Optimizing Residential Energy Usage with Smart Devices: A Case Study on Energy Efficiency and Environmental Sustainability
Abstract
1. Introduction
2. Materials and Methods
2.1. The Smart System and Experimental Design
2.2. Air Conditioning Control Cycle Design
3. Results
3.1. The Electricity Consumption
3.2. Statistical Analysis
- Two-Sample t-Test for Comparing Background vs. Smart System
- 2.
- One-way ANOVA for Comparing All Five Phases
- Two-Sample t-Test (Background vs. Smart System)
- 2.
- One-Way ANOVA (All Periods)
3.3. Estimation of GHG Emission Reduction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- González-Torres, M.; Pérez-Lombard, L.; Coronel, J.F.; Maestre, I.R.; Yan, D. A Review on Buildings Energy Information: Trends, End-uses, Fuels and Driver. Energy Rep. 2022, 8, 626–637. [Google Scholar] [CrossRef]
- Adeli, M.M.; Farahat, S.; Sarhaddi, F. Optimization of Energy Consumption in Net-Zero Energy Buildings with Increasing Thermal Comfort of Occupants. Int. J. Photoenergy 2020, 1, 9682428. [Google Scholar] [CrossRef]
- Netinant, P.; Utsanok, T.; Rukhiran, M.; Klongdee, S. Development and Assessment of Internet of Things-Driven Smart Home Security and Automation with Voice Commands. IoT 2024, 5, 79–99. [Google Scholar] [CrossRef]
- Taweesaengsakulthai, S.; Laochankham, S.; Kamnuansilpa, P.; Wongthanavasu, S. Thailand Smart City: What is the path to success? Asian Polit. Policy 2019, 11, 144–156. [Google Scholar] [CrossRef]
- Choosakun, A.; Chaiittipornwong, Y.; Yeom, C. Development of the Cooperative Intelligent Transport System in Thailand: A Prospective Approach. Infrastructures 2021, 6, 36. [Google Scholar] [CrossRef]
- Colelli, F.P.; Wing, I.S.; Cian, E.D. Air-conditioning Adoption and Electricity Demand Highlight Climate Change Mitigation-adaptation Tradeoffs. Sci. Rep. 2023, 13, 4413. [Google Scholar] [CrossRef]
- Pariskar, S.K.; Kharat, G.S. Review of Energy Saving Technologies in HVAC Systems. Int. J. Creat. Res. Thoughts (IJCRT) 2025, 13, b966–b975. [Google Scholar]
- Vogt, M.; Buchholz, C.; Thiede, S.; Herrmann, C. Energy efficiency of Heating, Ventilation and Air Conditioning systems in production environments through model-predictive control schemes: The case of battery production. J. Clean. Prod. 2022, 350, 131354. [Google Scholar] [CrossRef]
- Mistry, V. Energy Efficiency in HVAC Systems through Building Automation. Online Sci. Res. J. 2023, 5, 113. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, J.; Wang, Z.; Chen, L.; Wang, H.; Huang, G. AI powered blockchain framework for predictive temperature control in smart homes. Sci. Rep. 2025, 15, 3146. [Google Scholar] [CrossRef]
- Lee, D.; Kim, S.; Park, J.; Choi, J. Artificial intelligence enabled energy-efficient heating, ventilation and air conditioning systems: A comprehensive review. Appl. Therm. Eng. 2023, 235, 121253. [Google Scholar] [CrossRef]
- Sirisumrannukul, S.; Intaraumnauy, T.; Piamvilai, N. Optimal control of cooling management system for energy conservation in smart home with ANNs-PSO data analysis microservice platform. Heliyon 2024, 10, e26937. [Google Scholar] [CrossRef]
- Norouziasl, S.; Islam, M.S.; Jafari, A.; Bhattacharya, A.; Zhu, Y. Optimizing and predicting occupant thermal comfort in indoor office environment: The role of desk fan air velocity. Build. Environ. 2025, 282, 113241. [Google Scholar] [CrossRef]
- Chaouch, H.; Çeken, C.; Arı, S. Energy management of HVAC systems in smart buildings by using fuzzy logic and M2M communication. J. Build. Eng. 2021, 44, 102606. [Google Scholar] [CrossRef]
- Liu, B.; Bac, N.V.; Zhuang, X.; Lu, W.; Fu, X.; Rabczuk, T.; De, M. A web-based expert system platform for computationally expensive models in materials design. Adv. Eng. Softw. 2023, 176, 103398. [Google Scholar] [CrossRef]
- Liu, B.; Bac, N.V.; Zhuang, X.; Fu, X.; Rabczuk, T. Stochastic full-range multiscale modeling of thermal conductivity of Polymeric carbon nanotubes composites: A machine learning approach. Compos. Struct. 2022, 289, 115393. [Google Scholar] [CrossRef]
- Sanpote, W.; Jantawong, P.; Hnoohom, N.; Jitpattanakul, A.; Mekruksavanich, S. Deep Learning Approaches for Recognizing Daily Human Activities Using Smart Home Sensors. In Proceedings of the 2023 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT & NCON), Phuket, Thailand, 22–25 March 2023; pp. 469–473. [Google Scholar] [CrossRef]
- Suanpang, P.; Jamjuntr, P.; Lertkornkitja, A.; Jittithavorn, C. Can Optimized Genetic Algorithms Improve the Effectiveness of Homestay Recommendation Systems in Smart Villages? A Case of Thailand. Int. J. Tour. Res. 2024, 26, e2762. [Google Scholar] [CrossRef]
- Wang, T.; Cook, D.J. sMRT: Multi-Resident Tracking in Smart Homes With Sensor Vectorization. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 2809–2821. [Google Scholar] [CrossRef]
- Thomas, A.G.; Jahangiri, P.; Wu, D.; Cai, C.; Zhao, H.; Aliprantis, D.C.; Tesfatsion, L. Intelligent Residential Air-conditioning System with Smart-grid Functionality. IEEE Trans. Smart Grid 2012, 3, 2240–2251. [Google Scholar] [CrossRef]
- Khan, M.A.; Sabahat, Z.; Farooq, M.S.; Saleem, M.; Abbas, S.; Ahmad, M.; Mazhar, T.; Shahzad, T.; Saeed, M.M. Optimizing smart home energy management for sustainability using machine learning techniques. Discov. Sustain. 2024, 5, 430. [Google Scholar] [CrossRef]
- Zhengxuan, L.; Xiang, Z.; Ying, S.; Yuekuan, Z. Advanced controls on energy reliability, flexibility and occupant-centric control for smart and energy-efficient buildings. Energy Build. 2023, 297, 113436. [Google Scholar]
- Ahmed, I.; Asif, M.; Alhelou, H.H.; Khalid, M. A review on enhancing energy efficiency and adaptability through system integration for smart buildings. J. Build. Eng. 2024, 89, 109354. [Google Scholar]
- Gøthesen, S.; Haddara, M.; Kumar, K.N. Empowering Homes with Intelligence: An Investigation of Smart Home Technology Adoption and Usage. Internet Things 2023, 24, 100944. [Google Scholar] [CrossRef]
- American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRE). Available online: https://www.ashrae.org/file%20library/about/government%20affairs/advocacy%20toolkit/virtual%20packet/standard-55-fact-sheet.pdf (accessed on 13 May 2025).
- Mei, J.; Lu, Z.; Hu, J.; Fan, Y. Energy-Efficient Optimal Guaranteed Cost Intermittent-Switch Control of a Direct Expansion Air Conditioning System. IEEE/CAA J. Autom. Sin. 2021, 8, 1852–1866. [Google Scholar] [CrossRef]
- Samuel, D.G.L.; Nagendra, S.M.S.; Maiya, M.P. Passive alternatives to mechanical air conditioning of building: A review. Build. Environ. 2013, 66, 54–64. [Google Scholar] [CrossRef]
- Ahmad, T.; Madonski, R.; Zhang, D.; Huang, C.; Mujeeb, A. Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm. Renew. Sustain. Energy Rev. 2022, 160, 112128. [Google Scholar] [CrossRef]
- Zhou, K.; Fu, C.; Yang, S. Big data driven smart energy management: From big data to big insights. Renew. Sustain. Energy Rev. 2016, 56, 215–225. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, J.F.; Xia, X. Energy consumption of air conditioners at different temperature set points. Energy and Buildings 2013, 65, 412–418. [Google Scholar] [CrossRef]
- Liao, W.; Peng, J.; Luo, Y.; He, Y.; Li, N.; Yongga, A. Comparative study on energy consumption and indoor thermal environment between convective air-conditioning terminals and radiant ceiling terminals. Build. Environ. 2022, 209, 108661. [Google Scholar] [CrossRef]
- Rapson, D. Durable goods and long-run electricity demand: Evidence from air conditioner purchase behavior. J. Environ. Econ. Manag. 2014, 68, 141–160. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhou, Y.; Chang, Y.; Liang, X.; Zhang, H.; Lin, X.; Qing, K.; Zhou, X.; Luo, Z. The Effects of Ventilation, Humidity, and Temperature on Bacterial Growth and Bacterial Genera Distribution. Int. J. Environ. Res. Public Health 2022, 19, 15345. [Google Scholar] [CrossRef]
- Ferretti, I.; Marchi, B.; Zanoni, S.; Zavanella, L.E. Analysis of Temperature Control Strategy on Energy Consumption in Buildings with Intermittent Occupancy. Energies 2023, 16, 1208. [Google Scholar] [CrossRef]
- Khan, M.A.; Ahmad, I.; Nordin, A.N.; Ahmed, A.E.; Mewada, H.; Daradkeh, Y.I.; Rasheed, S.; Eldin, E.T.; Shafiq, M. Smart Android based Home Automation System using Internet of Things (IoT). Sustainability 2022, 14, 10717. [Google Scholar] [CrossRef]
- Salthammer, T.; Morrison, G.C. Temperature and indoor environments. Indoor Air 2022, 32, 13022. [Google Scholar] [CrossRef]
- Melikov, A.K.; Krüger, U.; Zhou, G.; Madsen, T.L.; Langkilde, G. Air temperature fluctuations in rooms. Build. Environ. 1997, 32, 101–114. [Google Scholar] [CrossRef]
- Ferdyn-Grygierek, J. Indoor environment quality in the museum building and its effect on heating and cooling demand. Energy Build. 2014, 85, 32–44. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L. Light Weight Passive Human Motion Detection with WiFi. In Proceedings of the 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP), Xi’an, China, 9–11 April 2021; pp. 1310–1315. [Google Scholar] [CrossRef]
- Gomes, D.; Sousa, I. Real-Time Drink Trigger Detection in Free-living Conditions Using Inertial Sensors. Sensors 2019, 19, 2145. [Google Scholar] [CrossRef]
- Dzeng, R.-J.; Watanabe, K.; Hsueh, H.-H.; Fu, C.-K. A GRU-Based Model for Detecting Common Accidents of Construction Workers. Sensors 2024, 24, 672. [Google Scholar] [CrossRef]
- Zhang, N.; Yan, J.; Hu, C.; Sun, Q.; Yang, L.; Gao, D.W.; Guerrero, J.M.; Li, Y. Price-Matching-Based Regional Energy Market With Hierarchical Reinforcement Learning Algorithm. IEEE Trans. Ind. Inform. 2024, 20, 11103–11114. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.; Sun, M.; Sun, C. Hybrid Policy-Based Reinforcement Learning of Adaptive Energy Management for the Energy Transmission-Constrained Island Group. IEEE Trans. Ind. Inform. 2023, 19, 10751–10762. [Google Scholar] [CrossRef]
Device | Model/Type | Key Specifications | Accuracy |
---|---|---|---|
Electricity Meter | Acrel ADL200 | AC220V, 10(80)A, Class 1.0 accuracy, RS485 MODBUS-RTU, LCD, 90 × 36 × 65 mm, <10 VA (voltage), <4 VA (current) | kWh Accuracy: Class 1.0 (±1%) |
Temperature and Humidity Sensor (in testing room) | Xiaomi LYWSD03MMC | Temp: 0–60 °C, Humidity: 0–99% RH, Bluetooth 4.2 BLE, CR2032 battery, 43 × 43 × 12.5 mm | Temp: ±0.1 °C; Humidity: ±1% RH |
Temperature and Humidity Sensor (Outdoor measurement) | Industrial Grade RS485 Temperature, SHT31 | Temp: −40–60 °C, Humidity: 0–100% | Temp: ±0.3 °C; Humidity: ±0.8% RH |
Motion Sensor | Xiao-ESP32-C3 + IR/mmWave | ESP32-C3, WiFi/BLE, mmWave 24 GHz, Range: 0–5 m, Detection angle: 90°H/60°V, OTA support | Not specified |
Air Controller | Grove 2-Channel SPDT Relay | 2 SPDT, 5 V DC control, Max: 250 V AC/10 A, 110 V DC/10 A, Power: ~0.45 W, 40 × 40 × 19 mm | Contact Resistance: ≤100 mΩ |
Light Controller | Grove 4-Channel SPDT Relay | 4 SPDT, 5 V DC control, Max: 250 V AC/10 A, 110 V DC/10 A, STM32F030F4P6 controller, I2C/SWD, 30 ops/min | Contact Resistance: ≤100 mΩ |
Wi-Fi Router Repeater | TP-LINK, model Archer C54 | AC1200 Dual Band Wi-Fi Router speeds up to 1200 Mbps, Multi-Mode: Router, Access Point, Range Extender | Not specified |
Control and Monitoring Software | Home Assistant | Open-source software for home automation; in this work, ESPHome was used for system integration | Not specified |
Period | Indoor Measurement (n ≥ 46) | Outdoor Measurement (n ≥ 46) | |||
---|---|---|---|---|---|
Electricity (Kwh) | Temperature (°C) | Humidity (%) | Temperature (°C) | Humidity (%) | |
Background (22–26 April) | 0.017 ± 0.020 | 29.78 ± 0.63 | 64.96 ± 3.83 | 38.48 ± 0.95 | 67.94 ± 8.91 |
Smart System (2–4 May) | 0.018 ± 0.015 | 28.76 ± 0.43 | 71.39 ± 4.74 | 34.60 ± 1.05 | 81.06 ± 5.99 |
A/C 24 h (6–8 May) | 0.168 ± 0.094 | 27.31 ± 0.73 | 64.26 ± 5.27 | 37.03 ± 1.02 | 85.03 ± 7.69 |
A/C Working Hours Only (9–11 May) | 0.099 ± 0.102 | 28.08 ± 1.07 | 65.96 ± 7.22 | 37.65 ± 1.36 | 79.36 ± 7.95 |
A/C Working Without Temperature Control (1–2 June) | 0.292 ± 0.045 | 25.42 ± 0.27 | 62.82 ± 1.18 | 34.65 ± 0.67 | 78.83 ± 5.29 |
Scenario No. | Air control systems | Reduce carbon emission (ton/year) | ||
Turn on air conditioning for 24 h without smart system (ton/year) | Turn on air conditioning for 24 h combined with smart system (ton/year) | Turn on air conditioning during working hours only and combined with smart system (ton/year) | ||
1 | 1.277234 | - | 0.448419 | 0.828814 |
2 | 1.277234 | 0.704152 | - | 0.573082 |
3 | - | 0.704152 | 0.448419 | 0.255732 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weerawan, N.; Suriyawong, P.; Samae, H.; Sampattagul, S.; Phairuang, W. Optimizing Residential Energy Usage with Smart Devices: A Case Study on Energy Efficiency and Environmental Sustainability. Sustainability 2025, 17, 6359. https://doi.org/10.3390/su17146359
Weerawan N, Suriyawong P, Samae H, Sampattagul S, Phairuang W. Optimizing Residential Energy Usage with Smart Devices: A Case Study on Energy Efficiency and Environmental Sustainability. Sustainability. 2025; 17(14):6359. https://doi.org/10.3390/su17146359
Chicago/Turabian StyleWeerawan, Nat, Phuchiwan Suriyawong, Hisam Samae, Sate Sampattagul, and Worradorn Phairuang. 2025. "Optimizing Residential Energy Usage with Smart Devices: A Case Study on Energy Efficiency and Environmental Sustainability" Sustainability 17, no. 14: 6359. https://doi.org/10.3390/su17146359
APA StyleWeerawan, N., Suriyawong, P., Samae, H., Sampattagul, S., & Phairuang, W. (2025). Optimizing Residential Energy Usage with Smart Devices: A Case Study on Energy Efficiency and Environmental Sustainability. Sustainability, 17(14), 6359. https://doi.org/10.3390/su17146359