Interrelation Between Growing Conditions in Caucasus Subtropics and Actinidia deliciosa ‘Hayward’ Yield for the Sustainable Agriculture
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
- (a)
- A notable increase in average air temperatures during the growing season over the past 22 years;
- (b)
- High interannual variability in moisture supply, particularly in August and September; and
- (c)
- Frequent drought events, including 10-day dry spells in 69–87% of cases between May and September, 20-day droughts in July–August (30–36%), and even 40-day droughts in August (7%). These shifts indicate an ongoing process of aridification, which is contributing to a growing water deficit.
5. Conclusions
- -
- The maximum ‘Hayward yield potential is 42.6 kg/plant, but under adverse environmental conditions, it levels significantly to between 1.3 and 8.6 kg/plant;
- -
- Yield variability over 20 years was exceptionally high (62% coefficient of variation), with mean values of 21.7 ± 13.5 kg/plant across the 20-year period;
- -
- Agroclimate change trends are contributing to a long-term decline in mean yield in five-years intervals by 14%, 21%, and 15% (or by an average of 16.6% between each 5-year interval for 20 years);
- -
- This region experiences frequent drought events (e.g., 10-day droughts occur 69–87% of the time May–September);
- -
- The consequent presence of high temperatures (>30 °C) severely reduces pollen viability and fruit, which causes yields to fall to 79–89% compared to the mean values of the 20-year period;
- -
- In frost conditions of varying degrees of intensity, the kiwifruit yield fell to 71–94% compared to the mean 20-year period values.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Satpal, D.; Kaur, J.; Bhadariya, V.; Sharma, K. Actinidia Deliciosa (Kiwi Fruit): A Comprehensive Review on the Nutritional Composition, Health Benefits, Traditional Utilization, and Commercialization. J. Food Process. Preserv. 2021, 45, e15588. [Google Scholar] [CrossRef]
- Peng, D.-D.; Chen, D.-G.; Xu, K.-W.; Penttinen, P.; You, H.-Y.; Liao, H.-P.; Yang, R.; Chen, Y.-X. Optimal Substrate Moisture Content for Kiwifruit (Actinidia valvata Dunn) Seedling Growth Based on Analyses of Biomass, Antioxidant Defense, and Photosynthetic Response. Agronomy 2023, 13, 1858. [Google Scholar] [CrossRef]
- Burdon, J.; Fullerton, C.; Billing, D. Degreening, Softening and Chilling Sensitivity of Early Harvested ‘Zesy002’ Kiwifruit under Elevated Temperature Conditioning in a Controlled Atmosphere. Horticulturae 2022, 8, 125. [Google Scholar] [CrossRef]
- Kim, Y.M.; Park, Y.S.; Park, Y.-K.; Ham, K.-S.; Kang, S.-G.; Shafreen, R.M.B.; Lakshmi, S.A.; Gorinstein, S. Characterization of Bioactive Ligands with Antioxidant Properties of Kiwifruit and Persimmon Cultivars Using In Vitro and in Silico Studies. Appl. Sci. 2020, 10, 4218. [Google Scholar] [CrossRef]
- Putilova, E.; Tsiplakova, Y.; Diachkova, A.; Knysh, E. Environmental education and its principles. E3S Web Conf. 2023, 431, 09003. [Google Scholar] [CrossRef]
- Han, Y.; Heyes, J.; Glowacz, M.; Nicholson, S.; Jeffery, P.; East, A. The responses of ‘Hayward’ kiwifruit to ethylene during regular and controlled atmosphere storage. N. Z. J. Crop Hortic. Sci. 2024, 52, 265–279. [Google Scholar] [CrossRef]
- Li, C.; Camac, J.; Robinson, A.; Kompas, T. Predicting changes in agricultural yields under climate change scenarios and their implications for global food security. Sci. Rep. 2025, 15, 2858. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Tian, Y.; Yang, K.; Tian, M.; Zhu, Y.; Chen, X.; Hu, R.; Qin, T.; Liu, Y.; Peng, S.; et al. Mechanism of microbial action of the inoculated nitrogen-fixing bacterium for growth promotion and yield enhancement in rice (Oryza sativa L.). Adv. Biotechnol. 2024, 2, 32. [Google Scholar] [CrossRef] [PubMed]
- Zeng, R.; Li, J.; Li, Z.; Zhang, Q. Cross former-Based Model for Predicting and Interpreting Crop Yield Variations Under Diverse Climatic and Agricultural Conditions. Agriculture 2025, 15, 958. [Google Scholar] [CrossRef]
- Korkmaz, M.; Ozturk, B.; Uzun, S. How Does the Agro-Ecological Conditions Grown Kiwifruit (Actinidia deliciosa) Affect the Fruit Quality Traits and Bioactive Compounds during Shelf Life? Horticulturae 2023, 9, 1182. [Google Scholar] [CrossRef]
- Li, Z.; Bai, D.; Zhong, Y.; Abid, M.; Qi, X.; Hu, C.; Fang, J. Physiological Responses of Two Contrasting Kiwifruit (Actinidia spp.) Rootstocks against Waterlogging Stress. Plants 2021, 10, 2586. [Google Scholar] [CrossRef] [PubMed]
- Figiel-Kroczyńska, M.; Ochmian, I.; Lachowicz, S.; Krupa-Małkiewicz, M.; Wróbel, J.; Gamrat, R. Actinidia (Mini Kiwi) Fruit Quality in Relation to Summer Cutting. Agronomy 2021, 11, 964. [Google Scholar] [CrossRef]
- Sotiropoulos, T.; Voulgarakis, A.; Karaiskos, D.; Chatzistathis, T.; Manthos, I.; Dichala, O.; Mpountla, A. Foliar Calcium Fertilizers Impact on Several Fruit Quality Characteristics and Leaf and Fruit Nutritional Status of the ‘Hayward’ Kiwifruit Cultivar. Agronomy 2021, 11, 235. [Google Scholar] [CrossRef]
- Baldi, E.; Pastore, C.; Chiarelli, G.; Quartieri, M.; Spinelli, F.; Toselli, M. Molecular Responses to Drought and Waterlogging Stresses of Kiwifruit (Actinidia chinensis var. deliciosa) Potted Vines. Horticulturae 2024, 10, 834. [Google Scholar] [CrossRef]
- Calabritto, M.; Mininni, A.N.; Di Biase, R.; Petrozza, A.; Summerer, S.; Cellini, F.; Dichio, B. Physiological and image-based phenotyping assessment of waterlogging responses of three kiwifruit rootstocks and grafting combinations. Front. Plant Sci. 2025, 16, 1499432. [Google Scholar] [CrossRef] [PubMed]
- Movahedi, A.; Dzinyela, R.; Aghaei-Dargiri, S.; Alhassan, A.R.; Yang, L.; Xu, C. Advanced Study of Drought-Responsive Protein Pathways in Plants. Agronomy 2023, 13, 849. [Google Scholar] [CrossRef]
- Nemeskéri, E.; Helyes, L. Physiological Responses of Selected Vegetable Crop Species to Water Stress. Agronomy 2019, 9, 447. [Google Scholar] [CrossRef]
- Seelig, H.D.; Stoner, R.J.; Linden, J.C. Irrigation control of cowpea plants using the measurement of leaf thickness under greenhouse conditions. Irrig. Sci. 2012, 30, 247–257. [Google Scholar] [CrossRef]
- McBurney, T. The Relationship Between Leaf Thickness and Plant Water Potential. J. Exp. Bot. 1992, 43, 327–335. [Google Scholar] [CrossRef]
- Gimenez, C.; Gallardo, M. Plant–Water Relations. Encyclopedia of Soils in the Environment; Elsevier: New York, NY, USA, 2005; pp. 231–238. [Google Scholar] [CrossRef]
- Nemeskéri, E.; Neményi, A.; Bőcs, A.; Pék, Z.; Helyes, L. Physiological Factors and their Relationship with the Productivity of Processing Tomato under Different Water Supplies. Water 2019, 11, 586. [Google Scholar] [CrossRef]
- Helyes, L.; Bőcs, A.; Lugasi, A.; Pék, Z. Tomato antioxidants and yield as affected by different water supply. Acta Hortic. 2012, 936, 213–218. [Google Scholar] [CrossRef]
- Takács, S.; Pék, Z.; Csányi, D.; Daood, H.G.; Szuvandzsiev, P.; Palotás, G.; Helyes, L. Influence of Water Stress Levels on the Yield and Lycopene Content of Tomato. Water 2020, 12, 2165. [Google Scholar] [CrossRef]
- Búrquez, A. Leaf Thickness and Water Deficit in Plants: A Tool for Field Studies. J. Exp. Bot. 1987, 38, 109–114. [Google Scholar] [CrossRef]
- Scortichini, M. Similarities and Differences Among Factors Affecting Complex Declines of Quercus spp., Olea europea, and Actinidia chinensis. Horticulturae 2025, 11, 325. [Google Scholar] [CrossRef]
- Besedina, T.D.; Tutberidze, T.V.; Kiseleva, N.S. On specific influence of the agroecological conditions of humid subtropics of Russia on productive potential of Actinida deliciosa (kiwifruit). Sel’skokhozyaistvennaya Biol. 2021, 56, 999–1010. [Google Scholar] [CrossRef]
- Stefaniak, J.; Łata, B. Growing Season, Cultivar, and Nitrogen Supply Affect Leaf and Fruit Micronutrient Status of Field-Grown Kiwiberry Vines. Plants 2023, 12, 138. [Google Scholar] [CrossRef] [PubMed]
- Romanovski, V.; Moskovskikh, D.; Tan, H.; Kuskov, K.; Volodko, S.; Akinwande, A.A.; Periakaruppan, R.; Kong, F.; Ma, X.; Yang, F.; et al. Gypsum Binder With Increased Water Resistance Derived From Membrane Water Desalination Waste. Eng. Rep. 2024, 7, e13028. [Google Scholar] [CrossRef]
- Hristova, T.; Savov, N.; Yanev, N. Municipal solid waste and non-hazardous waste processing for sustainable circular economy through blockchain. J. Chem. Technol. Metall. 2023, 58, 513–521. [Google Scholar] [CrossRef]
- Thomas, C.M.; Nair, A. A Novel Graph-Based Innovative Trend Analysis Technique for Studying the Crop Trends in Kerala, India. AgriEngineering 2025, 7, 36. [Google Scholar] [CrossRef]
- Matasova, I.Y.; Yaitskaya, N.A.; Modina, M.A.; Brigida, V.S. Three-dimensional geoecological models in forecasting sea level on Black Sea coast of Caucasus. Geol. I Geofiz. Yuga Ross. 2024, 14, 217–229. [Google Scholar] [CrossRef]
- Zakharikhina, L.; Lesnikova, P.; Rogozhina, E.; Kerimzade, V.; Gorbunova, D.; Brigida, V. Influence of Wind Direction on the Elemental Composition of Atmospheric Deposition on the Black Sea Coast of Sochi, Russia. Environ. Ecol. Res. 2024, 12, 514–536. [Google Scholar] [CrossRef]
- Klute, A. Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods, 2nd ed.; American Society of Agronomy, Agronomy Monographs 9: Madison, WI, USA, 1986; p. 348. [Google Scholar]
- Golik, V.I.; Razorenov, Y.U.I.; Brigida, V.S.; Burdzieva, O.G. Mechanochemical technology of metal mining from enriching tails. Bull. Tomsk. Polytech. Univ. Geo Assets Eng. 2020, 331, 175–183. [Google Scholar] [CrossRef]
- Malozyomov, B.V.; Golik, V.I.; Brigida, V.; Kukartsev, V.V.; Tynchenko, Y.A.; Boyko, A.A.; Tynchenko, S.V. Substantiation of Drilling Parameters for Undermined Drainage Boreholes for Increasing Methane Production from Unconventional Coal-Gas Collectors. Energies 2023, 16, 4276. [Google Scholar] [CrossRef]
- Kapanski, A.; Hruntovich, N.V.; Klyuev, R.V. Identification of Easily Accessible Urban Water Consumption Factors for Energy-Efficient Management of Pumping Stations. Water Conserv. Sci. Eng. 2025, 10, 46. [Google Scholar] [CrossRef]
- Zhang, L.; Ferguson, L.; Whiting, M.D. Temperature effects on pistil viability and fruit set in sweet cherry. Sci. Hortic. 2018, 241, 8–17. [Google Scholar] [CrossRef]
- Zenginbal, H.; Ozcan, M.; Demir, T. An Investigation on the Propagation of Kiwifruit (Actinidia deliciosa, A. Chev.) by Grafting under Turkey Ecological Conditions. Int. J. Agric. Res. 2006, 1, 597–602. [Google Scholar] [CrossRef]
- Ali, S.A.; Vivaldi, G.A.; Garofalo, S.P.; Costanza, L.; Camposeo, S. Land Suitability Analysis of Six Fruit Tree Species Immune/Resistant to Xylella fastidiosa as Alternative Crops in Infected Olive-Growing Areas. Agronomy 2023, 13, 547. [Google Scholar] [CrossRef]
- Li, Z.X.; Tan, J.F.; Yao, N.; Xie, R.-H. From trade-off to synergy: How nutrient status modulates plant resistance to herbivorous insects? Adv. Biotechnol. 2024, 2, 37. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xia, Y.; Tan, J.; Wei, M. Construction of a beneficial microbes-enriched rhizosphere system assists plants in phytophagous insect defense: Current status, challenges and opportunities. Pest. Manag. Sci. 2024, 80, 5608–5618. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wu, J.; Liu, C.; Gu, G. Integrated Assessment Models of Climate Change Economics; Springer: Berlin, Germany, 2017. [Google Scholar] [CrossRef]
- Baldi, E.; Quartieri, M.; Chiarelli, G.; Larocca, G.N.; Mastroleo, M.; Xylogiannis, E.; Falsone, G.; Toselli, M. Water retention potentials of Italian soils and physiological responses of potted golden kiwifruit. Sci. Hortic. 2024, 329, 113013. [Google Scholar] [CrossRef]
- Torres-Ruiz, J.M.; Perulli, G.D.; Manfrini, L.; Zibordi, M.; Lopéz Velasco, G.; Anconelli, S.; Pierpaoli, E.; Corelli-Grappadelli, L.; Morandi, B. Time of irrigation affects vine water relations and the daily patterns of leaf gas exchanges and vascular flows to kiwifruit (Actinidia deliciosa Chev.). Agric. Water Manag. 2016, 166, 101–110. [Google Scholar] [CrossRef]
- Yushkov, A.N. Adaptive Potential and Selection of Fruit Plants for Resistance to Abiotic Stressors; Abstract Dis. d.s.-x. Sciences: Michurinsk, Russia, 2017; p. 219. [Google Scholar]
- Bieniek, A.; Draganska, E.; Pranckietes, V. Assessment of climatic conditions for Actinidia arguta in north-eastern Poland. Zemdirb. Agric. 2016, 103, 311–318. [Google Scholar] [CrossRef]
- Salimger, M.J.; Kenny, G.J. Climate and kiwifruit ’Heyward’ regions in New Zealand suited for production. N. Z. J. Crop Hortic. Sci. 2010, 23, 173–184. [Google Scholar] [CrossRef]
- Zaremuk, R.S.; Dolya, Y.A.; Kopnina, T.A. Biomorphological features of the formation and realization of the productivity potential of stone fruit varieties in the conditions of southern horticulture. Agric. Biol. 2020, 55, 573–587. [Google Scholar]
Year | Yield (Y), kg/Plant | Stressors | Year | Yield (Y), kg/Plant | Stressors |
---|---|---|---|---|---|
2003 | 42 ± 4.1 | - | 2013 | 42.6 ± 5.0 | - |
2004 | 6.2 ± 0.7 | Frosts from −0.6 to −5 °C in April | 2014 | 1.3 ± 0.1 | Frosts from −1.8 to −2.3 °C (March–May) |
2005 | 29.5 ± 3.1 | - | 2015 | 35.2 ± 4.1 | - |
2006 | 32.6 ± 3.7 | - | 2016 | 7.3 ± 1.1 | - |
2007 | 28.7 ± 3.0 | - | 2017 | 8.6 ± 1.0 | Heat above 30 °C (July–August) |
2008 | 29.9 ± 3.0 | - | 2018 | 23.4 ± 2.6 | |
2009 | 2.4 ± 0.3 | Heat above 30 °C in May | 2019 | 4.6 ± 0.5 | Heat above 30 °C in May |
2010 | 31.2 ± 3.6 | - | 2020 | 8.7 ± 0.8 | Heat above 30 °C (June–September) |
2011 | 21 ± 1.8 | - | 2021 | 23 ± 2.1 | - |
2012 | 35 ± 3.7 | - | 2022 | 21.4 ± 1.9 | - |
Month | Mean Temperature (°C) | Mean Precipitation (mm/month) | ||
---|---|---|---|---|
2001–2010 | 2011–2020 | 2001–2010 | 2011–2020 | |
June | 20.7 ± 0.4 | 21.9 ± 0.4 | 124 ± 22.7 | 96 ± 15 |
July | 29.7 ± 0.4 | 23.9 ± 0.3 | 100 ± 15 | 116 ± 12 |
August | 24.7 ± 05 | 24.7 ± 0.3 | 94 ± 19 | 63 ± 18 |
September | 20.7 ± 0.3 | 21.2 ± 0.7 | 139 ± 19 | 155 ± 50 |
m | N | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
1 | 2003 | 2008 | 2013 | 2018 |
2 | 2004 | 2009 | 2014 | 2019 |
3 | 2005 | 2010 | 2015 | 2020 |
4 | 2006 | 2011 | 2016 | 2021 |
5 | 2007 | 2012 | 2017 | 2022 |
m | N | μ Y (mj) | |||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
1 | 42 | 29.9 | 42.6 | 23.4 | 34.5 ± 8.2 |
2 | 6.2 | 2.4 | 1.3 | 4.6 | 3.6 ± 1.9 |
3 | 29.5 | 31.2 | 35.2 | 8.7 | 26.2 ± 10.3 |
4 | 32.6 | 21 | 7.3 | 23 | 21.0 ± 9.0 |
5 | 28.7 | 35 | 8.6 | 21.4 | 23.4 ± 9.8 |
μ Y (Ni) | 27.8 ± 13.2 | 23.9 ± 13.1 | 19.0 ± 18.6 | 16.2 ± 8.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tutberidze, T.V.; Ryndin, A.V.; Besedina, T.D.; Kiseleva, N.S.; Brigida, V.; Boyko, A.P. Interrelation Between Growing Conditions in Caucasus Subtropics and Actinidia deliciosa ‘Hayward’ Yield for the Sustainable Agriculture. Sustainability 2025, 17, 6499. https://doi.org/10.3390/su17146499
Tutberidze TV, Ryndin AV, Besedina TD, Kiseleva NS, Brigida V, Boyko AP. Interrelation Between Growing Conditions in Caucasus Subtropics and Actinidia deliciosa ‘Hayward’ Yield for the Sustainable Agriculture. Sustainability. 2025; 17(14):6499. https://doi.org/10.3390/su17146499
Chicago/Turabian StyleTutberidze, Tsiala V., Alexey V. Ryndin, Tina D. Besedina, Natalya S. Kiseleva, Vladimir Brigida, and Aleksandr P. Boyko. 2025. "Interrelation Between Growing Conditions in Caucasus Subtropics and Actinidia deliciosa ‘Hayward’ Yield for the Sustainable Agriculture" Sustainability 17, no. 14: 6499. https://doi.org/10.3390/su17146499
APA StyleTutberidze, T. V., Ryndin, A. V., Besedina, T. D., Kiseleva, N. S., Brigida, V., & Boyko, A. P. (2025). Interrelation Between Growing Conditions in Caucasus Subtropics and Actinidia deliciosa ‘Hayward’ Yield for the Sustainable Agriculture. Sustainability, 17(14), 6499. https://doi.org/10.3390/su17146499