technology for sustainable EV adoption. J. Energy Storage 2023, 65, 109304. [Google Scholar] [CrossRef]
- Keady, W.; Panikkar, B.; Nelson, I.L.; Zia, A. Energy justice gaps in renewable energy transition policy initiatives in Vermont. Energy Policy 2021, 159, 112608. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Kester, J.; Noel, L.; de Rubens, G.Z. Energy injustice and Nordic electric mobility: Inequality, elitism, and externalities in the electrification of vehicle-to-grid (V2G) transport. Ecol. Econ. 2019, 157, 205–217. [Google Scholar] [CrossRef]
- Kumar, R.R.; Alok, K. Adoption of electric vehicle: A literature review and prospects for sustainability. J. Clean. Prod. 2020, 253, 119911. [Google Scholar] [CrossRef]
- Guo, S.; Kontou, E. Disparities and equity issues in electric vehicles rebate allocation. Energy Policy 2021, 154, 112291. [Google Scholar] [CrossRef]
- Carlton, G.J.; Sultana, S. Electric vehicle charging station accessibility and land use clustering: A case study of the Chicago region. J. Urban Mobil. 2022, 2, 100019. [Google Scholar] [CrossRef]
- Moniot, M.; Borlaug, B.; Ge, Y.; Wood, E.; Zimbler, J. Electrifying New York City ride-hailing fleets: An examination of the need for public fast charging. iScience 2022, 25, 104171. [Google Scholar] [CrossRef] [PubMed]
- Rouhana, F.; Zhu, J.; Bagtzoglou, A.C.; Burton, C.G. Analyzing structural inequalities in natural hazard-induced power outages: A spatial-statistical approach. Int. J. Disaster Risk Reduct. 2025, 105, 105184. [Google Scholar] [CrossRef]
- Dvorkin, Y.; Ünel, B.; Khan, H.A.U. Equitable Access to Residential (EQUATOR) EV Charging. National Transportation Library. 2022. Available online: https://rosap.ntl.bts.gov/view/dot/61453 (accessed on 21 July 2025).
- Rouhana, F.; Zhu, J.; Bagtzoglou, A.C.; Burton, C.G. Examining rural–urban vulnerability inequality in extreme weather-related power outages: Case of Tropical Storm Isaias. Nat. Hazards Rev. 2025, 26, 04023027. [Google Scholar] [CrossRef]
- Donaldson, D.L.; Alvarez-Alvarado, M.S.; Jayaweera, D. Power system resiliency during wildfires under increasing penetration of electric vehicles. In Proceedings of the 2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Liege, Belgium, 18–21 August 2020; IEEE: Liege, Belgium, 2020. [Google Scholar] [CrossRef]
- Babaei, M.H.; Wong, S.D. Electric vehicles in emergencies and evacuations: A review of resilience and future research directions. Transp. Lett. 2024, 17, 1101–1113. [Google Scholar] [CrossRef]
- Pearre, N.S.; Ribberink, H. Review of research on V2X technologies, strategies, and operations. Renew. Sustain. Energy Rev. 2019, 105, 61–70. [Google Scholar] [CrossRef]
- Kim, H.; Choi, H.; Kang, H.; An, J.; Yeom, S.; Hong, T. A systematic review of the smart energy conservation system: From smart homes to sustainable smart cities. Renew. Sustain. Energy Rev. 2021, 140, 110755. [Google Scholar] [CrossRef]
- Khezri, R.; Steen, D.; Tuan, L.A. Vehicle to everything (V2X)—A survey on standards and operational strategies. In Proceedings of the 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Prague, Czech Republic, 28 June 2022–1 July 2022; IEEE: Prague, Czech Republic, 2022. [Google Scholar] [CrossRef]
- Barman, P.; Dutta, L.; Bordoloi, S.; Kalita, A.; Buragohain, P.; Bharali, S.; Azzopardi, B. Renewable energy integration with electric vehicle technology: A review of the existing smart charging approaches. Renew. Sustain. Energy Rev. 2023, 183, 113518. [Google Scholar] [CrossRef]
- Romero-Lankao, P.; Rosner, N.; Efroymson, R.A.; Parisch, E.S.; Blanco, L.; Smolinski, S.; Kline, K. Community Engagement and Equity in Renewable Energy Projects: A Literature Review (NREL/TP-5400-87113); National Renewable Energy Laboratory: Golden, CO, USA, 2023. Available online: https://www.nrel.gov/docs/fy23osti/87113.pdf (accessed on 21 July 2025).
- Lee, D.-Y.; McDermott, M.; Sovacool, B.; Isaac, R. Toward just and equitable mobility: Socioeconomic and perceptual barriers for electric vehicles and charging infrastructure in the United States. Energy Clim. Chang. 2024, 5, 100146. [Google Scholar] [CrossRef]
- Pamidimukkala, A.; Kermanshachi, S.; Rosenberger, J.M.; Hladik, G. Evaluation of barriers to electric vehicle adoption: A study of technological, environmental, financial, and infrastructure factors. Transp. Res. Interdiscip. Perspect. 2023, 22, 100962. [Google Scholar] [CrossRef]
- Zaino, R.; Ahmed, V.; Alhammadi, A.M.; Alghoush, M. Electric vehicle adoption: A comprehensive systematic review of technological, environmental, organizational and policy impacts. World Electr. Veh. J. 2024, 15, 375. [Google Scholar] [CrossRef]
- Flatt, V.B.; Baker, S.H.; Farber, D.A.; Glicksman, R.L.; Kaswan, A.; Klass, A.B.; Klein, C.A.; Mintz, J.A.; Rohlf, D.; Name, N.; et al. Climate, Energy, Justice: The Policy Path to a Just Transition for an Energy-Hungry America. U of Houston Law Center 2021-W-1. 2020. Available online: https://ssrn.com/abstract=3766500 (accessed on 21 July 2025).
- Qadir, S.A.; Ahmad, F.; Al-Wahedi, A.M.A.B.; Iqbal, A.; Ali, A. Navigating the complex realities of electric vehicle adoption: A comprehensive study of government strategies, policies, and incentives. Energy Strategy Rev. 2024, 43, 101379. [Google Scholar] [CrossRef]
- Yang, Z.; Nazemi, M.; Dehghanian, P.; Barati, M. Toward resilient solar-integrated distribution grids: Harnessing the mobility of power sources. In Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, Chicago, IL, USA, 12–15 October 2020; IEEE: Chicago, IL, USA, 2020. [Google Scholar] [CrossRef]
- Noel, L.; Zarazua de Rubens, G.; Kester, J.; Sovacool, B.K. Vehicle-to-Grid: A Sociotechnical Transition Beyond Electric Mobility; Springer: Cham, Switzerland, 2019; Available online: https://link.springer.com/book/10.1007/978-3-030-04864-8 (accessed on 21 July 2025).
- Thompson, A.W.; Perez, Y. Vehicle-to-everything (V2X) energy services, value streams, and regulatory policy implications. Energy Policy 2020, 137, 111136. [Google Scholar] [CrossRef]
- Hira, S.; Hira, S. Smart energy management using vehicle-to-vehicle and vehicle-to-everything. In Artificial Intelligence-Empowered Modern Electric Vehicles in Smart Grid Systems; Kumari, A., Tanwar, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 253–290. [Google Scholar] [CrossRef]
- Tian, S.; Razeghi, G.; Samuelsen, S. Assessment of vehicle-to-load in support of home appliances. J. Energy Storage 2024, 72, 114406. [Google Scholar] [CrossRef]
- Ford. Ford Home Backup Power. 2025. Available online: https://www.ford.com/trucks/f150/f150-lightning/features/intelligent-backup-power/ (accessed on 21 July 2025).
- Islam, S.; Iqbal, A.; Marzband, M.; Khan, I.; Al-Wahedi, A.M.A.B. State-of-the-art vehicle-to-everything mode of operation of electric vehicles and its future perspectives. Renew. Sustain. Energy Rev. 2022, 165, 112574. [Google Scholar] [CrossRef]
- Dossow, P.; Kern, T. Profitability of V2X under uncertainty: Relevant influencing factors and implications for future business models. Energy Rep. 2022, 8, 449–455. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, S. Review of power electronics in vehicle-to-grid systems. J. Energy Storage 2019, 21, 337–361. [Google Scholar] [CrossRef]
- Schram, W.; Brinkel, N.; Smink, G.; Van Wijk, T.; Van Sark, W. Empirical evaluation of V2G round-trip efficiency. In Proceedings of the 2020 3rd International Conference on Smart Energy Systems and Technologies (SEST), Istanbul, Turkey, 7–9 September 2020; IEEE: New York, NY, USA, 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Razeghi, G.; Samuelsen, S. Can Plug-in Electric Vehicles in a Smart Grid Improve Resiliency? University of California Institute of Transportation Studies: Berkeley, CA, USA, 2021; pp. 1–3. [Google Scholar] [CrossRef]
- Razeghi, G.; Lee, J.; Samuelsen, S. Resiliency Impacts of Plug-in Electric Vehicles in a Smart Grid; University of California Institute of Transportation Studies: Berkeley, CA, USA, 2021; p. 60. [Google Scholar] [CrossRef]
- Lee, J.; Razeghi, G.; Samuelsen, S. Utilization of battery electric buses for the resiliency of islanded microgrids. Appl. Energy 2023, 347, 121295. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, S. Resilient residential energy management with vehicle-to-home and photovoltaic uncertainty. Int. J. Electr. Power Energy Syst. 2021, 132, 107206. [Google Scholar] [CrossRef]
- Elkholy, M.H.; Metwally, H.; Farahat, M.A.; Nasser, M.; Senjyu, T.; Lotfy, M.E. Dynamic centralized control and intelligent load management system of a remote residential building with V2H technology. J. Energy Storage 2022, 52, 104839. [Google Scholar] [CrossRef]
- Smart Electric Power Alliance (SEPA). The State of Bidirectional Charging in 2023. Available online: https://sepapower.org/resource/the-state-of-bidirectional-charging-in-2023/ (accessed on 21 July 2025).
- Wong, S.D.; Broader, J.C.; Shaheen, S.A. Power Trips: Early understanding of preparedness and travel behavior during California Public Safety Power Shutoff events. Transp. Res. Rec. 2022, 2676, 395–410. [Google Scholar] [CrossRef]
- Coleman, N.; Esmalian, A.; Lee, C.C.; Gonzales, E.; Koirala, P.; Mostafavi, A. Energy inequality in climate hazards: Empirical evidence of social and spatial disparities in managed and hazard-induced power outages. Sustain. Cities Soc. 2023, 92, 104491. [Google Scholar] [CrossRef]
- Sangswang, A.; Konghirun, M. Optimal Strategies in Home Energy Management System Integrating Solar Power, Energy Storage, and Vehicle-to-Grid for Grid Support and Energy Efficiency. IEEE Trans. Ind. Appl. 2020, 56, 5716–5728. [Google Scholar] [CrossRef]
- Jamborsalamati, P.; Hossain, M.J.; Taghizadeh, S.; Konstantinou, G.; Manbachi, M.; Dehghanian, P. Enhancing Power Grid Resilience through an IEC61850-Based EV-Assisted Load Restoration. IEEE Trans. Ind. Inform. 2020, 16, 1799–1810. [Google Scholar] [CrossRef]
- Hossain, E.; Roy, S.; Mohammad, N.; Nawar, N.; Dipta, D.R. Metrics and Enhancement Strategies for Grid Resilience and Reliability during Natural Disasters. Appl. Energy 2021, 290, 116709. [Google Scholar] [CrossRef]
- Bertoluzzo, M.; Giacomuzzi, S.; Kumar, A. Design of a Bidirectional Wireless Power Transfer System for Vehicle-to-Home Applications. Vehicles 2021, 3, 406–425. [Google Scholar] [CrossRef]
- Liu, H.; Wang, C.; Ju, P.; Li, H. A Sequentially Preventive Model Enhancing Power System Resilience against Extreme-Weather-Triggered Failures. Renew. Sustain. Energy Rev. 2022, 156, 111945. [Google Scholar] [CrossRef]
- Rouhana, F.; Jawad, D. Transportation Network Resilience against Failures: GIS-Based Assessment of Network Topology Role. Int. J. Disaster Resil. Built Environ. 2021, 12, 357–370. [Google Scholar] [CrossRef]
- Stasinos, E.-I.E.; Trakas, D.N.; Hatziargyriou, N.D. Microgrids for Power System Resilience Enhancement. iEnergy 2022, 1, 158–169. [Google Scholar] [CrossRef]
- Rouhana, F.; Jawad, D. A Spatial-Network Approach to Assessing Transportation Resilience in Disaster-Prone Urban Areas. ISPRS Int. J. Geo-Inf. 2025, 14, 261. [Google Scholar] [CrossRef]
- Kashanizadeh, B.; Shourkaei, H.M.; Fotuhi-Firuzabad, M. Short-Term Resilience-Oriented Enhancement in Smart Multiple Residential Energy System Using Local Electrical Storage System, Demand Side Management and Mobile Generators. J. Energy Storage 2022, 52, 104825. [Google Scholar] [CrossRef]
- Walsh, T.; Spaulding, A.; Cerrai, D. Predicting Outage Restoration in Advance of Storms Impact. TechRxiv 2022. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Fang, J.; He, J.; Tian, Y.; Zhang, H. Emergency restoration method of integrated energy system in coordination with upper and lower control. Energy Rep. 2022, 8, 238–247. [Google Scholar] [CrossRef]
- Li, L.; Chang-Richards, A.; Boston, M.; Elwood, K.; Molina Hutt, C. Post-disaster functional recovery of the built environment: A systematic review and directions for future research. Int. J. Disaster Risk Reduct. 2023, 90, 103899. [Google Scholar] [CrossRef]
- Nasri, A.; Abdollahi, A.; Rashidinejad, M. Multi-stage and resilience-based distribution network expansion planning against hurricanes based on vulnerability and resiliency metrics. Int. J. Electr. Power Energy Syst. 2022, 136, 107640. [Google Scholar] [CrossRef]
- Hughes, W.; Zhang, W.; Cerrai, D.; Bagtzoglou, A.; Wanik, D.; Anagnostou, E. A hybrid physics-based and data-driven model for power distribution system infrastructure hardening and outage simulation. Reliab. Eng. Syst. Saf. 2022, 223, 108628. [Google Scholar] [CrossRef]
- Yang, F.; Koukoula, M.; Emmanouil, S.; Cerrai, D.; Anagnostou, E.N. Assessing the power grid vulnerability to extreme weather events based on long-term atmospheric reanalysis. Stoch. Environ. Res. Risk Assess. 2023, 37, 4291–4306. [Google Scholar] [CrossRef]
- Gong, H.; Ionel, D.M. Optimization of aggregated EV power in residential communities with smart homes. In Proceedings of the 2020 IEEE Transportation Electrification Conference and Expo (ITEC 2020), Chicago, IL, USA, 18–20 August 2020; IEEE: New York, NY, USA, 2020; pp. 779–782. [Google Scholar] [CrossRef]
- Gong, H.; Ionel, D.M. Improving the power outage resilience of buildings with solar PV through the use of battery systems and EV energy storage. Energies 2021, 14, 5749. [Google Scholar] [CrossRef]
- Simental, O.Q.; Mandal, P.; Galvan, E. Enhancing Distribution Grid Resilience to Power Outages Using Electric Vehicles in Residential Microgrids. In Proceedings of the 2021 North American Power Symposium (NAPS 2021), Lincoln, NE, USA, 10–12 October 2021; IEEE: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Candan, A.K.; Boynuegri, A.R.; Onat, N. Home energy management system for enhancing grid resiliency in post-disaster recovery period using Electric Vehicle. Sustain. Energy Grids Netw. 2023, 34, 101015. [Google Scholar] [CrossRef]
- Lin, C.; Cui, Z.; Tian, Q.; Chen, Y.; Zheng, H.; Yuan, M. Resilience-oriented planning method of local emergency power supply considering V2B. Energy Rep. 2023, 9, 707–715. [Google Scholar] [CrossRef]
- Ali, A.Y.; Hussain, A.; Baek, J.W.; Kim, H.M. Optimal operation of networked microgrids for enhancing resilience using mobile electric vehicles. Energies 2021, 14, 142. [Google Scholar] [CrossRef]
- MacDonald, C.D.; Kattan, L.; Layzell, D. Modelling electric vehicle charging network capacity and performance during short-notice evacuations. Int. J. Disaster Risk Reduct. 2021, 56, 102093. [Google Scholar] [CrossRef]
- Purba, D.S.D.; Kontou, E.; Vogiatzis, C. Evacuation route planning for alternative fuel vehicles. Transp. Res. Part C Emerg. Technol. 2022, 143, 103837. [Google Scholar] [CrossRef]
- Donaldson, D.L.; Alvarez-Alvarado, M.S.; Jayaweera, D. Integration of Electric Vehicle Evacuation in Power System Resilience Assessment. IEEE Trans. Power Syst. 2023, 38, 3085–3096. [Google Scholar] [CrossRef]
- Purba, D.S.D.; Balisi, S.; Kontou, E. Refueling Station Location Model to Support Evacuation of Alternative Fuel Vehicles. Transp. Res. Rec. 2024, 2678, 521–538. [Google Scholar] [CrossRef]
- Khemakhem, S.; Rekik, M.; Krichen, L. A collaborative energy management among plug-in electric vehicle, smart homes and neighbors’ interaction for residential power load profile smoothing. J. Build. Eng. 2020, 27, 100976. [Google Scholar] [CrossRef]
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social vulnerability to environmental hazards. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Cutter, S.L.; Ash, K.D.; Emrich, C.T. Urban-Rural Differences in Disaster Resilience. Ann. Am. Assoc. Geogr. 2016, 106, 1236–1252. [Google Scholar] [CrossRef]
- Drakes, O.; Tate, E. Social vulnerability in a multi-hazard context: A systematic review. Environ. Res. Lett. 2022, 17, 033001. [Google Scholar] [CrossRef]
- Cutter, S.L. The Origin and Diffusion of the Social Vulnerability Index (SoVI). Int. J. Disaster Risk Reduct. 2024, 109, 104576. [Google Scholar] [CrossRef]
- Rouhana, F.; Zhu, J. Examining Rural-Urban Disparity in Disaster Impact and Recovery: Case of Tropical Storm Isaias. In Computing in Civil Engineering 2023: Resilience, Safety, and Sustainability—Selected Papers from the ASCE International Conference on Computing in Civil Engineering 2023; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2024; pp. 219–227. [Google Scholar] [CrossRef]
- Drakes, O.; Tate, E.; Rainey, J.; Brody, S. Social Vulnerability and Short-Term Disaster Assistance in the United States. Int. J. Disaster Risk Reduct. 2021, 53, 102010. [Google Scholar] [CrossRef]
- Zhang, W.; Deng, X.; Romeiko, X.X.; Zhang, K.; Sheridan, S.C.; Brotzge, J.; Chang, H.H.; Stern, E.K.; Guo, Z.; Dong, G.; et al. How neighborhood environment modified the effects of power outages on multiple health outcomes in New York state? Hyg. Environ. Health Adv. 2022, 4, 100039. [Google Scholar] [CrossRef] [PubMed]
- Skarha, J.; Gordon, L.; Sakib, N.; June, J.; Jester, D.J.; Peterson, L.J.; Andel, R.; Dosa, D.M. Association of Power Outage with Mortality and Hospitalizations among Florida Nursing Home Residents after Hurricane Irma. JAMA Health Forum 2021, 2, e213900. [Google Scholar] [CrossRef] [PubMed]
- Dominianni, C.; Ahmed, M.; Johnson, S.; Blum, M.; Ito, K.; Lane, K. Power Outage Preparedness and Concern among Vulnerable New York City Residents. J. Urban Health 2018, 95, 716–726. [Google Scholar] [CrossRef]
- Casey, J.A.; Fukurai, M.; Hernández, D.; Balsari, S.; Kiang, M.V. Power Outages and Community Health: A Narrative Review. Curr. Environ. Health Rep. 2020, 7, 371–383. [Google Scholar] [CrossRef] [PubMed]
- Dugan, J.; Byles, D.; Mohagheghi, S. Social Vulnerability to Long-Duration Power Outages. Int. J. Disaster Risk Reduct. 2023, 85, 103501. [Google Scholar] [CrossRef]
- Kishore, N.; Marqués, D.; Mahmud, A.; Kiang, M.V.; Rodriguez, I.; Fuller, A.; Buckee, C.O. Mortality in Puerto Rico after Hurricane Maria. N. Engl. J. Med. 2018, 379, 162–170. [Google Scholar] [CrossRef]
- Sorensen, J.H. Hazard Warning Systems: Review of 20 Years of Progress. Nat. Hazards Rev. 2000, 1, 119–125. [Google Scholar] [CrossRef]
- Santos-Burgoa, C.; Sandberg, J.; Suárez, E.; Goldman-Hawes, A.; Zeger, S.; Garcia-Meza, A.; Pérez, C.M.; Estrada-Merly, N.; Colón-Ramos, U.; Nazario, C.M.; et al. Differential and Persistent Risk of Excess Mortality from Hurricane Maria in Puerto Rico: A Time-Series Analysis. Lancet Planet. Health 2018, 2, e478–e488. [Google Scholar] [CrossRef]
- Lazo, J.K.; Bostrom, A.; Morss, R.E.; Demuth, J.L.; Lazrus, H. Factors Affecting Hurricane Evacuation Intentions. Risk Anal. 2015, 35, 1837–1857. [Google Scholar] [CrossRef]
- Hardman, S.; Fleming, K.L.; Khare, E.; Ramadan, M.M. A Perspective on Equity in the Transition to Electric Vehicles. MIT Sci. Policy Rev. 2021, 2. Available online: https://sciencepolicyreview.pubpub.org/pub/o0qtuixw (accessed on 21 July 2025). [CrossRef]
- ev.energy. ev.energy Announces Collaborative Project to Unlock the Potential of Bi-Directional EV Charging. 17 January 2023. Available online: https://www.ev.energy/en-us/blog/ev-energy-announces-collaborative-project-to-unlock-the-potential-of-bi-directional-ev-charging (accessed on 21 July 2025).
- Hindman, D.B. The Rural-Urban Digital Divide. Journal. Mass Commun. Q. 2000, 77, 549–560. [Google Scholar] [CrossRef]
- Axsen, J.; Kurani, K.S. Social Influence, Consumer Behavior, and Low-Carbon Energy Transitions. Annu. Rev. Environ. Resour. 2012, 37, 311–340. [Google Scholar] [CrossRef]
- Lopez-Behar, D.; Tran, M.; Froese, T.; Mayaud, J.R.; Herrera, O.E.; Merida, W. Charging Infrastructure for Electric Vehicles in Multi-Unit Residential Buildings: Mapping Feedbacks and Policy Recommendations. Energy Policy 2019, 126, 444–451. [Google Scholar] [CrossRef]
- Huether, P. Siting Electric Vehicle Supply Equipment (EVSE) with Equity in Mind. 7 April 2021. Available online: https://www.aceee.org/white-paper/2021/04/siting-electric-vehicle-supply-equipment-evse-equity-mind (accessed on 21 July 2025).
- Lou, J.; Shen, X.; Niemeier, D.A.; Zhang, Y. Income and Racial Disparity in Household Publicly Available Electric Vehicle Infrastructure Accessibility. Nat. Commun. 2024, 15, 5106. [Google Scholar] [CrossRef]
- Bauer, G.; Hsu, C.-W.; Nicholas, M.; Lutsey, N. Charging up America: Assessing the Growing Need for U.S. Charging Infrastructure Through 2030. International Council on Clean Transportation. 28 July 2021. Available online: https://theicct.org/publication/charging-up-america-assessing-the-growing-need-for-u-s-charging-infrastructure-through-2030/ (accessed on 21 July 2025).
- Fleming, K.L. Social Equity Considerations in the New Age of Transportation: Electric, Automated, and Shared Mobility. J. Sci. Policy Gov. 2018, 13. Available online: https://www.sciencepolicyjournal.org/uploads/5/4/3/4/5434385/fleming.pdf (accessed on 21 July 2025).
- Wei, W.; Ramakrishnan, S.; Needell, Z.A.; Trancik, J.E. Personal Vehicle Electrification and Charging Solutions for High-Energy Days. Nat. Energy 2021, 6, 105–114. [Google Scholar] [CrossRef]
- Gehrke, S.R.; Reardon, T.G. Patterns and Predictors of Early Electric Vehicle Adoption in Massachusetts. Int. J. Sustain. Transp. 2022, 16, 514–525. [Google Scholar] [CrossRef]
- Hsu, C.-W.; Slowik, P.; Lutsey, N. City Charging Infrastructure Needs to Reach 100% Electric Vehicles: The Case of Seattle. International Council on Clean Transportation. 27 January 2021. Available online: https://theicct.org/publication/city-charging-infrastructure-needs-to-reach-electric-vehicle-goals-the-case-of-seattle/ (accessed on 21 July 2025).
- Hsu, C.W.; Fingerman, K. Public Electric Vehicle Charger Access Disparities across Race and Income in California. Transp. Policy 2021, 100, 59–67. [Google Scholar] [CrossRef]
- Jonas, T.; Okele, O.; Macht, G.A. Rural vs. Urban: How Urbanicity Shapes Electric Vehicle Charging Behavior in Rhode Island. World Electr. Veh. J. 2025, 16, 21. [Google Scholar] [CrossRef]
- Ahsan, S.M.; Khan, H.A.; Naveed-ul-Hassan. Optimized Power Dispatch for Smart Building(s) and Electric Vehicles with V2X Operation. Energy Rep. 2022, 8, 12461–12475. [Google Scholar] [CrossRef]
- Schröder, T.; Kuckshinrichs, W. Value of Lost Load: An Efficient Economic Indicator for Power Supply Security? A Literature Review. Front. Energy Res. 2015, 3, 55. [Google Scholar] [CrossRef]
- Burton, C.G. Social Vulnerability and Hurricane Impact Modeling. Nat. Hazards Rev. 2010, 11, 58–68. [Google Scholar] [CrossRef]
- Ross, L.; Drehobl, A.; Stickles, B. The High Cost of Energy in Rural America: Household Energy Burdens and Opportunities for Energy Efficiency. The American Council for an Energy-Efficient Economy (ACEEE) & Energy Efficiency for All. 18 July 2018. Available online: https://www.aceee.org/research-report/u1806 (accessed on 21 July 2025).
- Climate Central. Weather-Related Power Outages Rising. 24 April 2024. Available online: https://www.climatecentral.org/climate-matters/weather-related-power-outages-rising (accessed on 21 July 2025).
- Ju, Y.; Cushing, L.J.; Morello-Frosch, R. An Equity Analysis of Clean Vehicle Rebate Programs in California. Clim. Change 2020, 162, 2087–2105. [Google Scholar] [CrossRef]
- Jenn, A.; Lee, J.H.; Hardman, S.; Tal, G. An In-Depth Examination of Electric Vehicle Incentives: Consumer Heterogeneity and Changing Response over Time. Transp. Res. Part A Policy Pract. 2020, 132, 97–109. [Google Scholar] [CrossRef]
- Pierce, G.; McOmber, B.; DeShazo, J.R. Supporting Lower-Income Households’ Purchase of Clean Vehicles: Implications from California-Wide Survey Results—A Policy Brief. UCLA Luskin Center for Innovation. 2020. Available online: https://innovation.luskin.ucla.edu/wp-content/uploads/2020/08/Supporting_Lower-Income_Households_Purchase_of_Clean_Vehicles.pdf (accessed on 21 July 2025).
- Carlton, G.J.; Sultana, S. Electric Vehicle Charging Equity and Accessibility: A Comprehensive United States Policy Analysis. Transp. Res. Part D Transp. Environ. 2024, 129, 104123. [Google Scholar] [CrossRef]
- Borlaug, B.; Salisbury, S.; Gerdes, M.; Muratori, M. Levelized Cost of Charging Electric Vehicles in the United States. Joule 2020, 4, 1470–1485. [Google Scholar] [CrossRef]
- Boschma, R.A.; Weltevreden, J.W.J. An Evolutionary Perspective on Internet Adoption by Retailers in the Netherlands. Environ. Plan. A 2008, 40, 2222–2237. [Google Scholar] [CrossRef]
- Thompson, W.R. Internal and External Factors in the Development of Urban Economies. In Issues in Urban Economics; Taylor and Francis: Oxfordshire, UK, 2013; pp. 43–80. [Google Scholar] [CrossRef]
- Jansson, J.; Pettersson, T.; Mannberg, A.; Brännlund, R.; Lindgren, U. Adoption of Alternative Fuel Vehicles: Influence from Neighbors, Family and Coworkers. Transp. Res. Part D Transp. Environ. 2017, 54, 61–73. [Google Scholar] [CrossRef]
- International Renewable Energy Agency (IRENA). Innovation Outlook: Smart Charging for Electric Vehicles. May 2019. Available online: https://www.irena.org/publications/2019/May/Innovation-Outlook-Smart-Charging (accessed on 21 July 2025).
- Smith, O.; Cattell, O.; Farcot, E.; O’Dea, R.D.; Hopcraft, K.I. The Effect of Renewable Energy Incorporation on Power Grid Stability and Resilience. Sci. Adv. 2022, 8, eabj6734. [Google Scholar] [CrossRef] [PubMed]
- Hardman, S.; Jenn, A.; Tal, G.; Axsen, J.; Beard, G.; Daina, N.; Figenbaum, E.; Jakobsson, N.; Jochem, P.; Kinnear, N.; et al. A Review of Consumer Preferences of and Interactions with Electric Vehicle Charging Infrastructure. Transp. Res. Part D Transp. Environ. 2018, 62, 508–523. [Google Scholar] [CrossRef]
- Schmidt, M.; Staudt, P.; Weinhardt, C. Evaluating the Importance and Impact of User Behavior on Public Destination Charging of Electric Vehicles. Appl. Energy 2020, 258, 114061. [Google Scholar] [CrossRef]
- Carlton, G.J. Electric Vehicles Are Coming. Are Charging Stations in North Carolina a Harbinger of this Change? Southeast. Geogr. 2022, 62, 1–4. [Google Scholar] [CrossRef]
- Davis, L.W. Evidence of a Homeowner-Renter Gap for Electric Vehicles. Appl. Econ. Lett. 2019, 26, 927–932. [Google Scholar] [CrossRef]
- Wang, H.; Meng, Q.; Wang, J.; Zhao, D. An Electric-Vehicle Corridor Model in a Dense City with Applications to Charging Location and Traffic Management. Transp. Res. Part B Methodol. 2021, 149, 79–99. [Google Scholar] [CrossRef]
- McKinney, T.R.; Ballantyne, E.E.F.; Stone, D.A. Rural EV Charging: The Effects of Charging Behaviour and Electricity Tariffs. Energy Rep. 2023, 9, 2321–2334. [Google Scholar] [CrossRef]
- Arfeen, Z.A.; Khairuddin, A.B.; Munir, A.; Azam, M.K.; Faisal, M.; Arif, M.S.B. En Route of Electric Vehicles with the Vehicle to Grid Technique in Distribution Networks: Status and Technological Review. Energy Storage 2020, 2, e115. [Google Scholar] [CrossRef]
- Hayashida, S.; La Croix, S.; Coffman, M. Understanding Changes in Electric Vehicle Policies in the U.S. States, 2010–2018. Transp. Policy 2021, 103, 211–223. [Google Scholar] [CrossRef]
- Li, Q.; Soleimaniamiri, S.; Li, X. Optimal Mass Evacuation Planning for Electric Vehicles before Natural Disasters. Transp. Res. Part D Transp. Environ. 2022, 107, 103292. [Google Scholar] [CrossRef]
- Hasan, A.S.M.J.; Enriquez-Contreras, L.F.; Yusuf, J.; Barth, M.J.; Ula, S. Demonstration of Microgrid Resiliency with V2G Operation. In Proceedings of the 2021 IEEE Transportation Electrification Conference and Expo, ITEC 2021, Chicago, IL, USA, 21–25 June 2021; IEEE: New York, NY, USA, 2021; pp. 243–248. [Google Scholar] [CrossRef]
- Hussain, A.; Musilek, P. Resilience Enhancement Strategies For and Through Electric Vehicles. Sustain. Cities Soc. 2022, 80, 103788. [Google Scholar] [CrossRef]
- United Nations. Sustainable Development Goals. United Nations Department of Economic and Social Affairs. 2015. Available online: https://sdgs.un.org/goals (accessed on 21 July 2025).
- Yang, H.; Fulton, L.; Kendall, A. A Review of Charging Infrastructure Requirements for US Electric Light-Duty Vehicles. Renew. Sustain. Energy Rev. 2024, 188, 114608. [Google Scholar] [CrossRef]
- Caulfield, B.; Furszyfer, D.; Stefaniec, A.; Foley, A. Measuring the Equity Impacts of Government Subsidies for Electric Vehicles. Energy 2022, 248, 123588. [Google Scholar] [CrossRef]
- Lee, J.H.; Chakraborty, D.; Hardman, S.J.; Tal, G. Exploring Electric Vehicle Charging Patterns: Mixed Usage of Charging Infrastructure. Transp. Res. Part D Transp. Environ. 2020, 79, 102249. [Google Scholar] [CrossRef]
- Agarwal, A.; Batista, R.C.; Tashi. Crashworthiness Evaluation of Electric Vehicle Battery Packs Using Honeycomb Structures and Explicit Dynamic Analysis. E3S Web Conf. 2024, 519, 04010. [Google Scholar] [CrossRef]
- Waseem, M.; Lakshmi, G.S.; Sreeshobha, E.; Khan, S. An electric vehicle battery and management techniques: Comprehensive review of important obstacles, new advancements, and recommendations. Energy Storage Sav. 2025, 4, 83–108. [Google Scholar] [CrossRef]
Stakeholder | Priority Actions | Equity Considerations | Potential Impacts |
---|---|---|---|
Energy Utilities |
|
|
|
Manufacturers |
|
|
|
Industry Partners |
|
|
|
Policymakers & Regulators |
|
|
|
Civil Society & Community Organizations |
|
|
|
Customers |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rouhana, F.; Bagtzoglou, A.C.; Zhu, J. Bridging Vehicle-to-Home Technology and Equity: Enhancing Household Resilience for Disaster Preparedness and Response. Sustainability 2025, 17, 8052. https://doi.org/10.3390/su17178052
Rouhana F, Bagtzoglou AC, Zhu J. Bridging Vehicle-to-Home Technology and Equity: Enhancing Household Resilience for Disaster Preparedness and Response. Sustainability. 2025; 17(17):8052. https://doi.org/10.3390/su17178052
Chicago/Turabian StyleRouhana, Francesco, Amvrossios C. Bagtzoglou, and Jin Zhu. 2025. "Bridging Vehicle-to-Home Technology and Equity: Enhancing Household Resilience for Disaster Preparedness and Response" Sustainability 17, no. 17: 8052. https://doi.org/10.3390/su17178052
APA StyleRouhana, F., Bagtzoglou, A. C., & Zhu, J. (2025). Bridging Vehicle-to-Home Technology and Equity: Enhancing Household Resilience for Disaster Preparedness and Response. Sustainability, 17(17), 8052. https://doi.org/10.3390/su17178052