The Alarming Effects of Per- and Polyfluoroalkyl Substances (PFAS) on One Health and Interconnections with Food-Producing Animals in Circular and Sustainable Agri-Food Systems
Abstract
1. Introduction
2. Methods
3. What Are PFAS?
4. Why Should We Care About PFAS?
5. PFAS in the Atmosphere
6. PFAS in Water
7. PFAS in Soil
8. PFAS in Plants and Plant-Derived Foods
9. PFAS in Food-Producing Animals and Animal-Derived Foods
10. PFAS in Animal Manure, Food Waste, Compost, and Anaerobic Digestates
11. How Do We Fix This Major One Health Problem?
12. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EFSA | European Food Safety Authority |
EU | European Union |
FOSAs | Perfluorooctane sulfonamides |
FOSEs | Perfluorooctane sulfonamidoethanols |
PFAAs | Perfluoroalkyl acids |
PFAS | Perfluoroalkyl and polyfluoroalkyl substances |
PFBS | Perfluorobutanesulfonate |
PFCAs | Perfluoroalkyl carboxylates |
PFHxA | Perfluorohexanoate |
PFHxS | Perfluorohexane sulfonate |
PFNA | Perfluorononanoic acid |
PFOA | Perfluorooctanoate |
PFOS | Perfluorooctane sulfonate |
PFSAs | Perfluoroalkane sulfonates |
POPs | Persistent organic pollutants |
U.S. EPA | United States Environmental Protection Agency |
References
- OECD Environment Directorate. Toward a New Comprehensive Global Database of Per- and Polyfluoroalkyl Substances (PFASs): Summary Report on Updating the OECD 2007 List of Per- and Polyfluoroalkyl Substances (PFASs); Organisation for Economic Co-Operation and Development (OECD): Paris, France, 2018. [Google Scholar]
- Glüge, J.; Scheringer, M.; Cousins, I.T.; DeWitt, J.C.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Trier, X.; Wang, Z. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ. Sci. Process. Impacts 2021, 22, 2345–2373. [Google Scholar] [CrossRef]
- Panieri, E.; Baralic, K.; Djukic-Cosic, D.; Djordjevic, A.B.; Saso, L. PFAS Molecules: A major concern for the human health and the environment. Toxics 2022, 10, 44. [Google Scholar] [CrossRef]
- Li, F.; Duan, J.; Tian, S.T.; Ji, H.D.; Zhu, Y.M.; Wei, Z.S. Short-chain per- and polyfluoroalkyl substances in aquatic systems: Occurrence, impacts and treatment. Chem. Eng. J. 2020, 380, 122506. [Google Scholar] [CrossRef]
- Cousins, I.T.; DeWitt, J.C.; Gluge, J.; Goldenman, G.; Herzke, D.; Lohmann, R.; Miller, M.; Ng, C.A.; Scheringr, M.; Vierke, L.; et al. Strategies for grouping per- and polyfluoroalkyl substances (PFAS) to protect human and environmental health. Environ. Sci. Process. Impacts 2020, 22, 1444–1460. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; DeWitt, J.C.; Higgins, C.P.; Cousins, I.T. A never-ending story of per- and polyfluoroalkyl substances (PFASs). Environ. Sci. Technol. 2017, 51, 2508–2518. [Google Scholar] [CrossRef] [PubMed]
- Sunderland, E.M.; Hu, X.C.; Dassuncao, C.; Tokranov, A.K.; Wagner, C.C.; Allen, J.G. A review of the pathways to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 131–147. [Google Scholar] [CrossRef]
- Meegoda, J.N.; Kewalramani, J.A.; Li, B.; March, R.W. Review of the applications, environmental release, and remediation technologies of per- and polyfluoroalkyl substances. Int. J. Environ. Res. Public Health 2020, 17, 8117. [Google Scholar] [CrossRef]
- Jha, G.; Kankarla, V.; McLennon, E.; Pal, S.; Sihi, D.; Dari, B.; Diaz, D.; Nocco, M. Per- and polyfluoroalkyl substances (PFAS) in integrated crop-livestock systems: Environmental exposure and human health risks. Int. J. Environ. Res. Public Health 2021, 18, 12550. [Google Scholar] [CrossRef]
- Zareitalabad, P.; Siemens, J.; Harmer, M.; Amelung, W. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater—A review on concentrations and distribution. Chemosphere 2013, 91, 725–732. [Google Scholar] [CrossRef]
- Hamid, H.; Li, L.Y.; Grace, J.R. Review of the fate and transformation of per- and polyfluoroalkyl substances (PFASs) in landfills. Environ. Pollut. 2018, 235, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Sepulvado, J.G.; Blaine, A.C.; Hundal, L.S.; Higgins, C.P. Occurrence and fate of perfluorochemicals in soil following the land application of municipal biosolids. Environ. Sci. Technol. 2011, 45, 8106–8112. [Google Scholar] [CrossRef]
- Ghisi, R.; Vamerali, T.; Manzetti, S. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review. Environ. Res. 2019, 169, 326–341. [Google Scholar] [CrossRef]
- Death, C.; Bell, C.; Champness, D.; Milne, C.; Reichman, S.; Hagen, T. Per- and polyfluoroalkyl substances (PFAS) in livestock and game species: A review. Sci. Total Environ. 2021, 774, 144795. [Google Scholar] [CrossRef]
- Brake, H.D.; Langfeldt, A.; Kaneene, J.B.; Wilkins, M.J. Current per- and polyfluoroalkyl substance (PFAS) research points to a growing threat in animals. JAVMA 2023, 261, 952–958. [Google Scholar] [CrossRef]
- Bolan, N.; Sarkar, B.; Vithanage, M.; Singh, G.; Tsang, D.C.W.; Mukhopadhyay, R.; Ramadass, K.; Vinu, A.; Sun, Y.; Ramanayaka, S.; et al. Distribution, behavior, bioavailability and remediation of poly- and per-fluoroalkyl substance (PFAS) in solid biowastes and biowaste-treated soil. Environ. Int. 2021, 155, 106600. [Google Scholar] [CrossRef]
- Peritore, A.F.; Gugliandolo, E.; Cuzzocrea, S.; Crupi, R.; Britti, D. Current review of increasing animal health threat of per- and polyfluoroalkyl substances (PFAS): Harms, limitations, and alternatives to manage their toxicity. Int. J. Mol. Sci. 2023, 24, 11707. [Google Scholar] [CrossRef]
- Nakayama, S.F.; Yoshikane, M.; Onoda, Y.; Nishihama, Y.; Iwai-Shimada, M.; Takagi, M.; Kobayashi, Y.; Isobe, T. Worldwide trends in tracing poly- and perfluoroalkyl substances (PFAS) in the environment. TrAC Trends Anal. Chem. 2019, 121, 115410. [Google Scholar] [CrossRef]
- Brambilla, G.; D’Hollander, W.; Oliaei, F.; Stahl, T.; Weber, R. Pathways and factors for food safety and food security at PFOS contaminated sites within a problem based learning approach. Chemosphere 2015, 129, 192–202. [Google Scholar] [CrossRef] [PubMed]
- DeWitt, J.C. (Ed.) Toxicological Effects of Perfluoroalkyl and Polyfluoroalkyl Substances; Humana Press: Totowa, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Podder, A.; Sadmani, A.H.M.A.; Reinhart, D.; Chang, N.-B.; Goel, R. Per and polyfluoroalkyl substances (PFAS) as a contaminant of emerging concern in surface water: A transboundary review of their occurrences and toxicity effects. J. Hazard. Mater. 2021, 419, 126361. [Google Scholar] [CrossRef] [PubMed]
- Espartero, L.J.L.; Yamada, M.; Ford, J.; Owens, G.; Prow, T.; Juhasz, A. Health-related toxicity of emerging per- and polyfluoroalkyl substances: Comparison to legacy PFOS and PFOA. Environ. Res. 2022, 212, 113431. [Google Scholar] [CrossRef]
- Nian, M.; Luo, K.; Luo, F.; Aimuzi, R.; Huo, X.N.; Chen, Q.; Tian, Y.; Zhang, J. Association between prenatal exposure to PFAS and fetal sex hormones: Are the short-chain PFAS safer? Environ. Sci. Technol. 2020, 54, 8291–8299. [Google Scholar] [CrossRef]
- Woodlief, T.; Vance, S.; Hu, Q.; DeWitt, J. Immunotoxicity of per- and polyfluoroalkyl substances: Insights into short-chain PFAS exposure. Toxics 2021, 9, 100. [Google Scholar] [CrossRef] [PubMed]
- Rosato, I.; Zare Jeddi, M.; Ledda, C.; Gallo, E.; Fletcher, T.; Pitter, G.; Batzella, E.; Canova, C. How to investigate human health effects related to exposure to mixtures of per- and polyfluoroalkyl substances: A systematic review of statistical methods. Environ. Res. 2022, 205, 112565. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Arevalo, E.; Strynar, M.; Lindstrom, A.; Richardson, M.; Kearns, B.; Pickett, A.; Smith, C.; Knappe, D.R.U. Legacy and emerging perfluoroalkyl substances are important drinking water contaminants in the Cape Fear River Watershed of North Carolina. Environ. Sci. Technol. Lett. 2016, 3, 415–419. [Google Scholar] [CrossRef]
- Gebbink, W.A.; Van Asseldonk, L.; Van Leeuwen, S.P.J. Presence of emerging per- and polyfluoroalkyl substances (PFASs) in river and drinking water near a fluorochemical production plant in the Netherlands. Environ. Sci. Technol. 2017, 51, 11057–11065. [Google Scholar] [CrossRef]
- Kotlarz, N.; McCord, J.; Collier, D.; Lea, C.S.; Strynar, M.; Lindstrom, A.B.; Wilkie, A.A.; Islam, J.Y.; Matney, K.; Tarte, P.; et al. Measurement of novel, drinking water-associated PFAS in blood from adults and children in Wilmington, North Carolina. Environ. Health Perspect. 2020, 128, 77005. [Google Scholar] [CrossRef]
- Wang, Y.; Chang, W.; Wang, L.; Zhang, Y.; Zhang, Y.; Wang, M.; Wang, Y.; Li, P. A review of sources, multimedia distribution and health risks of novel fluorinated alternatives. Ecotoxicol. Environ. Saf. 2019, 182, 109402. [Google Scholar] [CrossRef]
- Salihovic, S.; Stubleski, J.; Kärrman, A.; Larrson, A.; Fall, T.; Lind, L.; Lind, P.M. Changes in markers of liver function in relations to changes in perfluoroalkyl substances—A longitudinal study. Environ. Int. 2018, 117, 196–203. [Google Scholar] [CrossRef]
- Bassler, J.; Ducatman, A.; Elliott, M.; Wen, S.; Wahlang, B.; Barnett, J.; Cave, M.C. Environmental perfluoroalkyl acid exposures are associated with liver disease characterized by apoptosis and altered serum adipocytokines. Environ. Pollut. 2019, 247, 1055–1063. [Google Scholar] [CrossRef]
- Jin, R.; McConnell, R.; Catherine, C.; Xu, S.; Walker, D.I.; Stratakis, N.; Jones, D.P.; Miller, G.W.; Peng, C.; Conti, D.V.; et al. Perfluoroalkyl substances and severity of nonalcoholic fatty liver in children: An untargeted metabolomics approach. Environ. Int. 2020, 134, 105220. [Google Scholar] [CrossRef]
- Stratakis, N.; Conti, D.V.; Jin, R.; Margetaki, K.; Valvi, D.; Siskos, A.P.; Maitre, L.; Garcia, E.; Varo, N.; Zhao, Y.; et al. Prenatal exposure to perfluoroalkyl substances associated with increased susceptibility to liver injury in children. Hepatology 2020, 72, 1758–1770. [Google Scholar] [CrossRef] [PubMed]
- Costello, E.; Rock, S.; Statakis, N.; Eckel, S.P.; Walker, D.I.; Valvi, D.; Cserbik, D.; Jenkins, T.; Xanthakos, S.A.; Kohli, R.; et al. Exposure to per- and polyfluoroalkyl substances and makers of liver injury: A systematic review and meta-analysis. Environ. Health Perspect. 2022, 130, 46001. [Google Scholar] [CrossRef] [PubMed]
- Shankar, A.; Xiao, J.; Ducatman, A. Perfluoroalkyl chemicals and chronic kidney disease in US adults. Am. J. Epidemiol. 2011, 174, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Kataria, A.; Trachtman, H.; Malaga-Dieguez, L.; Trasande, L. Association between perfluoroalkyl acids and kidney function in a cross-sectional study of adolescents. Environ. Health. 2015, 14, 89. [Google Scholar] [CrossRef]
- Stanifer, J.W.; Stapleton, H.M.; Souma, T.; Wittmer, A.; Zhao, X.; Boulware, L.E. Perfluorinated chemicals as emerging environmental threats to kidney health: A scoping review. Clin. J. Am. Soc. Nephrol. 2018, 13, 1479–1492. [Google Scholar] [CrossRef]
- Wang, J.; Zeng, X.W.; Bloom, M.S.; Qian, Z.; Hinyard, L.J.; Belue, R.; Lin, S.; Wang, S.Q.; Tian, Y.P.; Yang, M.; et al. Renal function and isomers of perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS): Isomers of C8 health project in China. Chemosphere 2019, 218, 1042–1049. [Google Scholar] [CrossRef]
- Wang, P.; Liu, D.; Yan, S.; Liang, Y.; Cui, J.; Guo, L.; Ren, S.; Chen, P. The role of ferroptosis in the damage of human proximal tubule epithelial cells caused by perfluorooctane sulfonate. Toxics 2022, 10, 436. [Google Scholar] [CrossRef]
- Dong, G.H.; Tung, K.Y.; Tsai, C.H.; Liu, M.M.; Wang, D.; Liu, W.; Jin, Y.H.; Hsieh, W.S.; Lee, Y.L.; Chen, P.C. Serum polyfluoroalkyl concentrations, asthma outcomes, and immunological markers in a case-control study of Taiwanese children. Environ. Health Perspect. 2013, 121, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.W.; Qian, Z.; Geiger, S.D.; Liu, E.; Liu, Y.; Wang, S.Q.; Lawrence, W.R.; Yang, B.Y.; Hu, L.W.; Zeng, X.W.; et al. Gender-specific associations between serum isomers of perfluoroalkyl substances and blood pressure among Chinese: Isomers of C8 health project in China. Sci. Tot. Environ. 2017, 607–608, 1304–1312. [Google Scholar] [CrossRef]
- Khalil, N.; Ebert, J.R.; Honda, M.; Lee, M.; Ramzi, W.; Nahhas, R.W.; Koskela, A.; Hangartner, T.; Kannan, K. Perfluoroalkyl substances, bone density, and cardio-metabolic risk factors in obese 8–12 year old children: A pilot study. Environ. Res. 2018, 160, 314–321. [Google Scholar] [CrossRef]
- Huang, M.; Jiao, J.; Zhuang, P.; Chen, X.; Wang, J.; Zhang, Y. Serum polyfluoroalkyl chemicals are associated with risk of cardiovascular diseases in national US population. Environ. Int. 2018, 119, 37–46. [Google Scholar] [CrossRef]
- De Toni, L.; Radu, C.M.; Sabovic, I.; Di Nisio, A.; Dall’Acqua, S.; Guidolin, D.; Spampinato, S.; Campello, E.; Simioni, P.; Foresta, C. Increased cardiovascular risk associated with chemical sensitivity to perfluoro-octanoic acid: Role of platelet aggregation. Int. J. Mol. Sci. 2020, 21, 399. [Google Scholar] [CrossRef]
- Li, N.; Liu, Y.; Papandonatos, G.D.; Calafat, A.M.; Eaton, C.B.; Kelsey, K.T.; Cecil, K.M.; Kalkwarf, H.J.; Yolton, K.; Lanphear, B.P.; et al. Gestational and childhood exposure to per- and polyfluoro-alkyl substances and cardiometabolic risk at age 12 years. Environ. Int. 2021, 147, 106344. [Google Scholar] [CrossRef]
- Ding, N.; Karvonen-Gutierrez, C.A.; Mukherjee, B.; Calafat, A.M.; Harlow, S.D.; Park, S.K. Per- and polyfluoroalkyl substances and incident hypertension in multi-racial/ethnic women: The study of women’s health across the nation. Hypertension 2022, 79, 1876–1886. [Google Scholar] [CrossRef]
- Preston, E.V.; Hivert, M.F.; Fleisch, A.F.; Calafat, A.M.; Sagiv, S.K.; Perng, W.; Rifas-Shiman, S.L.; Chavarro, J.E.; Oken, E.; Zota, A.R.; et al. Early-pregnancy plasma per- and polyfluoroalkyl substance (PFAS) concentrations and hypertensive disorders of pregnancy in the project viva cohort. Environ. Int. 2022, 165, 107335. [Google Scholar] [CrossRef]
- Schillemans, T.; Donat-Vargas, C.; Lindh, C.H.; de Faire, U.; Wolk, A.; Leander, K.; Åkesson, A. Per- and polyfluoroalkyl substances and risk of myocardial infarction and stroke: A nested case-control study in Sweden. Environ. Health Perspect. 2022, 130, 37007. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, K.; Webster, T.F.; Weisskopf, M.G.; Weinberg, J.; Vieira, V.M. Exposure to perfluoroalkyl chemicals and attention deficit/hyperactivity disorder in U.S. children 12–15 years of age. Environ. Health Perspect. 2010, 118, 1762–1767. [Google Scholar] [CrossRef]
- Gump, B.B.; Wu, Q.; Dumas, A.K.; Kannan, K. Perfluorochemical (PFC) exposure in children: Association with impaired response inhibition. Environ. Sci. Technol. 2011, 45, 8151–8159. [Google Scholar] [CrossRef] [PubMed]
- Stein, C.R.; Savitz, D.A. Serum perfluorinated compound concentration and attention deficit/hyperactivity disorder in children 5–18 years of age. Environ. Health Perspect. 2011, 119, 1466–1471. [Google Scholar] [CrossRef] [PubMed]
- Gallo, V.; Leonardi, G.; Brayne, C.; Armstrong, B.; Fletcher, T. Serum perfluoroalkyl substance neuro toxicity: Mechanisms and potential implications for adverse neurological outcomes. Chem. Res. Toxicol. 2013, 35, 1312–1333. [Google Scholar] [CrossRef]
- Stein, C.R.; Savitz, D.A.; Bellinger, D.C. Perfluorooctanoate and neuropsychological outcomes in children. Epidemiology 2013, 24, 590–599. [Google Scholar] [CrossRef]
- Liew, Z.; Ritz, B.; Bonefeld-Jørgensen, E.C.; Henriksen, T.B.; Aagaard Nohr, E.; Hammer Bech, B.; Fei, C.; Bossi, R.; von Ehrenstein, O.S.; Streja, E.; et al. Prenatal exposure to perfluoroalkyl substances and the risk of congenital cerebral palsy in children. Am. J. Epidemiol. 2014, 180, 574–581. [Google Scholar] [CrossRef]
- Stein, C.R.; Savitz, D.A.; Bellinger, D.C. Perfluorooctanoate exposure in a highly exposed community and parent and teacher reports of behaviour in 6–12-year-old children. Paediatr. Perinat. Epidemiol. 2014, 28, 146–156. [Google Scholar] [CrossRef]
- Høyer, B.B.; Ramlau-Hansen, C.H.; Obel, C.; Pedersen, H.S.; Hernik, A.; Ogniev, V.; Jönsson, B.A.G.; Lindh, C.H.; Rylander, L.; Rignell-Hydbom, A.; et al. Pregnancy serum concentrations of perfluorinated alkyl substances and offspring behavior and motor development at age 5–9 years—A prospective study. Environ. Health 2015, 14, 2. [Google Scholar] [CrossRef]
- Wang, Y.; Rogan, W.J.; Chen, H.Y.; Chende, P.C.; Su, P.H.; Chen, H.Y.; Wang, S.L. Prenatal exposure to perfluoroalkyl substances and children’s IQ: The Taiwan maternal and infant cohort study. Int. J. Hyg. Environ. Health 2015, 218, 639–644. [Google Scholar] [CrossRef]
- Lien, G.W.; Huang, C.C.; Shiu, J.S.; Chen, M.H.; Hsieh, W.S.; Guo, Y.L.; Chen, P.H. Perfluoroalkyl substances in cord blood and attention deficit/hyperactivity disorder symptoms in seven-year-old children. Chemosphere 2016, 156, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Oulhote, Y.; Steuerwald, U.; Debes, F.; Wwihe, P.; Grandjean, P. Behavioral difficulties in 7-year old children in relation to developmental exposure to perfluorinated alkyl substances. Environ. Int. 2016, 97, 237–245. [Google Scholar] [CrossRef]
- Lyall, K.; Yau, V.M.; Hansen, R.; Kharrazi, M.; Yoshida, C.K.; Calafat, A.M.; Windham, G.; Croen, L.A. Prenatal maternal serum concentrations of per- and polyfluoroalkyl substances in association with autism spectrum disorder and intellectual disability. Environ. Health Perspect. 2018, 126, 017001. [Google Scholar] [CrossRef]
- Lenters, V.; Iszatt, N.; Forns, J.; Čechová, E.; Kočan, A.; Legler, J.; Leonards, P.; Stigum, H.; Eggesbø, M. Early-life exposure to persistent organic pollutants (PCPs, PBDEs, PCBs, PFASs) and attention-deficit/hyperactivity disorder: A multi-pollutant analysis of a Norwegian birth cohort. Environ. Int. 2019, 125, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, L.; Chang, W.; Zhang, Y.; Zhang, Y.; Liu, W. Neurotoxic effects of perfluoroalkyl acids: Neurobehavioral deficit and its molecular mechanism. Toxicol. Lett. 2019, 305, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Xiao, J.; Gao, Y.; Ramlau-Hansen, C.H.; Toft, G.; Li, J.; Obel, C.; Linding Anderson, S.; Deziel, N.C.; Tseng, W.L.; et al. Prenatal exposure to perfluoroalkyl substances and behavioral difficulties in childhood at 7 and 11 years. Environ. Res. 2020, 191, 110111. [Google Scholar] [CrossRef]
- Forns, J.; Verner, M.A.; Iszatt, N.; Nowack, N.; Balch, C.C.; Vrijheid, M.; Costa, O.; Andiarena, A.; Sovcikova, E.; Høyer, B.B.; et al. Early life exposure to perfluoroalkyl substances (PFAS) and ADHD: A meta-analysis of nine European population-based studies. Environ. Health Perspect. 2020, 28, 57002. [Google Scholar] [CrossRef]
- Spratlen, M.J.; Perera, F.P.; Lederman, S.A.; Rauh, V.A.; Robinson, M.; Kannan, K.; Trasande, L.; Herbstman, J. The association between prenatal exposure to perfluoroalkyl substances and childhood neurodevelopment. Environ. Pollut. 2020, 263, 114444. [Google Scholar] [CrossRef]
- Shin, H.-M.; Bennett, D.H.; Calafat, A.M.; Tancredi, D.; Hertz-Picciotto, I. Modeled prenatal exposure to per- and polyfluoroalkyl substances in association with child autism spectrum disorder: A case-control study. Environ. Res. 2020, 186, 109514. [Google Scholar] [CrossRef] [PubMed]
- Hutcheson, R.; Innes, K.; Conway, B. Perfluoroalkyl substances and likelihood of stroke in persons with and without diabetes. Diab. Vasc. Dis. Res. 2020, 17, 1479164119892223. [Google Scholar] [CrossRef] [PubMed]
- Piekarski, D.J.; Diaz, K.R.; McNerney, M.W. Perfluoroalkyl chemicals in neurological health and disease: Human concerns and animal models. NeuroToxicology 2020, 77, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Tukker, A.M.; Bouwman, L.M.S.; van Kleef, R.G.D.M.; Hendriks, H.S.; Legler, J.; Westerin, R.H.S. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) acutely affect human α1β2γ2L GABAA receptor and spontaneous neuronal network function in vitro. Sci. Rep. 2020, 10, 5311. [Google Scholar] [CrossRef]
- Ding, N.; Park, S.K. Perfluoroalkyl substances exposure and hearing impairment in US adults. Environ. Res. 2020, 187, 109686. [Google Scholar] [CrossRef]
- Skogheim, T.S.; Weyde, K.V.F.; Aase, H.; Engel, S.M.; Surén, P.; Øle, M.G.; Biele, G.; Reichborn-Kjennerud, T.; Brantsæter, A.L.; Haug, L.S.; et al. Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) and associations with attention-deficit/hyperactivity disorder and autism spectrum disorder in children. Environ. Res. 2021, 202, 111692. [Google Scholar] [CrossRef]
- Park, S.K.; Ding, N.; Han, D. Perfluoroalkyl substances and cognitive function in older adults: Should we consider non-monotonic dose-responses and chronic kidney disease? Environ. Res. 2021, 192, 10346. [Google Scholar] [CrossRef]
- Shen, C.-Y.; Weng, J.C.; Tsai, J.D.; Su, P.H.; Chou, M.C.; Wang, S.L. Prenatal exposure to endocrine-disrupting chemicals and subsequent brain structure changes revealed by voxel-based morphometry and generalized Q-sampling MRI. Int. J. Environ. Res. Public Health 2021, 18, 4798. [Google Scholar] [CrossRef]
- Oh, J.; Bennett, D.H.; Calafat, A.M.; Tancredi, D.; Roa, D.L.; Schmidt, R.J.; Hertz-Picciotto, I.; Shin, H.M. Prenatal exposure to per- and polyfluoroalkyl substances in association with autism spectrum disorder in the MARBLES study. Environ. Int. 2021, 147, 106328. [Google Scholar] [CrossRef]
- Oh, J.; Schmidt, R.J.; Tancredi, D.; Calafat, A.M.; Roa, D.L.; Hertz-Picciotto, I.; Shin, H.M. Prenatal exposure to per- and polyfluoroalkyl substances and cognitive development in infancy and toddlerhood. Environ. Res. 2021, 196, 110939. [Google Scholar] [CrossRef] [PubMed]
- Di Nisio, A.; Pannella, M.; Vogiatzis, S.; Sut, S.; Dall’Acqua, S.; Santa Rocca, M.; Antonini, A.; Porzionato, A.; De Caro, R.; Bortolozzi, M.; et al. Impairment of human dopaminergic neurons at different developmental stages by perfluoro-octanoic acid (PFOA) and differential human brain areas accumulation of perfluoroalkyl chemicals. Environ. Int. 2022, 158, 106982. [Google Scholar] [CrossRef] [PubMed]
- Brown-Leung, J.M.; Cannon, J.R. Neurotransmission targets of per- and polyfluoroalkyl substance neurotoxicity: Mechanisms and potential implication for adverse neurological outcomes. Chem. Res. Toxicol. 2022, 35, 1312–1333. [Google Scholar] [CrossRef] [PubMed]
- Starnes, H.M.; Rock, K.D.; Jackson, T.W.; Belcher, S.M. A critical review and meta-analysis of impacts of per- and polyfluorinated substances on the brain and behavior. Front. Toxicol. 2022, 4, 881584. [Google Scholar] [CrossRef]
- Xie, Z.; Tan, J.; Fang, G.; Ji, H.; Miao, M.; Tian, Y.; Hu, H.; Cao, W.; Liang, H.; Yuan, W. Associations between prenatal exposure to perfluoroalkyl substances and neurobehavioral development in early childhood: A prospective cohort study. Ecotoxicol. Environ. Saf. 2022, 241, 113818. [Google Scholar] [CrossRef]
- Larebeke, N.; Koppen, G.; Decraemer, S.; Colles, A.; Bruckers, L.; Den Hond, E.; Govarts, E.; Morrens, B.; Schettgen, T.; Remy, S.; et al. Per- and polyfluoroalkyl substances (PFAS) and neurobehavioral function and cognition in adolescents (2010–2011) and elderly people 92014): Results from the Flanders Environment and Health Studies (FLEHS). Environ. Sci. Eur. 2022, 34, 98. [Google Scholar] [CrossRef]
- Koskela, A.; Koponen, J.; Lehenkari, P.; Viluksela, M.; Korkalainen, M.; Tuukkanen, J. Perfluoroalkyl substances in human bone: Concentrations in bones and effects on bone cell differentiation. Sci. Rep. 2017, 7, 6841. [Google Scholar] [CrossRef]
- Khalil, N.; Chen, A.; Lee, M.; Czerwinski, S.A.; Ebert, J.R.; DeWitt, J.C.; Kannan, K. Association of perfluoroalkyl substances, bone mineral density, and osteoporosis in the U.S. population in NHANES 2009–2010. Environ. Health Perspect. 2016, 124, 81–87. [Google Scholar] [CrossRef]
- Cluett, R.; Seshasayee, S.M.; Rokoff, L.B.; Rifas-Shiman, S.L.; Ye, X.; Calafat, A.M.; Gold, D.R.; Coull, B.; Gordon, C.M.; Rosen, C.J.; et al. Per- and polyfluoroalkyl substance plasma concentrations and bone mineral density in midchildhood: A cross-sectional study (project viva, United States). Environ. Health Pespect. 2019, 127, 87006. [Google Scholar] [CrossRef] [PubMed]
- Banjabi, A.A.; Li, A.J.; Kumosani, T.A.; Yousef, J.M.; Kannan, K. Serum concentrations of perfluoroalkyl substances and their association with osteoporosis in a population in Jeddah, Saudi Arabia. Environ. Res. 2020, 187, 109676. [Google Scholar] [CrossRef] [PubMed]
- Di Nisio, A.; De Rocco, P.M.; Giadone, A.; Rocca, M.S.; Guidolin, D.; Foresta, C. Perfluoroalkyl substances and bone health in young men: A pilot study. Endocrine 2020, 67, 678–684. [Google Scholar] [CrossRef]
- Buckley, J.P.; Kuiper, J.R.; Lanphear, B.P.; Calafat, A.M.; Cecil, K.M.; Chen, A.; Xu, Y.; Yolton, K.; Kalkwarf, H.J.; Braun, J.M. Associations of maternal serum perfluoroalkyl substances concentrations with early adolescent bone mineral content and density: The health outcomes and measures of the environment (HOME) study. Environ. Health Perspect. 2021, 129, 97011. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.W. A measure of strength: Developmental PFAS exposures and bone mineral content in adolescence. Environ. Health Perspect. 2021, 129, 124002–124011. [Google Scholar] [CrossRef]
- Xiong, X.; Chen, B.; Wang, Z.; Ma, L.; Li, S.; Gao, Y. Association between perfluoroalkyl substances concentration and bone mineral density in the US adolescents aged 12–19 years in NHANES 2005–2010. Front. Endocrinol. 2022, 13, 980608. [Google Scholar] [CrossRef] [PubMed]
- Apelberg, B.J.; Witter, F.R.; Herbstman, J.B.; Calafat, A.M.; Halden, R.U.; Larry, L.; Needham, L.I.; Goldman, L.R. Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at birth. Environ. Health Perspect. 2007, 115, 1670–1676. [Google Scholar] [CrossRef]
- Fei, C.; McLaughlin, J.K.; Tarone, R.E.; Olsen, J. 2008. Fetal growth indicators and perfluorinated chemicals: A study in the Danish national birth cohort. Am. J. Epidemiol. 2008, 168, 66–72. [Google Scholar] [CrossRef]
- Olsen, G.W.; Butenhoff, J.L.; Zobel, L.R. Perfluoroalkyl chemicals and human fetal development: An epidemiologic review with clinical and toxicological perspectives. Reprod. Toxicol. 2009, 27, 212–230. [Google Scholar] [CrossRef]
- Washino, N.; Saijo, K.; Nakazawa, H.; Kishi, R. Correlations between prenatal exposure to perfluorinated chemicals and reduced fetal growth. Environ. Health Perspect. 2009, 117, 660–667. [Google Scholar] [CrossRef]
- Darrow, L.A.; Stein, C.R.; Steenland, K. Serum perfluorooctanoic acid and perfluorooctane sulfonate concentrations in relation to birth outcomes in the Mid-Ohio Valley, 2005–2010. Environ. Health Perspect. 2013, 121, 1207–1213. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.I.; Sutton, P.; Atchley, D.S.; Koustas, E.; Lam, J.; Sen, S.; Robinson, K.A.; Axelrad, D.A.; Woodruff, T.J. The navigation guide—Evidence-based medicine meets environmental health: Systemic review of human evidence for PFOA effects on fetal growth. Environ. Health Perspect. 2014, 122, 1028–1039. [Google Scholar] [CrossRef] [PubMed]
- Jensen, T.K.; Andersen, L.B.; Kyhl, H.B.; Nielsen, F.; Christesen, H.T.; Grandjean, P. Association between perfluorinated compound exposure and miscarriage in Danish pregnant women. PLoS ONE 2015, 10, e0123496. [Google Scholar] [CrossRef]
- Ashley-Martin, J.; Dodds, L.; Arbuckle, T.E.; Bouchard, M.F.; Fisher, M.; Morriset, A.S.; Monnier, P.; Shapiro, G.D.; Ettinger, A.S.; Dallaire, R.; et al. Maternal concentrations of perfluoroalkyl substances and fetal markers of metabolic function and birth weight. The maternal-infant research on environmental chemicals (MIREC) Study. Am. J. Epidemiol. 2017, 185, 185–193. [Google Scholar] [CrossRef]
- Lauritzen, H.B.; Larose, T.L.; Øien, T.; Sandanger, T.M.; Odland, J.Ø.; van de Bor, M.; Jacobsen, G.W. Maternal serum levels of perfluoroalkyl substances and organochlorines and indices of fetal growth: A Scandinavian case-cohort study. Pediatr. Res. 2017, 81, 33–42. [Google Scholar] [CrossRef]
- Manzano-Salgado, C.B.; Casas, M.; Lopez-Espinosa, M.J.; Ballester, F.; Iñiguez, C.; Martinez, D.; Costa, O.; Santa-Marina, L.; Pereda-Pereda, E.; Schettgen, T.; et al. Prenatal exposure to perfluoroalkyl substances and birth outcomes in a Spanish birth cohort. Environ. Int. 2017, 108, 278–284. [Google Scholar] [CrossRef]
- Rappazzo, K.M.; Coffman, E.; Hines, E.P. Exposure to perfluorinated alkyl substances and health outcomes in children: A systematic review of the epidemiologic literature. Int. J. Environ. Res. Public Health 2017, 14, 691. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, L.; Li, J.; Lai, J.; Wang, Y.; Zhao, Y.; Wu, Y. Occurrence of perfluoroalkyl substances in cord serum and association with growth indicators in newborns from Beijing. Chemosphere 2017, 169, 396–402. [Google Scholar] [CrossRef]
- Ghassabian, A.; Bell, E.M.; Ma, W.L.; Sundaram, R.; Kannan, K.; Louis, G.M.B.; Yeung, E. Concentrations of perfluoroalkyl substances and bisphenol A in newborn dried blood spots and the association with child behavior. Environ. Pollut. 2018, 243 Pt B, 1629–1636. [Google Scholar] [CrossRef]
- Huang, R.; Chen, Q.; Zhang, L.; Luo, K.; Chen, L.; Zhao, S.; Feng, L.; Zhang, J. Prenatal exposure to perfluoroalkyl and polyfluoroalkyl substances and the risk of hypertensive disorders of pregnancy. Environ. Health 2019, 18, 5. [Google Scholar] [CrossRef] [PubMed]
- Reardon, A.J.F.; Khodayari Moez, E.; Dinu, I.; Goruk, S.; Field, C.J.; Kinniburgh, D.W.; MacDonald, A.M.; Martin, J.W. Longitudinal analysis reveals early-pregnancy associations between perfluoroalkyl sulfonates and thyroid hormone status in a Canadian prospective birth cohort. Environ. Int. 2019, 129, 389–399. [Google Scholar] [CrossRef]
- Di Nisio, A.; Rocca, M.S.; Sabovic, I.; De Rocco Ponce, M.; Corsini, C.; Guidolin, D.; Zanon, C.; Acquasaliente, L.; Carosso, A.R.; De Toni, L.; et al. Perfluorooctanoic acid alters progesterone activity in human endometrial cells and induces reproductive alterations in young women. Chemosphere 2020, 242, 125208. [Google Scholar] [CrossRef] [PubMed]
- Liew, Z.; Luo, J.; Nohr, E.A.; Hammer Bech, B.; Bossi, R.; Arah, O.A.; Olsen, J. Maternal plasma perfluoroalkyl substances and miscarriage: A nested case-control study in the Danish national birth cohort. Environ. Health Perspect. 2020, 128, 47007. [Google Scholar] [CrossRef]
- Mitro, S.D.; Sagiv, S.K.; Fleisch, A.F.; Jaacks, L.M.; Williams, P.L.; Rifas-Shiman, S.L.; Calafat, A.M.; Hivert, M.F.; Oken, E.; James-Todd, T.M. Pregnancy per- and polyfluoroalkyl substance concentrations and postpartum health in project viva: A prospective cohort. J. Clin. Endocrinol. Metab. 2020, 105, e3415–e3426. [Google Scholar] [CrossRef]
- Petersen, K.U.; Larsen, J.R.; Deen, L.; Flachs, E.M.; Hærvig, K.K.; Hull, S.D.; Bonde, J.P.E.; Tøttenborg, S.S. Per- and polyfluoroalkyl substances and male reproductive health: A systematic review of the epidemiological evidence. J. Toxicol. Environ. Health B Crit. Rev. 2020, 23, 276–291. [Google Scholar] [CrossRef]
- Street, M.E.; Bernasconi, S. Endocrine-disrupting chemicals in human fetal growth. Int. J. Mol. Sci. 2020, 21, 1430. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Gandjean, P.; Valvi, D.; Nielsen, F.; Jensen, T.K.; Weihe, P.; Oulhote, Y. Associations of exposure to perfluoroalkyl substances with thyroid hormone concentrations and birth size. J. Clin. Endocrinol. Metab. 2020, 105, 735–745. [Google Scholar] [CrossRef]
- Birru, R.L.; Liang, H.-W.; Farooq, F.; Bedi, M.; Feghali, M.; Haggerty, C.L.; Mendez, D.D.; Catov, J.M.; Ng, C.A.; Adibi, J.J. A pathway level analysis of PFAS exposure and risk of gestational diabetes mellitus. Environ. Health 2021, 20, 63. [Google Scholar] [CrossRef] [PubMed]
- Chambers, W.S.; Hopkins, J.G.; Richards, S.M. A review of per- and polyfluorinated alkyl substance impairment of reproduction. Front. Toxicol. 2021, 3, 732436. [Google Scholar] [CrossRef]
- Gardener, H.; Sun, Q.; Grandjean, P. PFAS concentration during pregnancy in relation to cardiometabolic health and birth outcomes. Environ. Res. 2021, 192, 110287. [Google Scholar] [CrossRef]
- Kishi, R.; Ikeda-Araki, A.; Miyashita, C.; Itoh, S.; Kobayashi, S.; Bamai, Y.A.; Yamazaki, K.; Tamura, N.; Minatoya, M.; Mesfin Ketema, R.; et al. Members of the Hokkaido Study on Environment and Children’s Health. Hokkaido birth cohort study on environment and children’s health: Cohort profile 2021. Environ. Health Prev. Med. 2021, 26, 59. [Google Scholar] [CrossRef]
- Wikström, S.; Hussein, G.; Karlsson, A.L.; Lindh, C.H.; Bornehag, C.-G. Exposure to perfluoroalkyl substances in early pregnancy and risk of sporadic first trimester miscarriage. Sci. Rep. 2021, 11, 3568. [Google Scholar] [CrossRef]
- Hall, S.M.; Zhang, S.; Hoffman, K.; Miranda, M.L.; Stapleton, H.M. Concentrations of per- and polyfluoroalkyl substances (PFAS) in human placental tissues and associations with birth outcomes. Chemosphere 2022, 295, 133873. [Google Scholar] [CrossRef]
- Goudarzi, H.; Araki, A.; Itoh, S.; Sasaki, S.; Miyashita, C.; Mitsui, T.; Nakazawa, H.; Nonomura, K.; Kishi, R. The association of prenatal exposure to perfluorinated chemicals with glucocorticoid and androgenic hormones in cord blood samples: The Hokkaido study. Environ. Health Perspect. 2017, 125, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.H.; Oken, E.; Rifas-Shiman, S.L.; Calafat, A.M.; Ye, X.; Bellinger, D.C.; Webster, T.F.; White, R.F.; Sagiv, S.K. Prenatal and childhood exposure to per- and polyfluoroalkyl substances (PFASs) and child cognition. Environ. Int. 2018, 115, 358–369. [Google Scholar] [CrossRef]
- Di Nisio, A.; Sabovic, I.; Valente, U.; Tescari, S.; Santa Rocca, M.; Guidolin, D.; Dall’Acqua, S.; Acquasaliente, L.; Pozzi, N.; Plebani, M.; et al. Endocrine disruption of androgenic activity by perfluoroalkyl substances: Clinical and experimental evidence. J. Clin. Endocrinol. Metab. 2019, 104, 1259–1271. [Google Scholar] [CrossRef] [PubMed]
- Aimuzi, R.; Luo, K.; Huang, R.; Huo, X.; Nian, M.; Ouyang, F.; Du, Y.; Feng, L.; Wang, W.; Zhang, J.; et al. Perfluoroalkyl and polyfluoroalkyl substances and maternal thyroid hormones in early pregnancy. Environ. Pollut. 2020, 264, 114557. [Google Scholar] [CrossRef] [PubMed]
- Preston, E.V.; Webster, T.F.; Claus Henn, B.; McClean, M.D.; Gennings, C.; Oken, E.; Rifas-Shiman, S.L.; Pearce, E.N.; Calafat, A.M.; Fleisch, A.F.; et al. Prenatal exposure to per- and polyfluoroalkyl substances and maternal and neonatal thyroid function in the project viva cohort: A mixtures approach. Environ. Int. 2020, 139, 105728. [Google Scholar] [CrossRef]
- Eick, S.M.; Goin, D.E.; Cushing, L.; DeMicco, E.; Smith, S.; Park, J.S.; Padula, A.M.; Woodruff, T.J.; Morello-Frosch, R. Joint effects of prenatal exposure to per- and poly-fluoroalkyl substances and psychosocial stressors on corticotropin-releasing hormone during pregnancy. J. Expo. Sci. Environ. Epidemiol. 2021, 32, 27–36. [Google Scholar] [CrossRef]
- Caporale, N.; Leemans, M.; Birgersson, L.; Germain, P.-L.; Cheroni, C.; Borbély, G.; Engdahl, E.; Lindh, C.; Bressan, R.B.; Cavallo, F.; et al. From cohorts to molecules: Adverse impacts of endocrine disrupting mixtures. Science 2022, 375, eabe8244. [Google Scholar] [CrossRef]
- Sun, M.; Cao, X.; Wu, Y.; Shen, L.; Wei, G. Prenatal exposure to endocrine-disrupting chemicals and thyroid function in neonates: A systematic review and meta-analysis. Ecotoxicol. Environ. Saf. 2022, 231, 113215. [Google Scholar] [CrossRef]
- Tachachartvanich, P.; Singam, E.R.A.; Durkin, K.A.; Furlow, J.D.; Smith, M.T.; La Merrill, M.A. In vitro characterization of the endocrine disrupting effects of per- and poly-fluoroalkyl substances (PFASs) on the human androgen receptor. J. Hazard. Mat. 2022, 429, 128243. [Google Scholar] [CrossRef] [PubMed]
- Sinisalu, L.; Yeung, L.W.Y.; Wang, J.; Pan, Y.; Dai, J.; Hyötyläinen, T. Prenatal exposure to poly-/per-fluoroalkyl substances is associated with alteration of lipid profiles in cord-blood. Metabolomics 2021, 17, 103. [Google Scholar] [CrossRef] [PubMed]
- Alderete, T.L.; Jin, R.; Walker, D.I.; Valvi, D.; Chen, Z.; Jones, D.P.; Peng, C.; Gilliland, F.D.; Berhane, K.; Conti, D.V.; et al. Perfluoroalkyl substances, metabolomic profiling, and alterations in glucose homeostasis among overweight and obese Hispanic children: A proof-of-concept analysis. Environ. Int. 2019, 126, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Donat-Vargas, C.; Bergdahl, I.A.; Tornevi, A.; Wennberg, M.; Sommar, J.; Kiviranta, H.; Koponen, J.; Rolandsson, O.; Åkesson, A. Perfluoroalkyl substances and risk of type II diabetes: A prospective nested case-control study. Environ. Int. 2019, 123, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Barregard, L.; Xu, Y.; Scott, K.; Pineda, D.; Lindh, C.H.; Jakobsson, K.; Fletcher, T. Associations between perfluoroalkyl substances and serum lipids in a Swedish adult population with contaminated drinking water. Environ. Health 2020, 19, 33. [Google Scholar] [CrossRef]
- Rosen, E.M.; Kotlarz, N.; Knappe, D.R.U.; Lea, S.; Collier, D.N.; Richardson, D.B.; Hoppin, J.A. Drinking water-associated PFAS and fluoroethers and lipid outcomes in the GenX exposure study. Environ. Health Perspect. 2021, 130, 97002. [Google Scholar] [CrossRef]
- Schillemans, T.; Shi, L.; Donat-Vargas, C.; Hanhineva, K.; Tornevi, A.; Johansson, I.; Koponen, J.; Kiviranta, H.; Rolandsson, O.; Bergdahl, I.A.; et al. Plasma metabolites associated with exposure to perfluoroalkyl substances and risk of type 2 diabetes—A nested case-control study. Environ. Int. 2021, 146, 106180. [Google Scholar] [CrossRef]
- Guo, P.; Furnary, T.; Vasiliou, V.; Yan, Q.; Nyhan, K.; Jones, D.P.; Johnson, C.H.; Liew, Z. Non-targeted metabolomics and associations with per- and polyfluoroalkyl substances (PFAS) exposure in humans: A scoping review. Environ. Int. 2022, 162, 107159. [Google Scholar] [CrossRef]
- Park, S.K.; Wang, X.; Ding, N.; Karvonen-Gutierrez, C.A.; Calafat, A.M.; Herman, W.H.; Mukherjee, B.; Harlow, S.D. Per- and polyfluoroalkyl substances and incident diabetes in midlife women: The study of women’s health across the nation (SWAN). Diabetologia 2022, 65, 1157–1168. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts. Scientific opinion of the panel on contaminants in the food chain. EFSA J. 2008, 653, 1–131. [Google Scholar] [CrossRef]
- Grandjean, P.; Andersen, E.W.; Budtz-Jørgensen, E.; Nielsen, F.; Mølbak, K.; Weihe, P.; Heilmann, C. Serum vaccine antibody concentrations in children exposed to perfluorinated compounds. JAMA 2012, 307, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Granum, B.; Haug, L.S.; Namork, E.; Stølevik, S.B.; Thomsen, C.; Aaberge, I.S.; van Loveren, H.; Løvik, M.; Nygaard, U.C. Prenatal exposure to perfluoroalkyl substances may be associated with altered vaccine antibody levels and immune-related health outcomes in early childhood. J. Immunotoxicol. 2013, 10, 373–379. [Google Scholar] [CrossRef]
- Steenland, K.; Zhao, L.; Winquist, A.; Parks, C. Ulcerative colitis and perfluorooctanoic acid (PFOA) in a highly exposed population of community residents and workers in the mid-Ohio valley. Environ. Health Perspect. 2013, 121, 900–905. [Google Scholar] [CrossRef] [PubMed]
- Dalsager, L.; Christensen, N.; Husby, S.; Kyhl, H.; Nielsen, F.; Høst, A.; Grandjean, P.; Kold Jensen, T. Association between prenatal exposure to perfluorinated compounds and symptoms of infections at age 1–4 years among 359 children in the Odense child cohort. Environ. Int. 2016, 96, 48–64. [Google Scholar] [CrossRef]
- Abraham, K.; Mielke, H.; Fromme, H.; Völkel, W.; Menze, J.; Peiser, M.; Zepp, F.; Willich, S.N.; Weikert, C. Internal exposure to perfluoroalkyl substances (PFASs) and biological markers in 101 healthy 1-year-old children: Associations between levels of perfluorooctanoic acid (PFOA) and vaccine response. Arch. Toxicol. 2020, 94, 2131–2147. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J. 2020, 16, 5194. [Google Scholar] [CrossRef]
- Barry, V.; Winquist, A.; Steenland, K. Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant. Environ. Health Perspect. 2013, 121, 1313–1318. [Google Scholar] [CrossRef]
- Consonni, D.; Straif, K.; Symons, J.M.; Tomenson, J.A.; van Amelsvoort, L.G.P.M.; Sleeuwenhoek, A.; Cherrie, J.W.; Bonetti, P.; Colombo, I.; Farrar, D.G.; et al. Cancer risk among tetrafluoroethylene synthesis and polymerization workers. Am. J. Epidemiol. 2013, 178, 350–358. [Google Scholar] [CrossRef]
- Bartell, S.M.; Vieira, V.M. Critical review on PFOA, kidney cancer, and testicular cancer. J. Air Waste Manag. Assoc. 2021, 71, 663–679. [Google Scholar] [CrossRef]
- Itoh, H.; Harada, K.H.; Kasuga, Y.; Yokoyama, S.; Onuma, H.; Nishimura, H.; Kusama, R.; Yokoyama, K.; Zhu, J.; Sassa, M.H.; et al. Serum perfluoroalkyl substances and breast cancer risk in Japanese women: A case-control study. Sci. Total Environ. 2021, 800, 149316. [Google Scholar] [CrossRef]
- Steenland, K.; Winquist, A. PFAS and cancer, a scoping review of the epidemiological evidence. Environ. Res. 2021, 194, 110690. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Our Current Understanding of the Human Health and Environmental Risks of PFAS. Per- and Polyfluoroalkyl Substances (PFAS) are a Group of Manufactured Chemicals. United States Environmental Protection Agency; 2021. Available online: https://www.epa.gov/pfas/our-current-understanding-human-health-and-environmental-risks-pfas (accessed on 10 February 2025).
- USDHHS. Toxicological Profile for Perfluoroalkyls; Department of Health and Human Services, Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2021; p. 993. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp200.pdf (accessed on 10 February 2025).
- Goodrich, J.A.; Walker, D.; Lin, X.; Wang, H.; Lim, T.; McConnell, R.; Conti, D.V.; Chatzi, L.; Setiawan, V.W. Exposure to perfluoroalkyl substances and risk of hepatocellular carcinoma in a multiethnic cohort. JHEP Rep. 2022, 4, 100550. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Hammarstrand, S.; Midberg, B.; Xu, Y.; Li, Y.; Olsson, D.S.; Fletcher, T.; Jakobsson, K.; Andersson, E.M. Cancer incidence in a Swedish cohort with high exposure to perfluoroalkyl substances in drinking water. Environ. Res. 2022, 204, 112217. [Google Scholar] [CrossRef]
- Guerrero-Preston, R.; Ili-Gangas, C.; LeBron, C.; Witter, E.R.; Apelberg, B.J.; Hernández-Roystacher, M.; Jaffe, A.; Halden, R.U.; Sidransky, D. Global DNA hypomethylation is associated with In Utero exposure to cotinine and perfluorinated alkyl compounds. Epigenetics 2010, 5, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.Y.; Chen, P.C.; Lien, P.C.; Liao, Y.P. Prenatal perfluorooctyl sulfonate exposure and Alu DNA hypomethylation in cord blood. Int. J. Environ. Res. Public Health 2018, 15, 1066. [Google Scholar] [CrossRef]
- Starling, A.P.; Liu, C.; Shen, G.; Yang, I.V.; Kechris, K.; Borengasser, S.J.; Boyle, K.E.; Zhang, W.; Smith, H.A.; Calafat, A.M.; et al. Prenatal exposure to per- and polyfluoroalkyl substances, umbilical cord blood DNA methylation, and cardio-metabolic indicators in newborns: The healthy start study. Environ. Health Perspect. 2020, 128, 127014. [Google Scholar] [CrossRef]
- Xu, Y.; Jurkovic-Mlakar, S.; Li, Y.; Wahlberg, K.; Scott, K.; Pineda, D.; Lindh, C.H.; Jakobsson, K.; Engström, K. Association between serum concentrations of perfluoroalkyl substances (PFAS) and expression of serum microRNAs in a cohort highly exposed to PFAS from drinking water. Environ. Int. 2020, 136, 105446. [Google Scholar] [CrossRef]
- Goodrich, J.M.; Calkins, M.M.; Caban-Martinez, A.J.; Stueckle, T.; Grant, C.; Calafat, A.M.; Nematollahi, A.; Jung, A.M.; Graber, J.M.; Jenkins, T.; et al. Per- and polyfluoroalkyl substances, epigenetic age and DNA methylation: A cross-sectional study of firefighters. Epigenomics 2021, 13, 1619–1636. [Google Scholar] [CrossRef]
- Kim, S.; Thapar, I.; Brooks, B.W. Epigenetic changes by per- and polyfluoroalkyl substances (PFAS). Environ. Pollut. 2021, 279, 116929. [Google Scholar] [CrossRef]
- Abdallah, M.-A.-E.; Wemken, N.; Drage, D.S.; Tlustos, C.; Cellarius, C.; Cleere, K.; Morrison, J.J.; Daly, S.; Coggins, M.A.; Harrad, S. Concentrations of perfluoroalkyl substances in human milk from Ireland: Implications for adult and nursing infant exposure. Chemosphere 2020, 246, 125724. [Google Scholar] [CrossRef]
- Li, N.; Ying, G.-G.; Hong, H.; Deng, W.-J. Perfluoroalkyl substances in the urine and hair of preschool children, airborne particles in kindergartens, and drinking water in Hong Kong. Environ. Pollut. 2021, 270, 116219. [Google Scholar] [CrossRef]
- Trudel, D.; Horowitz, L.; Wormuth, M.; Scheringer, M.; Cousins, I.T.; Hungerbühler, K. Estimating consumer exposure to PFOS and PFOA. Risk Anal. 2008, 28, 251–269. [Google Scholar] [CrossRef]
- Zhou, W.; Zhao, S.; Tong, C.; Chen, L.; Yu, X.; Yuan, T.; Aimuzi, R.; Luo, F.; Tian, Y.; Zhang, J. Dietary intake, drinking water ingestion and plasma perfluoroalkyl substances concentration in reproductive aged Chinese women. Environ. Int. 2019, 127, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Ao, J.; Yuan, T.; Xia, H.; Ma, Y.; Shen, Z.; Shi, R.; Tian, Y.; Zhang, J.; Ding, W.; Gao, L.; et al. Characteristic and human exposure risk assessment of per- and polyfluoroalkyl substances: A study based on indoor dust and drinking water in China. Environ. Pollut. 2019, 254, 112873. [Google Scholar] [CrossRef] [PubMed]
- McMahon, P.B.; Tokranov, A.K.; Bexfield, L.M.; Lindsey, B.D.; Johnson, T.D.; Lombard, M.A.; Watson, E. Perfluoroalkyl and polyfluoroalkyl substances in groundwater used as a source of drinking water in the Eastern United States. Environ. Sci. Technol. 2022, 56, 2279–2288. [Google Scholar] [CrossRef]
- Smalling, K.L.; Romanok, K.M.; Bradley, P.M.; Morriss, M.C.; Gray, J.L.; Kanagy, L.K.; Gordon, S.E.; Williams, B.M.; Breitmeyer, S.E.; Jones, D.K.; et al. Per- and polyfluoroalkyl substances (PFAS) in United States tapwater: Comparison of underserved private-well and public-supply exposures and associated health implications. Environ. Int. 2023, 178, 108033. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Zhou, Y.; Zhang, X.; Lin, X.; Li, J.; Liu, P.; Lee, H.K.; Huang, Z. The sources and bioaccumulation of per- and polyfluoroalkyl substances in animal-derived foods and the potential risk of dietary intake. Sci. Total Environ. 2023, 905, 167313. [Google Scholar] [CrossRef]
- Carnero, A.R.; Lestido-Cardama, A.; Loureiro, P.V.; Barbosa-Pereira, L.; de Quiros, A.R.B.; Sendon, R. Presence of perfluoroalkyl and polyfluoroalkyl substances (PFAS) in food contact materials (FCM) and its migration to food. Foods 2021, 10, 1443. [Google Scholar] [CrossRef]
- Hampson, H.E.; Costello, E.; Walker, D.L.; Wang, H.; Baumert, B.O.; Valvi, D.; Rock, S.; Jones, D.P.; Goran, M.I.; Gilliland, F.D.; et al. Associations of dietary intake and longitudinal measures of per- and polyfluoroalkyl substances (PFAS) in predominantly Hispanic young adults: A multicohort study. Environ. Int. 2024, 185, 108454. [Google Scholar] [CrossRef]
- Di Giorgi, A.; La Maida, N.; Taoussi, O.; Pichini, S.; Busardò, F.P.; Tini, A.; Di Trana, A. Analysis of perfluoroalkyl substances (PFAS) in conventional and unconventional matrices: Clinical outcomes. J. Pharm. Biomed. Anal. Open 2023, 1, 100002. [Google Scholar] [CrossRef]
- Kee, H.H.; Deo, J.I.; Kim, S.M.; Shiea, J.; Yoo, H.H. Per- and polyfluoroalkyl substances (PFAS): Trends in mass spectrometric analysis for human biomonitoring and exposure patterns from recent global cohort studies. Environ. Int. 2024, 194, 109117. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, Z.; Lian, Y.; Sun, X.; Wu, Y.; Qiao, L.; Wang, M. Source, transportation, bioaccumulation, distribution and risk assessment of perfluorinated alkyl substances in vegetables: A review. Food Chem. 2021, 349, 129137. [Google Scholar] [CrossRef] [PubMed]
- Paragot, N.; Bečanová, J.; Karásková, P.; Prokeš, R.; Klánová, J.; Lammel, G.; Degrendele, C. Multi-year atmospheric concentrations of per- and polyfluoroalkyl substances (PFASs) at a background site in central Europe. Environ. Pollut. 2020, 265 Pt B, 114851. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-M.; Lee, J.-Y.; Kim, M.-K.; Yang, H.; Lee, J.-E.; Son, Y.; Kho, Y.; Choi, K.; Zoh, K.-D. Concentration and distribution of per- and polyfluoroalkyl substances (PFAS) in the Asan Lake area of South Korea. J. Hazard. Mater. 2020, 381, 120909. [Google Scholar] [CrossRef]
- Yamazaki, E.; Taniyasu, S.; Wang, X.; Yamashita, N. Per- and polyfluoroalkyl substances in surface water, gas and particles in open ocean and coastal environment. Chemosphere 2021, 272, 129869. [Google Scholar] [CrossRef]
- Benskin, J.P.; Ahrens, L.; Muir, D.C.G.; Scott, B.F.; Spencer, C.; Rosenberg, B.; Yomy, G.; Kylin, H.; Lohmann, R.; Martin, J.W. Manufacturing origin of perfluorooctanoate (PFOA) in Atlantic and Canadian Arctic seawater. Environ. Sci. Technol. 2012, 46, 677–685. [Google Scholar] [CrossRef]
- Karásková, P.; Codling, G.; Melymuk, L.; Klánová, J. A critical assessment of passive air samplers for per- and polyfluoroalkyl substances. Atmos. Environ. 2018, 185, 186–195. [Google Scholar] [CrossRef]
- Xie, Z.; Zhao, Z.; Möller, A.; Wolschke, H.; Ahrens, L.; Sturm, R.; Ebinghaus, R. Neutral poly- and perfluoroalkyl substances in air and seawater of the North Sea. Environ. Sci. Pollut. Res. 2013, 20, 7988–8000. [Google Scholar] [CrossRef]
- Ahrens, L.; Schoeib, M.; Harner, T.; Lee, S.C.; Guo, R.; Reiner, E.J. Wastewater treatment plant and landfills as sources of polyfluoroalkyl compounds to the atmosphere. Environ. Sci. Technol. 2011, 45, 8098–8105. [Google Scholar] [CrossRef]
- Heydebreck, F.; Tang, J.; Xie, Z.; Ebinghaus, R. Emissions of per- and polyfluoroalkyl substances in a textile manufacturing plant in China and their relevance for workers’ exposure. Environ. Sci. Technol. 2016, 50, 10386–10396. [Google Scholar] [CrossRef] [PubMed]
- Bastow, T.P.; Douglas, G.B.; Davis, G.B. Volatilization potential of per- and polyfluoroalkyl substances from airfield pavements and during recycling asphalt. Environ. Toxicol. Chem. 2022, 41, 2202–2208. [Google Scholar] [CrossRef]
- Roth, J.; Abusallout, I.; Hill, T.; Holton, C.; Thapa, U.; Hanigan, D. Release of volatile per- and polyfluoroalkyl substances from aqueous film-forming foam. Environ. Sci. Technol. Lett. 2020, 7, 164–170. [Google Scholar] [CrossRef]
- Schellenberger, S.; Liagkouridis, I.; Awad, R.; Khan, S.; Plassmann, M.; Peters, G. An outdoor aging study to investigate the release of per- and polyfluoroalkyl substances (PFAS) from functional textiles. Environ. Sci. Technol. 2022, 56, 3471–3479. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Chang, S.; Sun, H.; Gan, Z.; Hu, H.; Zhao, Y.; Zhang, Y. Neutral and ionic per- and polyfluoroalkyl substances (PFAS) in atmospheric and dry deposition samples over a source region (Tianjin, China). Environ. Pollut. 2016, 212, 449–456. [Google Scholar] [CrossRef]
- Shimizu, M.S.; Mott, R.; Potter, A.; Zhou, J.; Baumann, K.; Surratt, J.D.; Turpin, B.; Avery, G.B.; Harfmann, J.; Kieber, R.J.; et al. Atmospheric deposition and annual flux of legacy Perfluoroalkyl substances and replacement perfluoroalkyl ether carboxylic acids in Wilmington, NC, USA. Environ. Sci. Technol. Lett. 2021, 8, 366–372. [Google Scholar] [CrossRef]
- Tian, Y.; Yao, Y.; Chang, S.; Zhao, Z.; Zhao, Y.; Yuan, X.; Wu, F.; Sun, H. Occurrence and phase distribution of neutral and ionizable per- and polyfluoroalkyl substances (PFASs) in the atmosphere and plant leaves around landfills: A case study in Tianjin, China. Environ. Sci. Technol. 2018, 52, 1301–1310. [Google Scholar] [CrossRef]
- Cui, Q.; Pan, Y.; Zhang, H.; Sheng, N.; Wang, J.; Guo, Y.; Dai, J. Occurrence and tissue distribution of novel perfluoroether carboxylic and sulfonic acids and legacy per/polyfluoroalkyl substances in black-spotted frog (Pelophylax nigromaculatus). Environ. Sci. Technol. 2018, 52, 982–990. [Google Scholar] [CrossRef]
- Gómez-Ramírez, P.; Bustnes, J.O.; Eulaers, I.; Herzke, D.; Johnsen, T.V.; Lepoint, G.; Pérez-Garcia, J.M.; García-Fernández, A.J.; Jaspers, V.L.B. Per- and polyfluoroalkyl substances in plasma and feathers of nestling birds of prey from northern Norway. Environ. Res. 2017, 158, 277–285. [Google Scholar] [CrossRef]
- Loseth, M.E.; Briels, N.; Flo, J.; Malarvannan, G.; Poma, G.; Covaci, A.; Herzke, D.; Nygård, T.; Bustnes, J.O.; Jenssen, B.M.; et al. White-tailed eagle (Haliaeetus albicilla) feathers from Norway are suitable for monitoring legacy, but not emerging contaminants. Sci. Total Environ. 2019, 647, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.E.; Delgado-Saborit, J.M.; Godderis, L. Exposure to per- and polyfluoroalkyl substances and premature skin aging. J. Hazard. Mater. 2021, 405, 124256. [Google Scholar] [CrossRef]
- Kauck, E.A.; Diesslin, A.R. Some properties of perfluorocarboxylic acids. Indust. Eng. Chem. 1951, 43, 2332–2334. [Google Scholar] [CrossRef]
- Inoue, Y.; Hashizume, N.; Yakata, N.; Murakami, H.; Suzuki, Y.; Kikushima, E.; Otsuka, M. Unique physicochemical properties of perfluorinated compounds and their bioconcentration in common carp Cyprinus carpio L. Arch. Environ. Contam. Toxicol. 2011, 62, 672–680. [Google Scholar] [CrossRef]
- Liu, W.; Jin, Y.; Quan, X.; Sasaki, K.; Saito, N.; Nakayama, S.F.; Sato, I.; Tsuda, S. Perfluorosulfonates and perfluorocarboxylates in snow and rain in Dalian, China. Environ. Int. 2009, 35, 737–742. [Google Scholar] [CrossRef]
- Xing, Y.; Li, Q.; Chen, X.; Huang, B.; Ji, L.; Zhang, Q.; Fu, X.; Li, T.; Wang, J. PFASs in soil: How they threaten human health through multiple pathways and whether they are receiving adequate concern. J. Agric. Food Chem. 2023, 71, 1259–1275. [Google Scholar] [CrossRef]
- Chen, H.; Reinhard, M.; Yin, T.; Nguyen, T.V.; Tran, N.H.; Gin, K.Y.-H. Multi-compartment distribution of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in an urban catchment system. Water Res. 2019, 154, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Brusseau, M.L.; Yan, N.; Van Glubt, S.; Wang, Y.; Chen, W.; Lyu, Y.; Dungan, B.; Carroll, K.C.; Holguin, F.O. Comprehensive retention model for PFAS transport in subsurface systems. Water Res. 2019, 148, 41–50. [Google Scholar] [CrossRef]
- Scott, J.W.; Gunderson, K.G.; Green, L.A.; Rediske, R.R.; Steinman, A.D. Perfluoroalkylated substances (PFAS) associated with microplastics in a lake environment. Toxics 2021, 9, 106. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Khim, J.S.; Wang, T.; Naile, J.E.; Park, J.; Kwon, B.-O.; Song, S.J.; Ryu, J.; Codling, G.; Jones, P.D.; et al. Bioaccumulation characteristics of perfluoroalkyl acids (PFAAs) in coastal organisms from the west coast of South Korea. Chemosphere 2015, 129, 157–163. [Google Scholar] [CrossRef]
- Kang, H.; Lee, H.-K.; Moon, H.-B.; Kim, S.; Lee, J.; Ha, M.; Hong, S.; Kim, S.; Choi, K. Perfluoroalkyl acids in serum of Korean children: Occurrences, related sources, and associated health outcomes. Sci. Total Environ. 2018, 645, 958–965. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-H.; Lee, J.-H.; Oh, J.-E. Perfluoroalkyl acids in paired serum, urine, and hair samples: Correlations with demographic factors and dietary habits. Environ. Pollut. 2019, 248, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, P.; Lu, Y.; Shi, Y.; Wang, C.; Sun, B.; Li, X.; Song, S.; Yu, M.; Zhao, J.; et al. Transport and environmental risks of perfluoroalkyl acids in a large irrigation and drainage system for agricultural production. Environ. Intern. 2021, 157, 106856. [Google Scholar] [CrossRef]
- Blaine, A.C.; Rich, C.D.; Sedlacko, E.M.; Hyland, K.C.; Stushnoff, C.; Dickenson, E.R.V.; Higgins, C.P. Perfluoroalkyl acid uptake in lettuce (Lactuca sativa) and strawberry (Fragaria ananassa) irrigated with reclaimed water. Environ. Sci. Technol. 2014, 48, 14361–14368. [Google Scholar] [CrossRef]
- Toze, S. Reuse of effluent water—Benefits and risks. Agric. Water Manag. 2006, 80, 147–159. [Google Scholar] [CrossRef]
- Kolpin, D.W.; Hubbard, L.E.; Cwiertny, D.M.; Meppelink, S.M.; Thompson, D.A.; Gray, J.L. A comprehensive statewide spatiotemporal stream assessment of per- and polyfluoroalkyl substances (PFAS) in an agricultural region of the United States. Environ. Sci. Technol. Lett. 2021, 8, 981–988. [Google Scholar] [CrossRef]
- Andrews, D.Q.; Naidenko, O.V. Population-wide exposure to per- and polyfluoroalkyl substances from drinking water in the United States. Environ. Sci. Technol. Lett. 2020, 7, 931–936. [Google Scholar] [CrossRef]
- Borrull, J.; Colom, A.; Fabregas, J.; Borrull, F.; Pocurull, E. Presence, behaviour and removal of selected organic micropollutants through drinking water treatment. Chemosphere 2021, 276, 130023. [Google Scholar] [CrossRef]
- Boone, J.S.; Vigo, C.; Boone, T.; Byrne, C.; Ferrario, J.; Benson, R.; Donohue, J.; Simmons, J.E.; Kolpin, D.W.; Furlong, E.T.; et al. Per- and polyfluoroalkyl substances in source and treated drinking waters of the United States. Sci. Total Environ. 2019, 653, 359–369. [Google Scholar] [CrossRef]
- Domingo, J.L.; Nadal, M. Human exposure to per- and polyfluoroalkyl substances (PFAS) through drinking water: A review of the recent scientific literature. Environ. Res. 2019, 177, 108648. [Google Scholar] [CrossRef]
- Eschauzier, C.; Hoppe, M.; Schlummer, M.; de Voogt, P. Presence and sources of anthropogenic perfluoroalkyl acids in high-consumption tap-water based beverages. Chemosphere 2013, 90, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Gagliano, E.; Sgroi, M.; Falciglia, P.P.; Vagliasindi, F.G.A.; Roccaro, P. Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration. Water Res. 2020, 171, 115381. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Yu, Q.; Huang, J.; Yu, G. Removal of perfluorooctane sulfonate from wastewater by anion exchange resins: Effects of resin properties and solution chemistry. Water Res. 2010, 44, 5188–5195. [Google Scholar] [CrossRef]
- Appleman, T.D.; Dickenson, E.R.; Bellona, C.; Higgins, C.P. Nanofiltration and granular activated carbon treatment of perfluoroalkyl acids. J. Hazard. Mater. 2013, 260, 740–746. [Google Scholar] [CrossRef]
- Appleman, T.D.; Higgins, C.P.; Quinones, O.; Vanderford, B.J.; Kolstad, C.; Zeigler-Holady, J.C.; Dickenson, E.R. Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems. Water Res. 2014, 51, 246–255. [Google Scholar] [CrossRef]
- McCleaf, P.; Englund, S.; Ostlund, A.; Lindegren, K.; Wiberg, K.; Ahrens, L. Removal efficiency of multiple poly- and perfluoroalkyl substances (PFASs) in drinking water using granular activated carbon (GAC) and anion exchange (AE) column tests. Water Res. 2017, 120, 77–87. [Google Scholar] [CrossRef]
- Ochoa-Herrera, V.; Sierra-Alvarez, R. Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge. Chemosphere 2008, 72, 1588–1593. [Google Scholar] [CrossRef]
- Liu, C.J.; Werner, D.; Bellona, C. Removal of per- and polyfluoroalkyl substances (PFASs) from contaminated groundwater using granular activated carbon: A pilot-scale study with breakthrough modeling. Environ. Sci. Technol. 2019, 51, 6342–6351. [Google Scholar] [CrossRef]
- Woodard, S.; Berry, J.; Newman, B. Ion exchange resin for PFAS removal and pilot test comparison to GAC. Remediat. J. 2017, 27, 19–27. [Google Scholar] [CrossRef]
- Xiao, X.; Ulrich, B.A.; Chen, B.; Higgins, C.P. Sorption of poly- and perfluoroalkyl substances (PFASs) relevant to aqueous film-forming foam (AFFF)-impacted groundwater by biochars and activated carbon. Environ. Sci. Technol. 2017, 51, 6342–6351. [Google Scholar] [CrossRef]
- Soriano, A.; Gorri, D.; Urtiaga, A. Efficient treatment of perfluorohexanoic acid by nanofiltration flowed by electrochemical degradation of the NF concentrate. Water Res. 2017, 112, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.Y.; Fu, Q.S.; Robertson, A.P.; Criddle, C.S.; Leckie, J.O. Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater. Environ. Sci. Technol. 2006, 40, 7343–7349. [Google Scholar] [CrossRef]
- Tang, C.Y.; Fu, Q.S.; Criddle, C.S.; Leckie, J.O. Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater. Environ. Sci. Technol. 2007, 41, 2008–2014. [Google Scholar] [CrossRef] [PubMed]
- Mastropietro, T.F.; Bruno, R.; Pardo, E.; Armentano, D. Reverse osmosis and nanofiltration membranes for highly efficient PFASs removal: Overview, challenges, and future perspectives. Dalton. Trans. 2021, 50, 5398–5410. [Google Scholar] [CrossRef]
- Wu, D.; Li, X.; Tang, Y.; Lu, P.; Chen, W.; Xu, X.; Li, L. Mechanism insight of PFOA degradation by ZnO assisted-photocatalytic ozonation: Efficiency and intermediates. Chemosphere 2017, 180, 247–252. [Google Scholar] [CrossRef]
- Park, S.; Lee, L.S.; Medina, V.F.; Zull, A.; Waisner, S. Heat-activated persulfate oxidation of PFOA, 6:2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation. Chemosphere 2016, 145, 376–383. [Google Scholar] [CrossRef]
- Mitchell, S.M.; Ahmad, M.; Teel, A.L.; Watts, R.J. Degradation of perfluorooctanoic acid by reactive species generated through catalyzed H2O2 propagation reactions. Environ. Sci. Technol. Lett. 2013, 1, 117–121. [Google Scholar] [CrossRef]
- Singh, R.K.; Fernando, S.; Baygi, S.F.; Multari, N.; Thagard, S.M.; Holsen, T.M. Breakdown products from perfluorinated alkyl substances (PFAS) degradation in a plasma-based water treatment process. Environ. Sci. Technol. 2019, 53, 2731–2738. [Google Scholar] [CrossRef]
- Lin, J.-C.; Hu, C.-Y.; Lo, S.-L. Effect of surfactants on the degradation of perfluorooctanoic acid (PFOA) by ultrasonic (US) treatment. Ultrason. Sonochem. 2016, 28, 130–135. [Google Scholar] [CrossRef]
- Taseidifar, M. Environmental applications of a biodegradable cysteine-based surfactant. Ecotoxicol. Environ. Saf. 2020, 206, 111389. [Google Scholar] [CrossRef] [PubMed]
- Brusseau, M.L.; Anderson, R.H.; Guo, B. PFAS concentrations in soils: Background levels versus contaminated sites. Sci. Total Environ. 2020, 740, 140017. [Google Scholar] [CrossRef] [PubMed]
- Shahsavari, E.; Rouch, D.; Khudur, L.S.; Thomas, D.; Aburto-Medina, A.; Ball, A.S. Challenges and current status of the biological treatment of PFAS-contaminated soils. Front. Bioeng. Biotechnol. 2021, 8, 602040. [Google Scholar] [CrossRef]
- Shen, L.; Zhou, J.; Liang, X.; Qin, L.; Wang, T.; Zhu, L. Different sources, fractionation, and migrationof legacy and novel per- and polyfluoroalkyl substances between greenhouse and open-field soils. Environ. Sci. Technol. 2023, 57, 1670–1679. [Google Scholar] [CrossRef]
- Wei, C.; Song, X.; Wang, Q.; Hu, Z. Sorption kinetics, isotherms and mechanisms of PFOS on soils with different physicochemical properties. Ecotoxicol. Environ. Saf. 2017, 142, 40–50. [Google Scholar] [CrossRef]
- Abunada, Z.; Alazaiza, M.Y.D.; Bashir, M.J.K. An overview of per- and polyfluoroalkyl substances (PFAS) in the environment: Source, fate, risk and regulations. Water 2020, 12, 3590. [Google Scholar] [CrossRef]
- Mahinroosta, R.; Senevirathna, L. A review of the emerging treatment technologies for PFAS contaminated soils. J. Environ. Manag. 2020, 255, 109896. [Google Scholar] [CrossRef] [PubMed]
- Sörengård, M.; Kleja, D.B.; Ahrens, L. Stabilization and solidification remediation of soil contaminated with poly- and perfluoroalkyl substances (PFASs). J. Hazard. Mater. 2019, 367, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Sörengård, M.; Kleja, D.B.; Ahrens, L. Stabilization of per- and polyfluoroalkyl substances (PFAS) with colloidal activated carbon (PlumeStop®) as a function of soil clay and organic matter content. J. Environ. Manag. 2019, 249, 109345. [Google Scholar] [CrossRef] [PubMed]
- Trellu, C.; Pechaud, Y.; Oturan, N.; Mousset, E.; van Hullebusch, E.D.; Huguenot, D.; Oturan, M.A. Remediation of soils contaminated by hydrophobic organic compounds: How to recover extracting agents from soil washing solutions? J. Hazard. Mater. 2021, 404, 124137. [Google Scholar] [CrossRef]
- Senevirathna, S.; Mahinroosta, R.; Li, M.; KrishnaPillai, K. In situ soil flushing to remediate confined soil contaminated with PFOS—And innovative solution for emerging environmental issue. Chemoshpere 2021, 262, 127606. [Google Scholar] [CrossRef]
- Uriakhil, M.A.; Sidnell, T.; De Castro Fernández, A.; Lee, J.; Ross, I.; Bussemaker, M. Per- and poly-fluoroalkyl substance remediation from soil and sorbents: A review of adsorption behavior and ultrasonic treatment. Chemosphere 2021, 282, 131025. [Google Scholar] [CrossRef]
- Kim, S.O.; Kim, W.S.; Kim, K.W. Evaluation of electrokinetic remediation of arsenic-contaminated soils. Environ. Geochem. Health 2005, 27, 443–453. [Google Scholar] [CrossRef]
- Mejia-Avendaño, S.; Munoz, G.; Sauvé, S.; Liu, J. Assessment of the influence of soil characteristics and hydrocarbon fuel cocontamination of the solvent extraction of perfluoroalkyl and polyfluoroalkyl substances. Anal. Chem. 2017, 89, 2539–2546. [Google Scholar] [CrossRef]
- Gusiatin, Z.M.; Kulikowska, D.; Klik, B. New-generation washing agents in remediation of metal-polluted soils and methods for washing effluent treatment: A review. Int. J. Environ. Res. Public Health 2020, 17, 6220. [Google Scholar] [CrossRef]
- Crownover, E.; Oberle, D.; Kluger, M.; Heron, G. Perfluoroalkyl and polyfluoroalkyl substances thermal desorption evaluation. Remediat. J. 2019, 29, 77–81. [Google Scholar] [CrossRef]
- Sörengård, M.; Lindh, A.S.; Ahrens, L. Thermal desorption as a high removal remediation technique for soils contaminated with per- and polyfluoroalkyl substances (PFASs). PLoS ONE 2020, 15, e0234476. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-C.; Lo, S.-L.; Kuo, J.; Lin, Y.-L. Persulfate oxidation of perfluorooctanoic acid under the temperatures of 20–40 °C. Chem. Eng. J. 2012, 198–199, 27–32. [Google Scholar] [CrossRef]
- Tran, T.; Abrell, L.; Brusseau, M.L.; Chorover, J. Iron-activated persulfate oxidation degrades perfluorooctanoic acid (PFOA) at ambient temperature. Chemosphere 2021, 281, 130824. [Google Scholar] [CrossRef]
- Bruton, T.A.; Sedlak, D.L. Treatment of aqueous film-forming foam by heat-activated persulfate under conditions representative of in situ chemical oxidation. Environ. Sci. Technol. 2017, 51, 13878–13885. [Google Scholar] [CrossRef]
- Bruton, T.A.; Sedlak, D.L. Treatment of perfluoroalkyl acids by heat-activated persulfate under conditions representative of in situ chemical oxidation. Chemosphere 2018, 206, 457–464. [Google Scholar] [CrossRef]
- Yang, S.; Cheng, J.; Sun, J.; Hu, Y.; Liang, X. Defluorination of aqueous perfluorooctanesulfonate by activated persulfate oxidation. PLoS ONE 2013, 8, e74877. [Google Scholar] [CrossRef]
- Su, Y.; Rao, U.; Khor, C.M.; Jensen, M.G.; Teesch, L.M.; Wong, B.M.; Cwiertny, D.M.; Jassby, D. Potential-driven electron transfer lowers the dissociation energy of the F-F bond and facilitates reductive defluorination of perfluorooctane sulfonate (PFOS). ACS Appl. Mater. Interfaces 2019, 11, 33913–33922. [Google Scholar] [CrossRef]
- Tenorio, R.; Liu, J.; Xiao, X.; Maizel, A.; Higgins, C.P.; Schaefer, C.E.; Strathmann, T.J. Destruction of per- and polyfluoroalkyl substances (PFASs) in aqueous film-forming foam (AFFF) with UV-sulfate photoreductive treatment. Environ. Sci. Technol. 2020, 54, 6957–6967. [Google Scholar] [CrossRef]
- Montinaro, S.; Concas, A.; Pisu, M.; Cao, G. Remediation of heavy metals contaminated soils by ball milling. Chemosphere 2007, 67, 631–639. [Google Scholar] [CrossRef]
- Turner, L.P.; Kueper, B.H.; Jaansalu, K.M.; Patch, D.J.; Battye, N.; El-Sharnouby, O.; Mumford, K.G.; Weber, K.P. Mechanochemical remediation of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) amended sand and aqueous film-forming foam (AFFF) impacted soil by planetary ball milling. Sci. Total Environ. 2021, 765, 142722. [Google Scholar] [CrossRef]
- Kwon, B.G.; Lim, H.J.; Na, S.H.; Choi, B.I.; Shin, D.S.; Chung, S.Y. Biodegradation of perfluorooctanesulfonate (PFOS) as an emerging contaminant. Chemosphere 2014, 109, 221–225. [Google Scholar] [CrossRef]
- Yi, L.B.; Chai, L.Y.; Xie, Y.; Peng, Q.J.; Peng, Q.Z. Isolation, identification, and degradation performance of a PFOA-degrading strain. Genet. Mol. Res. 2016, 15, gmr.15028043. [Google Scholar] [CrossRef]
- Chetverikov, S.P.; Sharipov, D.A.; Korshunova, T.Y.; Loginov, O.N. Degradation of perfluorooctanyl sulfonate by strain pseudomonas plecoglossicida 2.4-D. Appl. Biochem. Microbiol. 2017, 53, 533–538. [Google Scholar] [CrossRef]
- Gobelius, L.; Lewis, J.; Ahrens, L. Plant uptake of per- and polyfluoroalkyl substances at a contaminated fire training facility to evaluate the phytoremediation potential of various plant species. Environ. Sci. Technol. 2017, 51, 12602–12610. [Google Scholar] [CrossRef] [PubMed]
- Yin, T.; Chen, H.; Reinhard, M.; Yi, X.; He, Y.; Gin, K.Y.H. Perfluoroalkyl and polyfluoroalkyl substances removal in a full-scale tropical constructed wetland system treating landfill leachate. Water. Res. 2017, 125, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Huff, D.K.; Morris, L.A.; Sutter, L.; Costanza, J.; Pennell, K.D. Accumulation of six PFAS compounds by woody and herbaceous plants: Potential for phytoextraction. Int. J. Phytoremediat. 2020, 22, 1538–1550. [Google Scholar] [CrossRef] [PubMed]
- Presentato, A.; Lampis, S.; Vantini, A.; Manea, F.; Daprá, F.; Zuccoli, S.; Vallini, G. On the ability of perfluorohexane sulfonate (PFHxS) bioaccumulation by two pseudomonas sp. Strains isolated from PFAS-contaminated environmental matrices. Microorganism 2020, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Chen, C.; Zhang, X.; Chen, J.; Quan, X. Phytotoxicity of PFOS and PFOA to Brassica chinensis in different Chinese soils. Ecotoxicol. Environ. Saf. 2011, 74, 1343–1347. [Google Scholar] [CrossRef]
- Zhou, H.; Guan, Y.; Zhang, G.; Zhang, Z.; Tan, F.; Quan, X.; Chen, J. Uptake of perfluorooctance sulfonate (PFOS) by wheat (Triticum aestivum L.) plant. Chemosphere 2013, 91, 139–144. [Google Scholar] [CrossRef]
- Zhou, S.; Fang, S.; Zhu, L.; Liu, L.; Liu, Z.; Zhang, Y. Mutual impacts of wheat (Triticum aestivum L.) and earthworms (Eisenia fetida) on the bioavailability of perfluoroalkyl substances (PFASs) in soil. Environ. Pollut. 2014, 184, 495–501. [Google Scholar] [CrossRef]
- Zhou, H.; Qu, B.; Guan, Y.; Jiang, J.; Chen, X. Influence of salinity and temperature on uptake of perfluorinated carboxylic acids (PFCAs) by hydroponically grown wheat (Triticum aestivum L.). SpringerPlus 2016, 5, 541. [Google Scholar] [CrossRef]
- Zhou, L.; Zhu, L.; Zhao, S.; Ma, X. Sequestration and bioavailability of perfluoroalkyl acids (PFAAs) in soils: Implications for their underestimated risk. Sci. Total Environ. 2016, 72, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Stahl, T.; Heyn, J.; Thiele, H.; Hüther, J.; Failing, K.; Georgii, S.; Brunn, H. Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plants. Arch. Environ. Contam. Toxicol. 2009, 57, 289–298. [Google Scholar] [CrossRef]
- Lechner, M.; Knapp, H. Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plant and distribution to the different plant compartments studied in cultures of carrots (Daucus carota ssp. sativus), potatoes (Solanum tuberosum), and cucumbers (Cucumis sativus). J. Agric. Food Chem. 2011, 59, 11011–11018. [Google Scholar] [CrossRef] [PubMed]
- Cornelius, C.; D’Hollander, W.; Roosens, L.; Covaci, A.; Smolders, R.; Van Den Heuvel, R.; Goarts, E.; Van Campenhout, K.; Reynders, H.; Bervoets, L. First assessment of population exposure to perfluorinated compounds in Flanders, Belgium. Chemosphere 2012, 86, 308–314. [Google Scholar] [CrossRef]
- Felizeter, S.; McLachlan, M.S.; de Voogt, P. Uptake of perfluorinated alkyl acids by hydroponically grown lettuce (Lactuca sativa). Environ. Sci. Technol. 2012, 46, 11735–11743. [Google Scholar] [CrossRef]
- Herzke, D.; Huber, S.; Bervoets, L.; D’Hollander, W.; Hajslova, J.; Pulkrabova, J.; Brambilla, G.; De Filippis, S.P.; Klenow, S.; Heinemeyer, G. Perfluorinated alkylated substances in vegetables collected in four European countries; occurrence and human exposure estimations. Environ. Sci. Pollut. Res. 2013, 20, 7930–7939. [Google Scholar] [CrossRef] [PubMed]
- Blaine, A.C.; Rich, C.D.; Hundal, L.S.; Lau, C.; Mills, M.A.; Harris, K.M.; Higgins, C.P. Uptake of perfluoroalkyl acids into edible crops via land applied biosolids: Field and greenhouse studies. Environ. Sci. Technol. 2013, 47, 14062–14069. [Google Scholar] [CrossRef]
- Klenow, S.; Heinemeyer, G.; Brambilla, G.; Dellatte, E.; Herzke, D.; de Voogt, P. Dietary exposure to selected perfluoroalkyl acids (PFAAs) in four European regions. Food Addit. Contam. Part A 2013, 30, 2141–2151. [Google Scholar] [CrossRef]
- Blaine, A.C.; Rich, C.D.; Sedlacko, E.M.; Hundal, L.S.; Kumar, K.; Lau, C.; Mills, M.A.; Harris, K.M.; Higgins, C.P. Perfluoroalkyl acid disributions in various plant compartments of edible crops grown in biosolids-amended soils. Environ. Sci. Technol. 2014, 48, 7858–7865. [Google Scholar] [CrossRef]
- Felizeter, S.; McLachlan, M.S.; de Voogt, P. Root uptake and translocation of perfluoroinated alkyl acids by three hydroponically grown crops. J. Agric. Food Chem. 2014, 62, 3334–3342. [Google Scholar] [CrossRef]
- D’Hollander, W.; Herzke, D.; Huber, S.; Hajslova, J.; Pulkrabova, J.; Brambilla, G.; De Filippis, S.P.; Bervoets, L.; de Voogt, P. Occurrence of perfluorinated alkylated substances in cereals, salt, sweets and fruit items collected in four European countries. Chemosphere 2015, 129, 179–185. [Google Scholar] [CrossRef]
- Bizkarguenaga, E.; Zabaleta, I.; Prieto, A.; Fernández, L.; Zuloaga, O. Uptake of 8:2 perfluoroalkyl phosphate diester and its degradation products by carrot and lettuce from copost-amended soil. Chemosphere 2016, 152, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Navarro, I.; de la Torre, A.; Sanz, P.; Porcel, M.Á.; Pro, J.; Carbonell, G.; de los Ángeles Martinez, M. Uptake of perfluoroalkyl substances and halogenated flame retardants by crop plants grown in biosolids-amended soils. Environ. Res. 2017, 152, 199–206. [Google Scholar] [CrossRef]
- Haug, L.S.; Salihovic, S.; Jogsten, I.E.; Thomsen, C.; van Bavel, B.; Lindström, G.; Becher, G. Levels in food and beverages and daily intake of perfluorinated compounds in Norway. Chemosphere 2010, 80, 1137–1143. [Google Scholar] [CrossRef] [PubMed]
- Pérez, F.; Llorca, M.; Köck-Schulmeyer, M.; Škrbić, B.; Oliveira, L.S.; da Boit Martinello, K.; Al-Dhabi, N.A.; Antić, I.; Farré, M.; Barceló, D. Assessment of perfluoroalkyl substances in food items at global scale. Environ. Res. 2014, 135, 181–189. [Google Scholar] [CrossRef]
- U.S. EPA. Emerging Issues in Food Waste Management—Persistent Chemical Contaminants; EPA/600/R-21/115; U.S. Environmental Protection Agency, Office of Research and Development: Washington, DC, USA, 2021. Available online: https://www.epa.gov/system/files/documents/2021-08/emerging-issues-in-food-waste-management-persistent-chemical-contaminants.pdf (accessed on 10 February 2025).
- Bao, J.; Yu, W.-J.; Liu, Y.; Wang, X.; Jin, Y.-H.; Dong, G.-H. Perfluoroalkyl substances in groundwater and home-produced vegetables and eggs around a fluorochemical industrial park in China. Ecotoxicol. Environ. Saf. 2019, 171, 199–205. [Google Scholar] [CrossRef]
- Brown, J.B.; Conder, J.M.; Arblaster, J.A.; Higgins, C.P. Assessing human health risks from per- and polyfluoroalkyl substance (PFAS)-impacted vegetable consumption: A tiered modeling approach. Environ. Sci. Technol. 2020, 54, 15202–15214. [Google Scholar] [CrossRef] [PubMed]
- Stahl, T.; Riebe, R.A.; Falk, S.; Failing, K.; Brunn, H. Long-term lysimeter experiment to investigate the leaching of perfluoroalkyl substances (PFASs) and the carryover from soil to plants: Results of a pilot study. J. Agric. Food Chem. 2013, 61, 1784–1793. [Google Scholar] [CrossRef]
- Wen, B.; Li, L.; Zhang, H.; Ma, Y.; Shan, X.-Q.; Zhang, S. Field study on the uptake and translocation of perfluoroalkyl acids (PFAAs) by wheat (Triticum aestivum L.) grown in biosolids-amended soils. Environ. Pollut. 2014, 184, 547–554. [Google Scholar] [CrossRef]
- Krippner, J.; Brunn, H.; Falk, S.; Georgii, S.; Schubert, S.; Stahl, T. Effects of chain length and pH on the uptake and distribution of perfluoroalkyl substances in maize (Zea mays). Chemosphere 2014, 94, 85–90. [Google Scholar] [CrossRef]
- Krippner, J.; Falk, S.; Brunn, H.; Georgii, S.; Schubert, S.; Stahl, T. Accumulation potentials of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in maize (Zea mays). J. Agric. Food Chem. 2015, 63, 3646–3653. [Google Scholar] [CrossRef]
- Müller, C.E.; LeFevre, G.H.; Timofte, A.E.; Hussain, F.A.; Sattely, E.S.; Luthy, R.G. Competing mechanisms for perfluoroalkyl acid accumulation in plants revealed using an Arabidopsis model system. Environ. Toxicol. Chem. 2016, 35, 1138–1147. [Google Scholar] [CrossRef]
- Wen, B.; Wu, Y.; Zhang, H.; Liu, Y.; Hu, X.; Huang, H.; Zhang, S. The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in plants grown in biosolids-amended soils. Environ. Pollut. 2016, 216, 682–688. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, Y.; Shi, Y.; Wang, P.; Jones, K.; Sweetman, A.J.; Su, C. Crop bioaccumulation and human exposure of perfluoroalkyl acids through multi-media transport from a mega fluorochemical industrial park, China. Environ. Int. 2017, 106, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Grassini, P.; La Menza, N.C.; Edreira, J.I.R.; Monzón, J.P.; Tenorio, F.A.; Specht, J.E. Chapter 9—Soybean. In Crop Physiology Case Histories for Major Crops; Elsevier: Amsterdam, The Netherlands, 2021; pp. 282–319. [Google Scholar] [CrossRef]
- Zhou, S.; Liang, T.; Zhou, T.; Li, D.; Wang, B.; Zhan, J.; Liu, L. Biotransformation and responses of antioxidant enzymes in hydroponically cultured soybean and pumpkin exposed to perfluorooctane sulfonamide (FOSA). Ecotoxicol. Environ. Saf. 2018, 161, 669–675. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Zhang, W.; Liang, Y. Uptake of individual and mixed per- and polyfluoroalkyl substances (PFAS) by soybean and their effects on functional genes related to nitrification, denitrification, and nitrogen fixation. Sci. Total Environ. 2022, 838 Pt 4, 156640. [Google Scholar] [CrossRef] [PubMed]
- Jian, J.-M.; Guo, Y.; Zeng, L.; Liu, L.-Y.; Lu, X.; Wang, F.; Zeng, E.Y. Global distribution of perfluorochemicals (PFCs) in potential human exposure source—A review. Environ. Int. 2017, 108, 51–62. [Google Scholar] [CrossRef]
- Poothong, S.; Papadopoulou, E.; Padilla-Sánchez, J.A.; Thomsen, C.; Haug, L.S. Multiple pathways of human exposure to poly- and perfluoroalkyl substances (PFASs): From external exposure to human blood. Environ. Int. 2020, 134, 105244. [Google Scholar] [CrossRef]
- Tittlemier, S.A.; Pepper, K.; Seymour, C.; Moisey, J.; Bronson, R.; Cao, X.-L.; Dabeka, R.W. Dietary exposure of Canadians to perfluorinated carboxylates and perfluorooctane sulfonate via consumption of meat, fish, fast foods, and food items prepared in their packaging. J. Agric. Food Chem. 2007, 55, 3203–3210. [Google Scholar] [CrossRef]
- Noorlander, C.W.; van Leeuwen, S.P.J.; te Biesebeek, J.D.; Mengelers, M.J.B.; Zeilmaker, M.J. Levels of perfluorinated compounds in food and dietary intake of PFOS and PFOA in the Netherlands. J. Agric. Food Chem. 2011, 59, 7496–7505. [Google Scholar] [CrossRef]
- Heo, J.-J.; Lee, J.-W.; Kim, S.-K.; Oh, J.-E. Foodstuff analyese show that seafood and water are major perfluoroalkyl acids (PFAAs) sources to humans in Korea. J. Hazard. Mat. 2014, 279, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, U.; Kärrman, A.; Rotander, A.; Mikkelsen, B.; Dam, M. Perfluoroalkyl substances (PFASs) in food and water from Faroe Islands. Environ. Sci. Pollut. Res. 2013, 20, 7940–7948. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, S.P.J.; Karrman, A.; van Bavel, B.; de Boer, J.; Lindstrom, G. Struggle for quality in determination of perfluorinated contaminants in environmental and human samples. Environ. Sci. Technol. 2006, 40, 7854–7860. [Google Scholar] [CrossRef] [PubMed]
- van Zanten, H.H.E.; van Ittersum, M.K.; De Boer, I.J.M. The role of farm animals in a circular food system. Glob. Food Secur. 2019, 21, 18–22. [Google Scholar] [CrossRef]
- van Selm, B.; Hijbeek, R.; van Ittersum, M.K.; van Hal, O.; van Middelaar, C.E.; de Boer, I.J.M. Recoupling livestock and feed production in the Netherlands to reduce environmental impacts. Sci. Total Environ. 2023, 899, 165540. [Google Scholar] [CrossRef]
- Kowalczyk, J.; Ehlers, S.; Oberhausen, A.; Tischer, M.; Fürst, P.; Schafft, H.; Lahrssen-Wiederholt, M. Absorption, distribution, and milk secretion of the perfluoroalkyl acids PFBS, PFHxS, PFOS, and PFOA by dairy cows fed naturally contaminated feed. J. Agric. Food Chem. 2013, 61, 2903–2912. [Google Scholar] [CrossRef]
- van Asselt, E.D.; Kowalczyk, J.; van Eijkeren, J.C.; Zeilmaker, M.J.; Ehlers, S.; Fürst, P.; Lahrssen-Wiederholt, M.; van der Fels-Klerx, H.J. Transfer of perfluorooctane sulfonic acid (PFOS) from contaminated feed to dairy milk. Food Chem. 2013, 141, 1489–1495. [Google Scholar] [CrossRef]
- Vestergren, R.; Orata, F.; Berger, U.; Cousins, I.T. Bioaccumulation of perfluoroalkyl acids in dairy cows in a naturally contaminated environment. Environ. Sci. Pollut. Res. Int. 2013, 20, 7959–7969. [Google Scholar] [CrossRef]
- Li, X.; Gao, K.; Dong, S.; Liu, X.; Fu, K.; Wang, P.; Zhang, A.; Su, X.; Fu, J. Length-specific occurrence and profile of perfluoroalkyl acids (PFAAs) in animal protein feeds. J. Hazard. Mat. 2019, 373, 224–231. [Google Scholar] [CrossRef]
- Lupton, S.J.; Smith, D.J.; Scholljegerdes, E.; Ivey, S.; Young, W.; Genualdi, S. Plasma and skin per- and polyfluoroalkyl substance (PFAS) levels in dairy cattle with lifetime exposures to PFAS-contaminated drinking water and feed. J. Agric. Food Chem. 2022, 70, 15945–15954. [Google Scholar] [CrossRef] [PubMed]
- Drew, R.; Hagen, T.G.; Champness, D. Accumulation of PFAS by livestock—Determination of transfer factors from water to serum for cattle and sheep in Australia. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2021, 38, 1897–1913. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, Y.; Yin, Y.; Wang, P.; Su, X. Occurrence of some legacy and emerging contaminants in feed and food and their ranking priorities for human exposure. Chemosphere 2023, 321, 138117. [Google Scholar] [CrossRef]
- Fernandes, A.R.; Lake, I.R.; Dowding, A.; Rose, M.; Jones, N.R.; Petch, R.; Smith, F.; Panton, S. The potential of recycled materials used in agriculture to contaminate food through uptake by livestock. Sci. Total Environ. 2019, 667, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Ferandes, A.R.; Lake, I.R.; Dowding, A.; Rose, M.; Jones, N.R.; Smith, F.; Panton, S. The transfer of environmental contaminants (Brominated and Chlorinated dioxins and biphenyls, PBDEs, HBCDDs, PCNs and PFAS) from recycled materials used for bedding to the eggs and tissues of chickens. Sci. Total Environ. 2023, 892, 164441. [Google Scholar] [CrossRef]
- Wilson, T.B.; Stevenson, G.; Crough, R.; de Araujo, J.; Fernando, N.; Anwar, A.; Scott, T.; Quinteros, J.A.; Scott, P.C.; Archer, M.J.G. Evaluation of residues in hen eggs after exposure of laying hens to water containing per- and polyfluoroalkyl substances. Environ. Toxicol. Chem. 2021, 40, 735–743. [Google Scholar] [CrossRef]
- Wang, G.; Lu, J.; Xing, Z.; Li, S.; Liu, Z.; Tong, Y. Occurrence, distribution, and risk assessment of perfluoroalkyl acids (PFAAs) in muscle and liver of cattle in Xinjiang, China. Int. J. Environ. Res. Public Health 2017, 14, 970. [Google Scholar] [CrossRef]
- Wang, J.M.; Shi, Y.L.; Pan, Y.Y.; Cai, Y.Q. Perfluorooctane sulfonate (PFOS) and other fluorochemicals in viscera and muscle of farmed pigs and chickens in Beijing, China. Chin. Sci. Bull. 2010, 55, 3550–3555. [Google Scholar] [CrossRef]
- Mikołajczyk, S.; Warenik-Bany, M.; Pajurek, M.; Marchand, P. Perfluoroalkyl substances in the meat of Polish farm animals and game—Occurrence, profiles and dietary intake. Sci. Total Environ. 2024, 945, 174071. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Q.; Li, Y.; Hao, Y.; Li, J.; Zhang, L.; Wang, P.; Yin, Y.; Zhang, S.; Li, T.; et al. Occurrence of per- and polyfluoroalkyl substances (PFASs) in raw milk and feed from nine Chinese provinces and human exposure risk assessment. Chemosphere 2022, 300, 134521. [Google Scholar] [CrossRef] [PubMed]
- Xiao, K.; Li, X.; Xu, N.; Wang, X.; Hao, L.; Bao, H.; Zhang, L.; Shi, Y.; Cai, Y. Carry-over rate of per- and polyfluoroalkyl substances to raw milk and human exposure risks in different regions of China. Sci. Total Environ. 2024, 944, 173902. [Google Scholar] [CrossRef]
- Zafeiraki, E.; Costopoulou, D.; Vassiliadou, I.; Leondiadis, L.; Dassenakis, E.; Hoogenboom, R.L.A.P. Perfluoroalkylated substances (PFAS) in home and commercially produced chicken eggs from the Netherlands and Greece. Chemosphere 2016, 144, 2106–2112. [Google Scholar] [CrossRef]
- Gazzotti, T.; Sirri, F.; Ghelli, E.; Zironi, E.; Zampiga, M.; Pagliuca, G. Perfluoroalkyl contaminants in eggs from backyard chickens reared in Italy. Food Chem. 2021, 362, 130178. [Google Scholar] [CrossRef]
- Lasters, R.; Groffen, T.; Eens, M.; Coertjens, D.; Gebbink, W.A.; Hofman, J.; Bervoets, L. Home-produced eggs: An important human exposure pathway of perfluoroalkylated substances (PFAS). Chemosphere 2022, 308 Pt 1, 136283. [Google Scholar] [CrossRef]
- Mikołajczyk, S.; Pajurek, M.; Warenik-Bany, M. Perfluoroalkyl substances in hen eggs from different types of husbandry. Chemosphere 2022, 103 Pt 1, 134950. [Google Scholar] [CrossRef] [PubMed]
- Mikkonen, A.T.; Martin, J.; Upton, R.N.; Barker, A.O.; Brumley, C.N.; Taylor, M.P.; Mackenzie, L.; Roberts, M.S. Spatio-temporal trends in livestock exposure to per- and polyfluoroalkyl substances (PFAS) inform risk assessment and management measures. Environ. Res. 2023, 225, 115518. [Google Scholar] [CrossRef]
- Mikkonen, A.T.; Martin, J.; Upton, R.N.; Moenning, J.-L.; Numata, J.; Taylor, M.P.; Roberts, M.S.; Mackenzie, L. Dynamic exposure and body burden models for per- and polyfluoroalkyl substances (PFAS) enable management of food safety risks in cattle. Environ. Int. 2023, 180, 108218. [Google Scholar] [CrossRef] [PubMed]
- Chou, W.-C.; Tell, L.A.; Baynes, R.E.; Davis, J.L.; Cheng, Y.-H.; Maunsell, F.P.; Riviere, J.E.; Lin, Z. Development and application of an interactive generic physiologically based pharmacokinetic (igPBPK) model for adult beef cattle and lactating dairy cows to estimate tissue distribution and edible tissue and milk withdrawal intervals for per- and polyfluoroalkyl substances (PFAS). Food Chem. Toxicol. 2023, 181, 114062. [Google Scholar] [CrossRef]
- Johnston, J.J.; Ebel, E.D.; Williams, M.S.; Esteban, E.; Lupton, S.J.; Scholljegerdes, E.J.; Ivey, S.L.; Powell, M.R.; Smith, D.J. Blood-based ante-mortem method for estimating PFOS in beef from contaminated dairy cattle. ACS Agric. Sci. Technol. 2023, 3, 835–844. [Google Scholar] [CrossRef]
- Hill, N.I.; Becanova, J.; Lohmann, R. A sensitive method for the detection of legacy and emerging per- and polyfluoroinated alkyl substances (PFAS) in dairy milk. Anal. Bioanal. Chem. 2022, 414, 1235–1243. [Google Scholar] [CrossRef]
- Lupton, S.J.; Huwe, J.K.; Smith, D.J.; Dearfield, K.L.; Johnston, J.J. Absorption and excretion of 14C-perfluorooctanoic acid (PFOA) in Angus cattle (Bos taurus). J. Agric. Food Chem. 2012, 60, 1128–1134. [Google Scholar] [CrossRef] [PubMed]
- Lupton, S.J.; Huwe, J.K.; Smith, D.J.; Dearfield, K.L.; Johnston, J.J. Distribution and excretion of perfluorooctane sulfonate (PFOS) in beef cattle (Bos taurus). J. Agric. Food Chem. 2014, 62, 1167–1173. [Google Scholar] [CrossRef]
- Lupton, S.J.; Dearfield, K.L.; Johnston, J.J.; Wagner, S.; Huwe, J.K. Perfluorooctane sulfonate plasma half-life determination and long-term tissue distribution in beef cattle (Bos taurus). J. Agric. Food Chem. 2015, 63, 10988. [Google Scholar] [CrossRef]
- Guruge, K.S.; Manage, P.M.; Yamanaka, N.; Miyazaki, S.; Taniyasu, S.; Yamashita, N. Species-specific concentrations of perfluoroalkyl contaminants in farm and pet animals in Japan. Chemosphere 2008, 73, S210–S215. [Google Scholar] [CrossRef]
- Draghi, S.; Pavlovic, R.; Pellegrini, A.; Fidani, M.; Riva, F.; Brecchia, G.; Agradi, S.; Arioli, F.; Vigo, D.; Di Cesare, F.; et al. First investigation of the physiological distribution of legacy and emerging perfluoroalkyl substances in raw bovine milk according to the component fraction. Foods 2023, 12, 2449. [Google Scholar] [CrossRef]
- Kowalczyk, J.; Ehlers, S.; Furst, P.; Schafft, H.; Lahrssen-Wiederholt, M. Transfer of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from contaminated feed into milk and meat of sheep: Pilot study. Arch. Environ. 2012, 63, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Zafeiraki, E.; Vassiliadou, I.; Costopoulou, D.; Leondiadis, L.; Schafft, H.A.; Hoogenboom, R.; van Leeuwen, S.P.J. Perfluoroalkylated substances in edible livers of farm animals, including depuration behaviour in young sheep fed with contaminated grass. Chemosphere 2016, 156, 280–285. [Google Scholar] [CrossRef]
- Numata, J.; Kowalczyk, J.; Adolphs, J.; Ehlers, S.; Schafft, H.; Fuerst, P.; Müller-Graf, C.; Lahrssen-Wiederholt, M. Toxicokinetics of seven perfluoroalkyl sulfonic and carboxylic acids in pigs fed a contaminated diet. J. Agric. Food Chem. 2014, 62, 6861–6870. [Google Scholar] [CrossRef]
- Guruge, K.S.; Noguchi, M.; Yoshioka, K.; Yamazaki, E.; Taniyasu, S.; Yoshioka, M.; Yamanaka, N.; Ikezawa, M.; Tanimura, N.; Sato, M.; et al. Microminipigs as a new experimental animal model for toxicological studies: Comparative pharmacokinetics of perfluoroalkyl acids. J. Appl. Toxicol. 2016, 36, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Cui, Y.; Yang, Y.; Meng, K.; Pan, Y.; Liu, Z.; Chen, D. Tissue distribution and bioaccumulation of 8:2 fluorotelomer alcohol and its metabolites in pigs after oral exposure. Chemosphere 2020, 249, 126016. [Google Scholar] [CrossRef] [PubMed]
- Basini, G.; Bussolati, S.; Torcianti, V.; Grasselli, F. Perfluorooctanoic acid (PFOA) induces redox status disruption in swine granulosa cells. Vet. Sci. 2022, 9, 254. [Google Scholar] [CrossRef]
- Basini, G.; Bussolati, S.; Torcianti, V.; Grasselli, F. Perfluorooctanoic acid (PFOA) affects steroidogenesis and antioxidant defence in granlosa cells from swine ovary. Environ. Toxicol. Pharmacol. 2023, 101, 104169. [Google Scholar] [CrossRef]
- Good, S.L.; Antwi-Boasiako, C.; González-Alvarez, M.E.; Buol, B.M.; Baumgard, L.H.; Keating, A.F.; Charbonnet, J.A. Distribution of perfluorooctanoic acid in exposed female postpubertal pigs in thermal neutral or heat-stressed conditions. Toxicol. Sci. 2025, 205, 1–11. [Google Scholar] [CrossRef]
- O’Brien, J.M.; Carew, A.C.; Chu, S.; Letcher, R.J.; Kennedy, S.W. Perfluorooctane sulfonate (PFOS) toxicity in domestic chicken (Gallus gallus domesticus) embryos in the absence of effects on peroxisome proliferator activated receptor alpha (PPARalpha)—Regulated genes. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2009, 149, 524–530. [Google Scholar] [CrossRef]
- Yeung, L.W.Y.; Loi, E.I.H.; Wong, V.Y.Y.; Guruge, K.S.; Yamanaka, N.; Tanimura, N.; Hasegawa, J.; Yamashita, N.; Miyazaki, S.; Lam, P.K.S. Biochemical responses and accumulation properties of long-chain perfluorinated compounds (PFOS/PFDA/PFOA) in juvenile chickens (Gallus gallus). Arch. Environ. Contam. Toxicol. 2009, 57, 377–386. [Google Scholar] [CrossRef]
- Yoo, H.; Guruge, K.S.; Yamanaka, N.; Sato, C.; Mikami, O.; Miyazaki, S.; Yamashita, N.; Giesy, J.P. Depuration kinetics and tissue deposition of PFOA and PFOS in white leghorn chickens (Gallus gallus) administered by subcutaneous implantation. Ecotoxicol. Environ. Saf. 2009, 72, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Briels, N.; Ciesielski, T.M.; Herzke, D.; Jaspers, V.L.B. Developmental toxicity of perfluorooctanesulfonate (PFOS) and its chlorinated polyfluoroalkyl ether sulfonate alternative F-53B in the domestic chicken. Environ. Sci. Technol. 2018, 52, 12859–12867. [Google Scholar] [CrossRef]
- Kowalczyk, J.; Göckener, B.; Eichhorn, M.; Kotthoff, M.; Bücking, M.; Schafft, H.; Lahrssen-Wiederholt, M.; Numata, J. Transfer of per- and polyfluoroalkyl substances (PFAS) from feed into the eggs of laying hens. Part 2: Toxicokinetic results including the role of precursors. J. Agric. Food Chem. 2020, 68, 12539–12548. [Google Scholar] [CrossRef]
- Feng, Q.-J.; Luo, X.-J.; Ye, M.-X.; Hu, K.-Q.; Zeng, Y.-H.; Mai, B.-X. Bioaccumulation, tissue distributions, and maternal transfer of perfluoroalkyl carboxylates (PFCAs)in laying hens. Sci. Total Environ. 2023, 905, 167008. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Lee, L.S.; Hoskins, T.D.; Gharehveran, M.M.; Sepúlveda, M.S. Occurrence and implications of per and polyfluoroalkyl substances in animal feeds used in laboratory toxicity testing. Sci. Total Environ. 2023, 867, 161583. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, A.D.; Meeker, D.L. How agricultural rendering supports sustainability and assists livestock’s ability to contribute more than just food. Anim. Front. 2021, 11, 24–34. [Google Scholar] [CrossRef] [PubMed]
- European Union Reference Laboratory for Halogenated POPs in Feed and Food. Guidance Document on Analytical Parameters for the Determination of Per- and Polyfluoroalkyl Substances (PFAS) in Food and Feed, Version 1.2. 11 May 2022. Available online: https://www.researchgate.net/profile/Christina-Riemenschneider/publication/360790596_Guidance_Document_on_Analytical_Parameters_for_the_Determination_of_Per-and_Polyfluoroalkyl_Substances_PFAS_in_Food_and_Feed_Version_12/links/628b8e6e3303d263c471de69/Guidance-Document-on-Analytical-Parameters-for-the-Determination-of-Per-and-Polyfluoroalkyl-Substances-PFAS-in-Food-and-Feed-Version-12.pdf (accessed on 26 February 2025).
- GFIRA. Feed is Key to Compliance with Maximum PFAS Levels in Food of Animal Origin; German Federal Institute for Risk Assessment: Berlin, Germany, 2024. [Google Scholar] [CrossRef]
- Wang, X.; Dou, Z.; Feng, S.; Zhang, Y.; Ma, L.; Zou, C.; Bai, Z.; Lakshmanan, P.; Shi, X.; Liu, D.; et al. Global food nutrients analysis reveals alarming gaps and daunting challenges. Nat. Food 2023, 4, 1007–1017. [Google Scholar] [CrossRef]
- Wang, Y.; Ying, H.; Stefanovski, D.; Shurson, G.C.; Chen, T.; Wang, Z.; Yin, Y.; Zheng, H.; Nakaishi, T.; Li, J.; et al. Food waste used as a resource can reduce climate and resource burdens in agrifood systems. Nat. Food 2025, 6, 478–490. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Huang, X.; Zhi, Y.; Liu, X.; Wang, Q.; Yue, D.; Wang, X. Leaching of per- and polyfluoroalkyl substances (PFAS) from food contact materials with implications for waste disposal. J. Hazard. Mat. 2024, 479, 135658. [Google Scholar] [CrossRef]
- O’Connor, J.; Mickan, B.S.; Rinklebe, J.; Song, H.; Siddique, K.H.M.; Wang, H.; Kirkham, M.B.; Bolan, N.S. Environmental implications, potential value, and future of food-waste anaerobic digestate management: A review. J. Environ. Manag. 2022, 318, 115519. [Google Scholar] [CrossRef]
- Timshina, A.S.; Robey, N.M.; Oldnettle, A.; Barron, S.; Mehdi, Q.; Cerlanek, A.; Townsend, T.G.; Bowden, J.A. Investigating the sources and fate of per- and polyfluoroalkyl substances (PFAS) in food waste compost. Waste Manag. 2024, 180, 125–134. [Google Scholar] [CrossRef]
- Phelps, D.W.; Parkinson, L.V.; Boucher, J.M.; Muncke, J.; Geueke, B. Per- and polyfluoroalkyl substances in food packaging: Migration, toxicity, and management strategies. Environ. Sci. Technol. 2024, 58, 5670–5684. [Google Scholar] [CrossRef]
- Goossen, C.P.; Schattman, R.E.; MacRae, J.D. Evidence of compost contamination with per- and polyfluoroalkyl substances (PFAS) from “compostable” food serviceware. Biointerphases 2023, 18, 030501. [Google Scholar] [CrossRef]
- Samoraj, M.; Mironiuk, M.; Izydorczyk, G.; Witek-Krowiak, A.; Szopa, D.; Moustakas, K.; Chojnacka, K. The challenges and perspectives for anaeobic digestion of animal waste and fertilizer application of the digestate. Chemosphere 2022, 295, 133799. [Google Scholar] [CrossRef]
- Brooks, B.W. Ignoring environment and health threats does not make sense. Environ. Sci. Technol. Lett. 2025, 12, 356–357. [Google Scholar] [CrossRef]
- Persson, L.; Carney Almroth, B.M.; Collins, C.D.; Cornell, S.; de Wit, C.A.; Diamond, M.L.; Fantke, P.; Hassellöv, M.; MacLeod, M.; Ryberg, M.W.; et al. Outside the safe operating space of the planetary boundary for novel entities. Environ. Sci. Technol. 2022, 56, 1510–1521. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. Planetary boundaries: Exploring the safe operating space for humanity. Ecol. Soc. 2009, 14, 32. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed]
- Cousins, I.T.; Johansson, J.H.; Salter, M.E.; Sha, B.; Scheringer, M. Outside the safe operating space of a new planetary boundary for per- and polyfluoroalkyl substances (PFAS). Environ. Sci. Technol. 2022, 56, 11172–11179. [Google Scholar] [CrossRef]
- Islam, M.S.; Kekre, K.M.; Shah, A.; Tsai, P.-C.; Ponnusamy, V.K.; Andaluri, G. Unraveling the complexities of microplastics and PFAS synergy to foster sustainable environmental remediation and ecosystem protection: A critical review with novesights. J. Hazard. Mat. Adv. 2025, 17, 100621. [Google Scholar] [CrossRef]
- Yashwanth, A.; Huang, R.; Iepure, M.; Mu, M.; Zhou, W.; Kunadu, A.; Carignan, C.; Yegin, Y.; Cho, D.; Oh, J.K.; et al. Food packaging solutions in the post-per- and polyfluoroalkyl substances (PFAS) and microplastics era: A review of functions, materials, and bio-based alternatives. Compr. Rev. Food Sci. Food Saf. 2024, 24, e70079. [Google Scholar] [CrossRef]
- Yu, R.-S.; Yu, H.-C.; Yang, Y.-F.; Singh, S. A global overview of per- and polyfluoroalkyl substance regulatory strategies and their environmental impact. Toxics 2025, 13, 251. [Google Scholar] [CrossRef] [PubMed]
- ECHA. Support Document for Identification of 2,3,3,3-Tetrafluoro-2-(Heptafluoropropoxy)Propionic Acid, Its Salts and Its Acyl Halides (Covering any of Their Individual Isomers and Combinations Thereof) as Substances of Very High Concern Because of Their Hazardous Properties Which Cause Probable Serious Effects to Human Health and the Environment Which Give Rise to an Equivalent Level of Concern to Those of CMR1 and PBT/vPvB2 Substances (Article 57f); European Chemicals Agency: Helsinki, Finland, 2019; p. 138. Available online: https://echa.europa.eu/documents/10162/13638/svhc_msc_supdoc_hfpo-da_20190626_final_12819_en.pdf/53fa6a5b-e95f-3128-ea9d-fa27f43b18bc (accessed on 5 March 2025).
- EPA. 2010/15 PFOA Stewardship Program Guidance on Reporting Emissions and Product Content; U.S. Environmental Protection Agency: Washington, DC, USA, 2006. Available online: https://www.epa.gov/sites/default/files/2015-10/documents/pfoaguidance.pdf (accessed on 5 March 2025).
- OECD. Risk Reduction Approaches for PFASs—A Cross-Country Analysis; OECD Environmental, Health, Safety, and Public Service Risk Management. No. 29; Organisation for Economic Co-Operation and Development (OECD): Paris, France, 2015; p. 82. Available online: https://www.oecd.org/content/dam/oecd/en/publications/reports/2015/09/risk-reduction-approaches-for-per-and-polyfluoroalkyl-substances-pfass-a-cross-country-analysis_51521362/ed861d08-en.pdf (accessed on 5 March 2025).
- Brennan, N.M.; Evans, A.T.; Fritz, M.K.; Peak, S.A.; von Holst, H.E. Trends in the regulation of per- and polyfluoroalkyl substances (PFAS): A scoping review. Int. J. Environ. Res. Public Health 2021, 18, 10900. [Google Scholar] [CrossRef] [PubMed]
- Bundesinstitut für Risikobewertung. New Health-Based Guidance Values for the Industrial Chemicals PFOS and PFOA: BfR Opinion No 032/2019 of 21 August 2019; BfR-Stellungnahmen. Bundesinst. für Risikobewertung: Berlin, Germany, 2019. [Google Scholar] [CrossRef]
- Health Canada. HC (Health Canada) Updates to Health Canada Soil Screening Values for Perfluoroalkylated Substances (PFAS); Health Canada: Ottawa, ON, Canada, 2019; pp. 1–2. Available online: https://buyandsell.gc.ca/cds/public/2020/06/19/1e18568783a9ee9bddc91262c6d7679a/attachment_007.pdf (accessed on 5 March 2025).
- Coffin, S.; Wyer, H.; Leapman, J.C. Addressing the environmental and health impacts of microplastics requires open collaboration between diverse sectors. PLoS Biol. 2021, 19, e3000932. [Google Scholar] [CrossRef] [PubMed]
Product Category | Application |
---|---|
Automotive | Treatment for external surfaces and internal leather coatings, textiles, and carpets; used in mechanical components, seals and lubricants |
Aviation and aerospace | Additives for hydraulic fluids; insulators and sleeves |
Biocides | Active compounds in plant growth regulators; active or inert emulsifiers, solvents, carriers, wetting agents; aerosol propellants in pesticides |
Building and construction | Coatings of architectural materials; additives in coatings, paints, dyes, stains, and sealants; weathering, flame, and soil resistant coatings for cables and wiring; plastic foams including polystyrene and polyurethane; floor coverings, coated woods; solar panels and glass |
Electronics | Flame retardants; insulators and welding materials; semiconductor chips; electroplating; liquids and greases used as lubricants in electronics; ionic liquids used in lithium batteries |
Energy | Film for solar panels |
Fire prevention | Fire-extinguishing foams; materials for fire-fighting equipment, protective clothes, and fuel repellents |
Food processing and packaging | Non-stick cooking pans and food storage containers; water and oil repellent paper, bags, and food packaging materials |
Household products | Propellant gases, refrigerants, and extinguishing agents; surfactants in floor-cleaning products; non-stick coatings and treatments for textiles, leather, carpets; car waxes |
Medical products | Stain-resistant and water repellent materials; X-ray film; surgical patches, biocompatible human implants, and medical prosthesis; pharmaceuticals |
Metal plating | Wetting agent and anti-mist agents |
Oil wells and mining | Surfactants in oil wells and mining floatation; lining of gas pipes; drilling fluids |
Personal care products | Cosmetics, makeup, nail polish, shampoo, dental floss, and skin lotions; sun protection |
Sports equipment | Ski waxes; waterproofing sprays for outdoor water repellent clothing; climbing ropes; artificial turf |
Textiles, leather, and clothing products | Coatings to create oil, water, and stain-repellent properties |
PFAS Group/Abbreviation | Compound Name | Abbreviation |
---|---|---|
Perfluoroalkyl sulphonic acids (PFSAs) | Perfluorobutane sulfonic acid (n = 4) | PFBS |
Perfluoropentane sulfonic acid (n = 5) | PFPeS | |
Perfluorohexane sulfonic acid (n = 6) | PFHxS | |
Perfluoroheptane sulfonic acid (n = 7) | PFHpS | |
Perfluorooctane sulfonic acid (n = 8) | PFOS | |
Perfluorononane sulfonic acid (n = 9) | PFNS | |
Perfluorodecane sulfonic acid (n = 10) | PFDS | |
Perfluorododecane sulfonic acid (n = 12) | PFDoDS | |
Perfluoroalkyl carboxylic acids (PFCAs) | Trifluoroacetic acid | TFA |
Perfluoropropanoic acid (n = 2) | PFPrA | |
Perfluorobutanoic acid (n = 3) | PFBA | |
Perfluoropentanoic acid (n = 5) | PFPeA | |
Perfluorohexanoic acid (n = 6) | PFHxA | |
Perfluoroheptanoic acid (n = 7) | PFHpA | |
Perfluorooctanoic acid (n = 8) | PFOA | |
Perfluorononanoic acid (n = 9) | PFNA | |
Perfluorodecanoic acid (n = 10) | PFDA | |
Perfluoroundecanoic acid (n = 11) | PFUnDA | |
Perfluorododecanoic acid (n = 12) | PFDoDA | |
Perfluorotridecanoic acid (n = 13) | PFTrDA | |
Perfluorotetradecanoic acid (n = 14) | PFTeDA | |
Perfluorohexadecanoic acid (n = 16) | PFHxDA | |
Perfluorooctadecanoic acid (n = 18) | PFODA | |
Perfluoroalkyl phosphonic acids (PFPAs) | Perfluorohexane phosphonic acid (n = 6) | |
Perfluorooctane phosphonic acid (n = 8) | ||
Perfluorodecane phosphonic acid (n = 10) | ||
Perfluoroalkyl phosphinic acids (PFPiAs) | 6:6 Perfluoroalkyl phosphinic acid (m = 6, n = 6) | 6:6 PFPiA |
6:8 Perfluoroalkyl phosphinic acid (m = 6, n = 8) | 6:8 PFPiA | |
8:8 Perfluoroalkyl phosphinic acid (m = 8, n = 8) | 8:8 PFPiA | |
Perfluoroalkane sulphonamides (FASAs) | Perfluorooctane sulphonamide (n = 8) | FOSA |
N-Methyl fluorobutane sulphonamide (n = 4) | MeFBSA | |
N-Methyl fluorooctane sulphonamide (n = 8) | MeFOSA | |
N-Ethyl fluorooctane sulphonamide (n = 8) | EtFOSA | |
N-Alkyl perfluoroalkane sulphonamido acetic acids (FASAAs) | Perfluorooctane sulphonamidoacetic acid | FOSAA |
N-Methyl fluorooctane sulphonamido acetic acid | MeFOSAA | |
N-Eethyl fluorooctane sulphonamido acetic acid | EtFOSAA | |
N-Alkyl perfluoroalkane sulphonamido ethanols (FASEs) | 2-N-Methyl fluorooctane sulphonamido ethanol | MeFOSE |
2-N-Ethyl fluorooctane sulphonamido ethanol | EtFOSE | |
Perfluoroalkyl iodides (PFAIs) | Perfluorohexyl iodide (n = 6) | PFHxI |
Perfluorooctyl iodide (n = 8) | PFOI | |
Perfluorodecyl iodide (n = 10) | PFDI | |
Perfluoroether sulphonic acids (PFESAs) | 6:2 Chlorinated polyfluorinated ether sulphonic acid (n = 6) | 6:2 CI-PFESA |
8:2 Chlorinated polyfluorinated ether sulphonic acid (n = 8) | 8:2 CI-PFESA | |
10:2 Chlorinated polyfluorinated ether sulphonic acid (n = 10) | 10:2 CI-PFESA | |
Perfluoroether carboxylic acids (PFECAs) | Hexafluoropropylene oxide dimer acid | HFPO-DA |
Hexafluoropropylene oxide trimer acid | HFPO-TA | |
4,8-Dioxa-3H-perfluorononanoic acid | ADONA | |
Perfluorooctane sulphonamido ethanol-based phosphate esters (SAmPAPs) | Phosphate diester of N-ethylperfluorooctane sulphonamido ethanol | SAmPAP diester |
Phosphate triester of N-ethylperfluorooctane sulphonamido ethanol | SAmPAP triester | |
Cyclic perfluoroalkyl sulphonic acids (cyclic PFSAs) | Perfluoromethylcyclohexane sulphonic acids | PFMeCHS |
Perfluoroethylcyclohexane sulphonic acids | PFECHS | |
Fluorotelomer sulphonic acids (FTSAs) | n:2 Fluorotelomer sulphonic acids (n = 4, 6, 8, 10) | N:2 FTSA |
Fluorotelomer carboxylic acids (FTCAs) | n:2 Fluorotelomer carboxylic acids (n = 6, 8, 10) | n:2 FTCA |
n:3 Fluorotelomer carboxylic acids (n = 5, 7) | n:3 FTCA | |
Fluorotelomer unsaturated carboxylic acids (FTUCAs) | n:2 Fluorotelomer unsaturated carboxylic acids (n = 6, 8, 10) | n:2 FTUCA |
Fluorotelomer olefins (FTOs) | n:2 Fluorotelomer olefins (n = 6, 8, 10) | n:2 FTO |
Fluorotelomer alcohols (FTOHs) | n:2 Fluorotelomer alcohols (n = 4, 6, 8, 10, 12) | n:2 FTOH |
Fluorotelomer iodides (FTIs) | n:2 Fluorotelomer iodides (n = 4, 6, 8) | n:2 FTI |
Fluorotelomer acrylates (FTACs) | n:2 Fluorotelomer acrylates (n = 4, 6, 8, 10, 12) | n:2 FTAC |
Fluorotelomer methylacrylates (FTMACs) | n:2 Fluorotelomer methyacrylates (n = 6, 8) | n:2 FTMAC |
Polyfluoroalkyl phosphate monoesters (monoPAPs) | n:2 Polyfluoroalkyl phosphate monoesters (n = 4, 6, 8, 10) | n:2 monoPAP |
Polyfluoroalkyl phosphate diesters (diPAPs) | n:2 Polyfluoroalkyl phosphate diesters (m = n = 4, 6, 8, 10) | n:2 diPAP |
4:2/n:2 Polyfluoroalkyl phosphate diesters (m = 4, n = 4, 6) | 4:2/n:2 diPAP | |
6:2/n:2 Polyfluoroalkyl phosphate diesters (m = 6, n = 6, 8, 10, 12, 14) | 6:2/n:2 diPAP | |
8:2/n:2 Polyfluoroalkyl phosphate diesters (m = 8, n = 8, 10, 12) | 8:2/n:2 diPAP | |
10:2/10:2 Polyfluoroalkyl phosphate diesters (m = 10, n = 10) | 10:2/10:2 diPAP |
Organ or System | Toxic Effects | References |
---|---|---|
Liver | Nonalcoholic fatty liver disease; liver fibrosis; reduced liver-function data | [30,31,32,33,34] |
Kidney | Reduced toxin excretion; chronic kidney disease | [35,36,37,38,39] |
Lungs | Promotes asthma in children | [40] |
Heart/circulatory system | Cardiovascular problems; hypertension; myocardio infarction and stroke | [41,42,43,44,45,46,47,48] |
Brain/nervous system | Attention Deficit Hyperactivity Disorder; Alzheimer’s dementia; autism spectrum disorder; brain structure and volume; hearing impairment; reduced IQ; short-term memory loss; Parkinson disease; developmental delay in linguistics, hand–eye coordination, behavior; cerebral palsy; stroke; reduced neurobehavior function, cognition, and neuronal network function | [49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80] |
Bones/skeletal system | Osteoporosis; reduced bone health, bone mineral content, and bone density | [42,81,82,83,84,85,86,87,88] |
Fertility/reproductive system | Infertility; delayed occurrence of desired pregnancy; miscarriage; lifetime effects on reproductive organs and health; maternal hypertension; preeclampsia; reduced fetal birth weight, fetal growth, fetal head growth; tendency for premature birth; increased mortality; intrauterine disorder of thyroid hormones | [45,47,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115] |
Endocrine system | Thyroid, steroid, and sex-hormone disruption | [116,117,118,119,120,121,122,123,124] |
Metabolism | Disrupted glucose, fat, bile acid, and cholesterol metabolism; type 2-diabetes; gestational diabetes | [110,125,126,127,128,129,130,131,132] |
Immune system | Reduced antibody response to vaccines; autoimmune diseases; ulcerative colitis | [133,134,135,136,137,138,139] |
Cancer | Kidney, testicular, and post-menopause breast cancer; secondary effects of fatty liver, liver cirrhosis leading to liver cancer | [140,141,142,143,144,145,146,147,148] |
Epigenetics | Genetic transfer of PFAS effects to subsequent generations | [149,150,151,152,153,154] |
Consumer Product | Action |
---|---|
Drinking water | Test drinking water supplies to monitor presence and concentrations of PFAS |
Request water provider to install effective treatments to remove PFAS | |
Install in-home reverse osmosis or granulated active carbon filters to effectively remove PFAS | |
Boiling is ineffective and actually increases PFAS concentrations if contaminated | |
Food | Replace non-stick cookware with stainless steel, glass, or ceramic alternatives |
Avoid heating food packaged in grease-resistant packaging and containers from fast-food restaurants and pizza boxes | |
Do not consume microwave popcorn in PFAS-treated microwave bags | |
Household | Do not use furniture, upholstery, rugs, carpets, and bedding that are water- or stain-resistant |
Personal care | Consider eliminating or minimizing use of cosmetics, makeup, nail polish, shampoo, dental floss, and lotions |
Technology | Brief Description | References |
---|---|---|
Adsorption processes | Adsorption using single-use and renewable ion-exchange resins that transfers a wide variety of PFAS compounds and concentrations from the aqueous phase to a solid matrix with high selectivity and efficiency; adsorption using granular activated carbon is the most commonly used method, but active carbon must be regenerated frequently | [8,205,206,207,208,209,210,211,212,213] |
Filtration processes | Advanced filtration using reverse osmosis and nanofiltration are energy-efficient processes that force pressurized water streams through a semi-permeable polymer membrane to separate and concentrate PFAS for subsequent disposal or treatment, but cost of some techniques may limit practical application | [8,208,214,215,216,217] |
Electrochemical oxidation | Practical application under development and involves using ozone, ammonium persulfate, or hydrogen peroxide/Fenton reagent | [218,219,220] |
Plasma treatment | Practical application under development and involves using high-voltage electrical discharges to generate free radical species | [221] |
Sonolysis | Practical application under development and involves using high-frequency ultrasound to cause mineralization | [222] |
Foam fractionation | Practical application under development and involves sequestering PFAS into air or ozone bubbles in the air–water interface | [223] |
Technology | Brief Description | References |
---|---|---|
PFAS removal | ||
Immobilization | Addition of modified clay or activated carbon or stabilization agents such as Portland cement to soil to absorb PFAS or create an impermeable layer to limit movement to groundwater supplies | [229,230,231] |
Soil washing | Requires excavation of soil, removal of largest particles, and treatment of remaining fine particles with an extracting agent | [232] |
Soil flushing | Involves injection and recovery of extraction fluid without removal of soil from the site | [233] |
Water solubilization, organic solvents, chelating agents, acids, and surfactants | Water-soluble PFAS can be removed by water solubilization while other higher hydrophobicity PFAS require organic solvents, chelating agents, acids or surfactants | [229,234,235,236,237] |
PFAS destruction | ||
Thermal destruction | Energy-intensive and expensive process involving heating at 350 to 900 °C to cause PFAS desorption from soil and forming a gas stream which is further heated at >1200 °C to break down PFAS and retain fluoride ions in a molecular scrubber | [229,238,239] |
Chemical reduction/oxidation | Involves the addition of highly reactive chemicals, such as heat- or iron-activated persulfate, by vertical injection wells in upstream contaminated soil and extraction wells downstream to protect groundwater; reductive processes involving ultraviolet-light-generated solvated electrons that cause defluorination without the use of chemicals | [219,240,241,242,243,244,245,246] |
Ball milling | An energy- and cost-effective method for removing PFAS from contaminated soil by processing through specific reactors and being forced to collide with solid balls that cause chemical transformations and physical grinding | [247,248] |
Bioremediation | Utilizes specific bacteria and fungi or plant species that transform, degrade, acquire, and stabilize PFAS | [225,249,250,251,252,253,254,255] |
Species | PFAS Effects | References |
---|---|---|
Beef cattle | Single oral dose of PFOA is completely absorbed and excreted in feces and urine within 9 days of dosing but oral doses of PFOS persist in blood, adipose tissue, muscle, liver, bone, and kidney with half-lives of 36 to 385 days depending on tissue; total PFAA concentration in beef liver samples collected in various regions in China were 60-fold greater than in muscle samples but were deemed far below threshold for human-health risks; complex dynamics of PFOS plasma depletion rate indicates withdrawal times depends on initial concentrations and threshold level of concern; PFOS and PFHxS concentrations in drinking water are positively correlated with serum concentrations, and meat from cattle grazing on PFAS-contaminated sites may exceed human health consumption guidelines in some countries; models using serum and tissue estimates from daily cattle exposure to PFAS-contaminated water, pasture, soil and accounting for animal growth, seasonal variability, and differences in concentrations across paddocks have been developed to evaluate exposure-management scenarios | [307,316,317,319,321,322,323] |
Dairy cattle | Exposure to naturally contaminated feed and water resulted in detection of PFOS and PFAAs in liver, blood, and muscle of dairy cows and these compounds have high potential for transfer to milk and meat; various PFAS have different uptake and depuration kinetics which also vary among tissues and extent of secretion in milk; physiologically based pharmacokinetic model shows that although nearly all PFOS consumed is secreted in cow’s milk, the half-life was 56 days, indicating a slow elimination rate before producing milk without PFOS; high concentrations of PFOS in calf fetal livers suggest placental-barrier transfer from dam; skin samples could be used for monitoring PFAS in cattle when on-farm blood collection is not possible; multiparous cows with no known exposure to PFAS had higher prevalence of contamination in all milk fractions. | [297,298,299,301,316,317,324,325] |
Sheep and goats | Plasma concentrations, excretion via urine and feces, and secretion in milk were less for PFOA than PFOS-fed contaminated corn silage for 21 days; bioaccumulation of PFAS is positively correlated with intake of contaminated water which varies by season and climate; feeding contaminated grass for up to 112 days increased liver PFOS concentrations, which decreased during depuration, resulting in livers not exceeding EFSA food safety standards | [302,316,326,327] |
Swine | Bioaccumulation in plasma (up to 51%), adipose tissue and muscle (40 to 49%), liver, kidney, ovary, and follicular fluid; longer chain lengths increase accumulation; PFAS disrupts redox status, steroidogenesis, and antioxidant defense in granulosa cells in ovary; heat stress alters PFAS distribution that is detrimental to reproduction; pigs have longer PFAS elimination half-lives than most species except humans | [308,328,329,330,331,332,333] |
Broiler chickens | Environmentally relevant concentrations of some forms of PFAS may adversely affect embryonic development (lower heart rate and enlarged liver) due to different toxicity thresholds; injection of increasing doses of PFOS in egg air cells prior to incubation reduced hatchability and increased liver concentrations; three-week oral gavage of 1 mg/kg body weight of PFAS mixture three times weekly had no adverse effects on body or organ weights; liver and kidney are major PFAS accumulation organs and rates of elimination vary between PFOA and PFOS; subcutaneous implantation for 4 wks followed by depuration for 4 wks resulted in no effects on body index, clinical biochemistry, or histology | [308,334,335,336,337] |
Laying hens | Transfer rates, bioaccumulation, and half-lives of PFAS from feed to eggs varied among PFAS types; drinking water containing increasing concentrations of 4 types of PFAS compounds increased PFAS concentrations in eggs but were below Australia and New Zealand food-safety thresholds; yolks from home-produced eggs contained greater concentrations of long-chain PFASs (i.e., PFOS) than organic, battery, and free-range eggs collected from supermarkets in Netherland and Greece but would not exceed EFSA food safety standards; eggs from backyard chickens in Italy contained PFAS concentrations that would contribute up to 29% of the tolerable weekly intake limit for children; eight types of PFAS were detected in home-grown eggs from free-range hens within a 10 km radius of a fluorochemical plant in Belgium where concentrations of PFOS and PFOA were affected by diet and age of hens, and consumption of two eggs per week would exceed European health guidelines in more than 67% of locations; eggs from organic production had greatest concentrations of PFAS followed by eggs from free-range and cage hens in Poland, but corresponded to 0 to 15% of tolerable weekly intake of adults and 0 to 5% for children; toxicokinetic factors have been identified that influence the different bioaccumulation rates, tissue distribution, and maternal transfer of PFCAs to eggs | [306,312,313,314,315,338,339] |
Complete Feed | PFOS | PFOA | PFNA | PFHxS |
---|---|---|---|---|
μg/kg dry matter | ||||
Laying hens | 0.42 | 0.25 | 0.29 | 0.17 |
Finishing cattle | 0.14 | NA * | NA | 1.0 |
Sheep | 0.21 | NA | NA | NA |
Finishing pigs | 0.07 | 0.05 | NA | 0.06 |
Dairy cows | 0.07 | 6.5 | NA | 3.7 |
Food | PFOS | PFOA | PFNA | PFHxS |
---|---|---|---|---|
μg/kg fresh weight | ||||
Eggs | 1.0 | 0.30 | 0.70 | 0.30 |
Meat from cattle, pigs, and poultry | 0.30 | 0.80 | 0.20 | 0.20 |
Meat from sheep | 1.0 | 0.20 | 0.20 | 0.20 |
Offal from cattle, sheep, pigs, and poultry | 6.0 | 0.70 | 0.40 | 0.50 |
Milk from cattle * | 0.02 | 0.01 | 0.05 | 0.06 |
Practice |
---|
Test groundwater, surface water, and irrigation water supplies to determine the presence and concentrations of PFAS, and implement water treatment systems to remove PFAS in drinking water for livestock and poultry if needed |
Avoid fruit, vegetable, pasture, and crop production from soil and water high-risk locations near airports, fire-training locations, industrial sites, and landfills |
Avoid applying biosolids from human sewage treatment facilities on agricultural lands due to potentially high concentrations of PFAS |
Properly apply non-PFAS animal manure to agricultural land to increase soil organic matter and decrease PFAS accumulation in plants |
Avoid using hydroponics to grow vegetables in PFAS-contaminated areas which can increase plant accumulation in the absence of soil; avoid using hydroponics to grow vegetables in PFAS-contaminated areas which can increase plant accumulation in the absence of soil |
Avoid feeding and using plant residues such as corn stover and wheat straw as bedding to livestock due to potentially high PFAS concentrations |
Plant trees or construct wetlands in locations with PFAS-contaminated soil and water for bioremediation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shurson, G.C. The Alarming Effects of Per- and Polyfluoroalkyl Substances (PFAS) on One Health and Interconnections with Food-Producing Animals in Circular and Sustainable Agri-Food Systems. Sustainability 2025, 17, 6957. https://doi.org/10.3390/su17156957
Shurson GC. The Alarming Effects of Per- and Polyfluoroalkyl Substances (PFAS) on One Health and Interconnections with Food-Producing Animals in Circular and Sustainable Agri-Food Systems. Sustainability. 2025; 17(15):6957. https://doi.org/10.3390/su17156957
Chicago/Turabian StyleShurson, Gerald C. 2025. "The Alarming Effects of Per- and Polyfluoroalkyl Substances (PFAS) on One Health and Interconnections with Food-Producing Animals in Circular and Sustainable Agri-Food Systems" Sustainability 17, no. 15: 6957. https://doi.org/10.3390/su17156957
APA StyleShurson, G. C. (2025). The Alarming Effects of Per- and Polyfluoroalkyl Substances (PFAS) on One Health and Interconnections with Food-Producing Animals in Circular and Sustainable Agri-Food Systems. Sustainability, 17(15), 6957. https://doi.org/10.3390/su17156957