Integrating UAV Photogrammetry and GIS to Assess Terrace Landscapes in Mountainous Northeastern Türkiye for Sustainable Land Management
Abstract
1. Introduction
1.1. Agricultural Terraces, Rural Development, and the SDGs
1.2. International Perspectives on Terrace Systems
1.3. Terrace Landscapes in Türkiye: Challenges and Research Gaps
2. Materials and Methods
2.1. Methodological Framework and Rationale
2.2. Study Area and Data Acquisition
2.3. Image Processing and DEM—Orthomosaic Production
2.4. Spatial Analysis and Terrace Classification
2.5. Cluster Analysis and Spatial Distribution Patterns
3. Results
3.1. Spatial Patterns and Distribution
3.2. Functional Degradation Patterns of Terraced Landscapes
3.3. Cluster Structures and Landscape Cohesion
4. Discussion
4.1. Interpreting Spatial Distribution in Global Context
4.2. Socio-Environmental Drivers of Functional Degradation
4.3. Landscape Cohesion and Planning Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AR | Augmented Reality |
DBSCAN | Density-Based Spatial Clustering of Applications with Noise |
DEM | Digital Elevation Model |
DSM | Digital Surface Model |
FSI | Functional Status Index |
GIS | Geographic Information System |
LiDAR | Light Detection and Ranging |
NDVI | Normalized Difference Vegetation Index |
RTK | Real-Time Kinematic |
SDGs | Sustainable Development Goals |
SfM | Structure from Motion |
TDI | Terrace Density Index |
TSI | Terrace Size Index |
UAS | Unmanned Aircraft System |
UAV | Unmanned Aerial Vehicle |
References
- Liniger, H.P.; Critchley, W. Where Land Is Greener: Case Studies and Analysis of Soil and Water Conservation Initiatives Worldwide; CTA/CDE/FAO/UNEP/WOCAT: Bern, Switzerland; Wageningen, The Netherlands; Rome, Italy; Nairobi, Kenya, 2007. [Google Scholar]
- Fuller, A.M.; Min, Q.; Jiao, W.; Bai, Y. Globally Important Agricultural Heritage Systems (GIAHS) of China: The challenge of complexity in research. Ecosyst. Health Sustain. 2015, 1, 1–10. [Google Scholar] [CrossRef]
- Reed, J.; Van Vianen, J.; Deakin, E.L.; Barlow, J.; Sunderland, T. Integrated landscape approaches to managing social and environmental issues in the tropics: Learning from the past to guide the future. Change Biol. 2016, 22, 2540–2554. [Google Scholar] [CrossRef]
- Stocking, M. Soil erosion and land degradation. In Environmental Science for Environmental Management, 2nd ed.; Chadwick, A., Ed.; Routledge: London, UK, 2000; pp. 35–56. [Google Scholar] [CrossRef]
- Plieninger, T.; Bieling, C. (Eds.) Resilience and the Cultural Landscape: Understanding and Managing Change in Human-Shaped Environments; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar] [CrossRef]
- Altieri, M.A.; Toledo, V.M. The agroecological revolution in Latin America: Rescuing nature, ensuring food sovereignty and empowering peasants. J. Peasant. Stud. 2011, 38, 587–612. [Google Scholar] [CrossRef]
- Berkes, F.; Folk, C.; Colding, J. (Eds.) Linking Social and Ecological Systems: Management Practices and Social Mechanisms for Building Resilience; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Mijatović, D.; Van Oudenhoven, F.; Eyzaguirre, P.; Hodgkin, T. The role of agricultural biodiversity in strengthening resilience to climate change: Towards an analytical framework. Int. J. Agric. Sustain. 2013, 11, 95–107. [Google Scholar] [CrossRef]
- Fisch, J.; Riechers, M.; Loos, J.; Martin-Lopez, B.; Temperton, V.M. Making the UN Decade on Ecosystem Restoration a social-ecological endeavour. Trends Ecol. Evol. 2021, 36, 20–28. [Google Scholar] [CrossRef]
- Pretty, J.; Bharucha, Z.P. Sustainable intensification in agricultural systems. Ann. Bot. 2014, 114, 1571–1596. [Google Scholar] [CrossRef]
- Lasanta, T.; Arnáez, J.; Pascual, N.; Ruiz-Flaño, P.; Errea, M.P.; Lana-Renault, N. Space-time process and drivers of land abandonment in Europe. Catena 2017, 149, 810–823. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Nadal-Romero, E.; Lana-Renault, N.; Beguería, S. Erosion in Mediterranean landscapes: Changes and future challenges. Geomorphology 2013, 198, 20–36. [Google Scholar] [CrossRef]
- Melendez-Pastor, I.; Hernández, E.I.; Navarro-Pedreño, J.; Gómez, I. Socioeconomic factors influencing land cover changes in rural areas: The case of the Sierra de Albarracín (Spain). Appl. Geogr. 2014, 52, 34–45. [Google Scholar] [CrossRef]
- Koohafkan, P.; Altieri, M.A. Globally Important Agricultural Heritage Systems: A Legacy for the Future; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011; pp. 1–47. [Google Scholar]
- Liniger, H.; Mekdaschi-Studer, R.; Hauert, C.; Gurtner, M. Sustainable Land Management in Practice: Guidelines and Best Practices for Sub-Saharan Africa; TerrAfrica, World Overview of Conservation Approaches and Technologies (WOCAT), and Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2011. [Google Scholar]
- Feng, H.; Squires, V.R.; Wu, J. Ecosystem Services Provisioning, Urban Growth and the Rural-Urban Interface: A Case Study from China. Land 2021, 10, 337. [Google Scholar] [CrossRef]
- Glušič, A.; Štaut, L.; Zajc, L.Č. Towards Deep Learning for the Recognition of Cultivated Terraces Based on LiDAR Data: A Case Study from Slovenia. Morav. Geogr. Rep. 2024, 32, 66–78. [Google Scholar]
- Cohen-Shacham, E.; Walters, G.; Janzen, C.; Maginnis, S. Nature-Based Solutions to Address Global Societal Challenges; IUCN: Gland, Switzerland, 2016; Volume 97, p. 2036. [Google Scholar] [CrossRef]
- Nungula, E.Z.; Chappa, L.R.; Ranjan, S.; Sow, S.; Alnemari, A.M.; Seleiman, M.F.; Mwadalu, R.; Maitra, S.; Gitari, H.I. Ecosystem Services through Agroforestry Systems and Its Sustainability. In Agroforestry; Udawatta, R.P., Jose, S., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2024; pp. 223–254. [Google Scholar] [CrossRef]
- Altieri, M.A.; Koohafkan, P. Enduring Farms: Climate Change, Smallholders and Traditional Farming Communities; TWN: Penang, Malaysia, 2008; Volume 6, p. 72. [Google Scholar]
- Vrbičanová, G.; Kaisová, D.; Močko, M.; Petrovič, F.; Mederly, P. Mapping Cultural Ecosystem Services Enables Better Informed Nature Protection and Landscape Management. Sustainability 2020, 12, 2138. [Google Scholar] [CrossRef]
- Turn, B.L.; Sabloff, J.A. Classic Period collapse of the Central Maya Lowlands: Insights about human-environment relationships for sustainability. Proc. Natl. Acad. Sci. USA 2012, 109, 13908–13914. [Google Scholar] [CrossRef] [PubMed]
- Munro, R.N.; Deckers, J.; Haile, M.; Grove, A.T.; Poesen, J.; Nyssen, J. Soil landscapes, land cover change and erosion features of the Central Plateau region of Tigrai, Ethiopia: Photo-monitoring with an interval of 30 years. Catena 2008, 75, 55–64. [Google Scholar] [CrossRef]
- Adhikari, J.R. Integrating Indigenous, Local and Modern Knowledge for Sustainable Conservation and Management of Forest Ecosystems in Nepal; Forests of Nepal: Gateway for Information Nepal: Kathmandu, Nepal, 2015. [Google Scholar] [CrossRef]
- Gilmour, D.; Malla, Y.; Nurse, M. Linking Community Forestry and Poverty Reduction: A Regional Community Forestry Training Center for Asia and the Pacific, Bangkok, Thailand; Regional Community Forestry Training Center for Asia and the Pacific (RECOFTC): Bangkok, Thailand, 2007; Available online: https://www.recoftc.org/publications/0000165 (accessed on 15 April 2025).
- Altieri, M.A.; Nicholls, C.I.; Henao, A.; Lana, M.A. Agroecology and the design of climate change-resilient farming systems. Agron. Sustain. Dev. 2015, 35, 869–890. [Google Scholar] [CrossRef]
- Tarolli, P.; Straffelini, E. Agriculture in Hilly and Mountainous Landscapes: Threats, Monitoring and Sustainable Management. Geogr. Sustain. 2020, 1, 70–76. [Google Scholar] [CrossRef]
- Cerdà, A.; Doerr, S.H. Influence of vegetation recovery on soil hydrology and erodibility following fire: An 11-year investigation. Int. J. Wildland Fire 2005, 14, 423–437. [Google Scholar] [CrossRef]
- Gavin, M.C.; McCarter, J.; Berkes, F.; Mead, A.T.P.; Sterl, E.J.; Tang, R.; Turner, N.J. Effective Biodiversity Conservation Requires Dynamic, Pluralistic, Partnership-Based Approaches. Sustainability 2018, 10, 1846. [Google Scholar] [CrossRef]
- Wilson, G.A. Multifunctional ‘quality’ and rural community resilience. Trans. Inst. Br. Geogr. 2010, 35, 364–381. [Google Scholar] [CrossRef]
- Santoro, A. Why traditional rural landscapes are still important to our future. Landsc. Ecol. 2024, 39, 135. [Google Scholar] [CrossRef]
- Reed, M.S.A.C.; Evely, G.; Cundill, I.; Fazey, J.; Glass, A.; Laing, J.; Newig, B.; Parrish, C.; Prell, C.; Raymond, L.C.S. What is Social Learning? Ecol. Soc. 2010. Available online: https://www.ecologyandsociety.org/vol15/iss4/resp1/ (accessed on 21 April 2025). [CrossRef]
- Cohen-Shacham, E.; Andrade, A.; Dalton, J.; Dudley, N.; Jones, M.; Kumar, C.; Maginnis, S.; Maynard, S.; Nelson, C.R.; Renaud, F.G.; et al. Core Principles for Successfully Implementing and Upscaling Nature-Based Solutions in Environmental Management. Sci. Policy 2019, 98, 20–29. [Google Scholar] [CrossRef]
- Raymond, C.M.; Frantzeskaki, N.; Kabisch, N.; Berry, P.; Breil, M.; Nita, M.R.; Geneletti, D.; Calfapietra, C. A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environ. Sci. Policy 2017, 77, 15–24. [Google Scholar] [CrossRef]
- Zhang, J.C.; DeAngelis, D.L.; Zhuang, J.Y. Effectiveness of Afforestation on Soil and Water Conservation: Theory and Practice of Soil Loss Control in Eastern China. In Soil and Water Conservation in Semi-Arid Areas; Li, Z., Wang, C., Ning, D., Xu, W., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 213–241. [Google Scholar] [CrossRef]
- Murray, I.; Jover-Avellà, G.; Fullana, O.; Tello, E. Biocultural Heritages in Mallorca: Explaining the Resilience of Peasant Landscapes within a Mediterranean Tourist Hotspot, 1870–2016. Sustainability 2019, 11, 1926. [Google Scholar] [CrossRef]
- Wu, J. Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 2013, 28, 999–1023. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Arnáez, J.; Lasanta, T.; Nadal-Romero, E.; López-Moreno, J.I. Living in the Mountains: The Wide Variety of Land Uses and Their Geo-Ecological Consequences; Springer Nature: Cham, Switzerland, 2024; pp. 331–414. [Google Scholar]
- Xue, J.; Gui, D.; Zeng, F.; Yu, X.; Sun, H.; Zhang, J.; Xue, D. Assessing Landscape Fragmentation in a Desert-Oasis Region of Northwest China: Patterns, Driving Forces, Policy Implications, and Future Land Consolidation. Environ. Monit. Assess. 2022, 194, 394. [Google Scholar] [CrossRef]
- Brandt, J.; Geeson, N. Desertification Indicator System for Mediterranean Europe: Science, Stakeholders and Public Dissemination of Research Results. In Monitoring and Modelling Dynamic Environments: A Festschrift in Memory of Professor; Thornes, J.B., Meadows, M.E., Linés, C., Eds.; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2015; pp. 121–137. [Google Scholar]
- Teshome, A.; De Graaff, J.; Ritsema, C.J.; Kassie, M. Farmers’ Perceptions about the Influence of Land Quality, Land Fragmentation and Tenure Systems on Sustainable Land Management in the North Western Ethiopian Highlands. Land Degrad. Dev. 2016, 27, 884–898. [Google Scholar] [CrossRef]
- Zoumides, C.; Bruggeman, A.; Djuma, H. Revitalising terraced landscapes: Co-production of ecosystem services for sustainable futures. Geogr. Sustain. 2025, 6, 100306. [Google Scholar] [CrossRef]
- Alhajj Ali, S.; Tallou, A.; Vivaldi, G.A.; Camposeo, S.; Ferrara, G.; Sanesi, G. Revitalization Potential of Marginal Areas for Sustainable Rural Development in the Puglia Region, Southern Italy: Part I: A Review. Agronomy 2024, 14, 431. [Google Scholar] [CrossRef]
- Rössler, M.; Lin, R.C.H. Cultural Landscape in World Heritage Conservation and Cultural Landscape Conservation Challenges in Asia. Built Herit. 2018, 2, 3–26. [Google Scholar] [CrossRef]
- Yang, L.; Liu, M.; Lun, F.; Yuan, Z.; Zhang, Y.; Min, Q. An Analysis on Crops Choice and Its Driving Factors in Agricultural Heritage Systems—A Case of Honghe Hani Rice Terraces System. Sustainability 2017, 9, 1162. [Google Scholar] [CrossRef]
- Yuan, Y.; Xu, G.; Shen, N.; Nie, Z.; Li, H.; Zhang, L.; Gong, Y.; He, Y.; Ma, X.; Zhang, H.; et al. Valuation of Ecosystem Services for the Sustainable Development of Hani Terraces: A Rice-Fish-Duck Integrated Farming Model. Int. J. Environ. Res. Public Health 2022, 19, 8549. [Google Scholar] [CrossRef]
- Liu, D.; Tang, R.; Xie, J.; Tian, J.; Shi, R.; Zhang, K. Valuation of ecosystem services of rice-fish coculture systems in Ruyuan County, China. Ecosyst. Serv. 2020, 41, 101054. [Google Scholar] [CrossRef]
- Hua, H.; Zhou, S. Human-Environment System Boundaries: A Case Study of the Honghe Hani Rice Terraces as a World Heritage Cultural Landscape. Sustainability 2015, 7, 10733–10755. [Google Scholar] [CrossRef]
- Du, X.; Yang, G.; Yuan, H.; Wu, Y.; Lv, Z.; Du, C.; Jian, J.; Wang, Q.; Huang, L.; Chen, W. Bibliometric Insights into Terracing Effects on Water Resources Under Climate Change: Advances in Remote Sensing and GIS Applications. Water 2025, 17, 1125. [Google Scholar] [CrossRef]
- Dax, T.; Schroll, K.; Machold, I.; Derszniak-Noirjean, M.; Schuh, B.; Gaupp-Berghausen, M. Land Abandonment in Mountain Areas of the EU: An Inevitable Side Effect of Farming Modernization and Neglected Threat to Sustainable Land Use. Land 2021, 10, 591. [Google Scholar] [CrossRef]
- Blaikie, P.M.; Muldavin, J.S. Upstream, Downstream, China, India: The Politics of Environment in the Himalayan Region. Ann. Assoc. Am. Geogr. 2004, 94, 520–548. [Google Scholar] [CrossRef]
- Chaudhary, S.; Wang, Y.; Dixit, A.M.; Khanal, N.R.; Xu, P.; Fu, B.; Yan, K.; Liu, Q.; Lu, Y.; Li, M. Spatiotemporal Degradation of Abandoned Farmland and Associated Eco-Environmental Risks in the High Mountains of the Nepalese Himalayas. Land 2019, 9, 1. [Google Scholar] [CrossRef]
- Gullino, P.; Larcher, F. Integrity in UNESCO World Heritage Sites. A comparative study for rural landscapes. J. Cult. Herit. 2013, 14, 389–395. [Google Scholar] [CrossRef]
- Garavaglia, V.; Besacier, C. Mediterranean landscape restoration: Context, global initiatives and regional dynamics. Forêt Méditeranéenne 2017, 38, 241–250. [Google Scholar]
- Tarolli, P.; Preti, F.; Romano, N. Terraced landscapes: From an old best practice to a potential hazard for soil degradation due to land abandonment. Anthropocene 2014, 6, 10–25. [Google Scholar] [CrossRef]
- Cooper, T.; Hart, K.; Baldock, D. The Provision of Public Goods Through Agriculture in the European Union; Institute for European Environmental Policy: London, UK, 2009; pp. 1–351. [Google Scholar]
- Murphy, B. Terracing, Land Management and Agricultural Soils in the Andagua Valley of the Southern Peruvian Andes. Master’s Thesis, University of Denver, Denver, CO, USA, 2017. [Google Scholar]
- Biwer, M.E. Colonialism, Cuisine, and Culture Contact: An Analysis of Provincial Foodways of the Wari Empire. Ph.D. Dissertation, University of California, Santa Barbara, CA, USA, 2019. [Google Scholar]
- Arnáez, J.; Lana-Renault, N.; Lasanta, T.; Ruiz-Flaño, P.; Castroviejo, J. Effects of Farming Terraces on Hydrological and Geomorphological Processes. Catena 2015, 128, 122–134. [Google Scholar] [CrossRef]
- Bebbington, A.; Carney, J. Geography in the International Agricultural Research Centers: Theoretical and practical concerns. Ann. Assoc. Am. Geogr. 1990, 80, 34–48. [Google Scholar] [CrossRef]
- Zimm, K.S. The Compatibility of Agricultural Intensification in a Global Hotspot of Smallholder Agrobiodiversity (Bolivia). Proc. Natl. Acad. Sci. USA 2013, 110, 2769–2774. [Google Scholar]
- Boil, S.; Berkes, F. Perception and Interpretation of Climate Change among Quechua Farmers of Bolivia: Indigenous Knowledge as a Resource for Adaptive Capacity. Ecol. Soc. 2013, 18, 21. [Google Scholar]
- Bertran-Vilà, M.; Pasquier Merino, A.G.; Villatoro Hernández, J.G. Food Producers in the Peri-Urban Area of Mexico City: A Study on the Linkages between Social Capital and Food Sustainability. Sustainability 2022, 14, 15960. [Google Scholar] [CrossRef]
- Torres-Lima, P.; Madrigal-Gómez, J. Chapter 29—Assessment of periurban dynamics and agricultural traditionality in a mega-city by using a hybrid geospatial model. A case study in Mexico City. Mod. Cartogr. Ser. 2024, 11, 663–685. [Google Scholar]
- Cornelius, W.; Myhre, D. The Transformation of Rural Mexico: Reforming the Ejido Sector: Center for U.S.–Mexican Studies; University of California, San Diego: La Jolla, CA, USA, 1998. [Google Scholar]
- Primmer, E.; Furman, E. Operationalising ecosystem service approaches for governance: Do measuring, mapping and valuing integrate sector-specific knowledge systems? Ecosyst. Serv. 2012, 1, 85–92. [Google Scholar] [CrossRef]
- Pascual, U.; Muradian, R.; Rodríguez, L.C.; Duraiappah, A. Exploring the Links between Equity and Efficiency in Payments for Environmental Services: A Conceptual Approach. Ecol. Econ. 2010, 69, 1237–1244. [Google Scholar] [CrossRef]
- Van Noordwijk, M. Agroforestry-based ecosystem services: Reconciling values of humans and nature in sustainable development. Land 2021, 10, 699. [Google Scholar] [CrossRef]
- Lang, D.J.; Wiek, A.; Bergmann, M.; Stauffacher, M.; Martens, P.; Moll, P.; Thomas, C.J. Transdisciplinary Research in Sustainability Science: Practice, Principles and Challenges. Sustain. Sci. 2012, 7, 25–43. [Google Scholar] [CrossRef]
- Tengö, M.; Hill, R.; Malmer, P.; Raymond, C.M.; Spierenburg, M.; Danielsen, F.; Elmqvist, T.; Folke, C. Weaving knowledge systems in IPBES, CBD and beyond—Lessons learned for sustainability. Curr. Opin. Environ. Sustain. 2017, 26, 17–25. [Google Scholar] [CrossRef]
- Sietz, D.; Klimek, S.; Dauber, J. Tailored Pathways Toward Revived Farmland Biodiversity Can Inspire Agroecological Action and Policy to Transform Agriculture. Commun. Earth Environ. 2022, 3, 211. [Google Scholar] [CrossRef]
- Balta, S.; Atik, M. World Heritage Rural Cultural Landscapes and the Agricultural Terraces of Selge. İnönü Üniv. Sanat ve Tasarım Derg. 2019, 9, 63–76. [Google Scholar] [CrossRef]
- Özgeriş, M.; Karahan, F. An Evaluation of Agricultural Terraces and Their Characteristics in the Context of Cultural Heritage: The Case of Uzundere (Erzurum). Milli Folk. 2022, 17, 160–175. [Google Scholar]
- Demirciler, V. Phoinix ve Tymnos’un Çiftlik Yapıları Işığında Bozburun Yarımadası Kırsal Yerleşim Düzenlemesi (İÖ 4. Yüzyıl-Geç Antik Çağ). Troy Acad. 2022, 7, 258–298. [Google Scholar]
- Kapur, S.; Akça, E.; Kapur, B.; Öztürk, A. Migration: An Irreversible Impact of Land Degradation in Turkey. In Desertification in the Mediterranean Region. A Security Issue; Kepner, W.G., Rubio, J.L., Mouat, D.A., Pedrazzini, F., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 291–301. [Google Scholar]
- Aksoy, Z.; Öz, Ö. Protection of traditional agricultural knowledge and rethinking agricultural research from farmers’ perspective: A case from Turkey. Turk. J. Rural. Stud. 2020, 80, 291–301. [Google Scholar] [CrossRef]
- Vatandaşlar, C.; Yavuz, M.; Leuchner, M. Erosion Control Service of Forest Ecosystems: A Case Study from Northeastern Turkey. In Smart Geography: 100 Years of the Bulgarian Geographical Society; Babanova, D., Ed.; Springer: Cham, Switzerland, 2020; pp. 443–455. [Google Scholar] [CrossRef]
- Agnoletti, M.; Errico, A.; Santoro, A.; Dani, A.; Preti, F. Terraced Landscapes and Hydrogeological Risk. Effects of Land Abandonment in Cinque Terre (Italy) during Severe Rainfall Events. Sustaiability 2019, 11, 235. [Google Scholar] [CrossRef]
- Berkes, F.; Colding, J.; Folk, C. Rediscovery of Traditional Ecological Knowledge as Adaptive Management. Ecol. Appl. 2000, 10, 1251–1262. [Google Scholar] [CrossRef]
- Roll, M.F. Interconnected Nature and People: Biosphere Reserves and the Power of Memory and Oral Histories as Biocultural Heritage for a Sustainable Future. Future. Sustain. 2025, 17, 4030. [Google Scholar] [CrossRef]
- Ferro-Vázquez, C.; Lang, C.; Kaal, J.; Stump, D. When Is a Terrace Not a Terrace? The Importance of Understanding Landscape Evolution in Studies of Terraced Agriculture. J. Environ. Manag. 2017, 202, 500–513. [Google Scholar] [CrossRef] [PubMed]
- Baskent, E.Z. Assessment and improvement strategies of sustainable land management (SLM) planning initiative in Turkey. Sci. Total Environ. 2021, 797, 149183. [Google Scholar] [CrossRef] [PubMed]
- Kaska, E. An Analysis of the European Landscape Convention (ELC) and Its Implementation in Türkiye. Master’s Thesis, Ankara University, Ankara, Türkiye, 2012. [Google Scholar]
- National Strategy and Action Plan to Combat Desertification (2021–2030); Ministry of Agriculture and Forestry: Ankara, Türkiye, 2021. Available online: https://www.tarimorman.gov.tr (accessed on 10 April 2025).
- Malamataris, D.; Pisinaras, V.; Pagano, A.; Baratella, V.; Vanino, S.; Bea, M.; Babakos, K.; Chatzi, A.; Fabiani, S.; Giordano, R.; et al. Managing Water-Ecosystem-Food Nexus using participatory approaches: Insights from an innovative methodological approach developed in two Mediterranean areas. Front. Water 2025, 7, 1469762. [Google Scholar] [CrossRef]
- Tempesta, T. The perception of agrarian historical landscapes: A study of the Veneto plain in Italy. Landsc. Urban Plan. 2010, 97, 258–272. [Google Scholar] [CrossRef]
- Wunder, S. The Efficiency of Payments for Environmental Services in Tropical Conservation. Conserv. Biol. 2007, 21, 48–58. [Google Scholar] [CrossRef]
- Spanò, A.; Sammartano, G.; Calcagno Tunin, F.; Cerise, S.; Possi, G. GIS-based detection of terraced landscape heritage: Comparative tests using regional DEMs and UAV data. Appl. Geomat. 2018, 10, 77–97. [Google Scholar] [CrossRef]
- Wunder, S. Payments for Environmental Services: Some Nuts and Bolts; CIFOR Occasional Paper No. 42; Center for International Forestry Research (CIFOR): Bogor, Indonesia, 2005; Volume 42, pp. 1–32. Available online: https://www.cifor-icraf.org/publications/pdf_files/OccPapers/OP-42.pdf (accessed on 15 April 2025).
- Hussain, Y.; Schlögel, R.; Innocenti, A.; Hamza, O.; Iannucci, R.; Martino, S.; Havenith, H.B. Review on the Geophysical and UAV-Based Methods Applied to Landslides. Remote Sens. 2022, 14, 4564. [Google Scholar] [CrossRef]
- Geneletti, D.; Zardo, L.; Pérez-Soba, M. Ecosystem-based adaptation in cities: An analysis of European urban climate adaptation plans. Land Use Policy 2016, 50, 38–47. [Google Scholar] [CrossRef]
- Le Vot, T.; Cohen, M.; Nowak, M.; Passy, P.; Sumera, F. Resilience of Terraced Landscapes to Human and Natural Impacts: A GIS-Based Reconstruction of Land Use Evolution in a Mediterranean Mountain Valley. Land 2024, 13, 592. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, OR, USA, 2–4 August 1996; Simoudis, E., Han, J., Fayyad, U., Eds.; AAAI Press: Portland, OR, USA, 2024; pp. 226–231. [Google Scholar]
- Kou, P.; Xu, Q.; Jin, Z.; Yunus, A.P.; Tao, Y.; Xia, Y.; Pu, C.; Yuan, S.; Cao, G. Assessment of Loess Terraced Slope Erosion Using Unmanned Aerial Vehicle Photogrammetry: Topographic and Hydrological Effects. Land Degrad. Dev. 2024, 35, 2462–2475. [Google Scholar] [CrossRef]
- Brandt, J.; Vejre, H. Multifunctional Landscapes—Motives, Concepts and Perceptions. In Multifunctional Landscapes: Volume 1. Theory, Values and History; Brandt, J., Vejre, H., Eds.; WIT Press: Southampton, UK, 2004; pp. 3–32. [Google Scholar]
- Ercan, O. Agricultural Land-Based Functional Model for Effective Rural Land Management in Türkiye. J. Agric. Sci. 2024, 30, 526–545. [Google Scholar] [CrossRef]
- Liu, T.; Yu, L.; Liu, X.; Peng, D.; Chen, X.; Du, Z.; Zhao, Q. A Global Review of Monitoring Cropland Abandonment Using Remote Sensing: Temporal-Spatial Patterns, Causes, Ecological Effects, and Future Prospects. J. Remote Sens. 2025, 5, 0584. [Google Scholar] [CrossRef]
- Avtar, R.; Aggarwal, R.; Kharrazi, A.; Kumar, P.; Kurniawan, T.A. Utilizing geospatial information to implement SDGs and monitor their progress. Environ. Monit. Assess. 2019, 192, 35. [Google Scholar] [CrossRef] [PubMed]
- Turn, B.L.; Lambin, E.F.; Reenberg, A. The Emergence of Land Change Science for Global Environmental Change and Sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef]
- Mancini, F.; Dubbini, M.; Gattelli, M.; Stecchi, F.; Fabbri, S.; Gabbianelli, G. Using Unmanned Aerial Vehicles (UAV) for High-Resolution Reconstruction of Topography: The Structure from Motion Approach on Coastal Environments. Remote Sens. 2013, 5, 6880–6898. [Google Scholar] [CrossRef]
- Gomez, C.; Purdie, H. UAV-Based Photogrammetry and Geocomputing for Hazards and Disaster Risk Monitoring—A Review. Geoenvironmental Disasters 2016, 3, 1–11. [Google Scholar] [CrossRef]
- Belayneh, M.; Yirgu, T.; Tsegaye, D. Potential Soil Erosion Estimation and Area Prioritization for Better Conservation Planning in Gumara Watershed Using RUSLE and GIS Techniques. Environ. Syst. Res. 2019, 8, 1–17. [Google Scholar] [CrossRef]
- Parimala, M.; Lopez, D.; Senthilkumar, N.C. A Survey on Density-Based Clustering Algorithms for Mining Large Spatial Databases. Int. J. Adv. Sci. Technol. 2011, 31, 59–66. [Google Scholar]
- Çakmak, E. Uzundere Strategic Development Plan: Vision 2023; Uzundere Municipality: Erzurum, Türkiye, 2011; p. 82. [Google Scholar]
- Karahan, F.; Çakır, E. Uzundere Tourism Master Plan: Vision 2023; Uzundere Municipality: Erzurum, Türkiye, 2011. [Google Scholar]
- Karahan, F.; Çil, A.; Ercişli, S. Uzundere Biological Diversity Strategy and Action Plan (2017–2023); Uzundere Municipality: Erzurum, Türkiye, 2017; 191p, ISBN 978-605-65712-5-1. [Google Scholar]
- Boon, M.A.; Drijfhout, A.P.; Tesfamichael, S. Comparison of a Fixed-Wing and Multi-Rotor UAV for Environmental Mapping Applications: A Case Study. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 47–54. [Google Scholar] [CrossRef]
- Sohl, M.A.; Mahmood, S.A. Low-cost UAV in photogrammetric engineering and remote sensing: Georeferencing, DEM accuracy, and geospatial analysis. J. Geovisual. Spat. Anal. 2024, 8, 14. [Google Scholar] [CrossRef]
- Li, H.; Chen, L.; Wang, Z.; Yu, Z. Mapping of River Terraces with Low-Cost UAS Based Structure-from-Motion Photogrammetry in a Complex Terrain Setting. Remote Sens. 2019, 11, 464. [Google Scholar] [CrossRef]
- Pan, E.; Ma, Y.; Fan, F.; Mei, X.; Huang, J. Hyperspectral Image Classification across Different Datasets: A Generalization to Unseen Categories. Remote Sens. 2021, 13, 1672. [Google Scholar] [CrossRef]
- Martínez-Carricondo, P.; Agüera-Vega, F.; Carvajal-Ramírez, F.; Mesas-Carrascosa, F.J.; García-Ferrer, A.; Pérez-Porras, F.J. Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 1–10. [Google Scholar] [CrossRef]
- Kozmus Trajkovski, K.; Grigillo, D.; Petrovič, D. Optimization of UAV flight missions in steep terrain. Remote Sens. 2020, 12, 1293. [Google Scholar] [CrossRef]
- Salas López, R.; Terrones Murga, R.E.; Silva-López, J.O.; Rojas-Briceño, N.B.; Gómez Fernández, D.; Oliva-Cruz, M.; Taddia, Y. Accuracy assessment of direct georeferencing for photogrammetric applications based on UAS-GNSS for high andean urban environments. Drones 2022, 6, 388. [Google Scholar] [CrossRef]
- Kalacska, M.; Lucanus, O.; Arroyo-Mora, J.P.; Laliberté, É.; Elmer, K.; Leblanc, G.; Groves, A. Accuracy of 3d landscape reconstruction without ground control points using different uas platforms. Drones 2020, 4, 13. [Google Scholar] [CrossRef]
- Kim, H.; Hyun, C.U.; Park, H.D.; Cha, J. Image mapping accuracy evaluation using UAV with standalone, differential (RTK), and PPP GNSS positioning techniques in an abandoned mine site. Sensors 2023, 23, 5858. [Google Scholar] [CrossRef]
- DJI. Phantom 4 RTK—Product Support. 2025. Available online: https://www.dji.com/glob./support/prod./phantom-4-rtk (accessed on 7 June 2025).
- Westoby, M.J.; Brasington, J.; Glas, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- Ma, D.; Fang, H.; Wang, N.; Pang, G.; Li, B.; Dong, J.; Jiang, X. A Low-Cost 3D Reconstruction and Measurement System Based on Structure-from-Motion (SFM) and Multi-View Stereo (MVS) for Sewer Pipelines. Tunn. Undergr. Space Technol. 2023, 141, 105345. [Google Scholar] [CrossRef]
- Smith, M.W.; Carrivick, J.L.; Quincey, D.J. Structure from motion photogrammetry in physical geography. Prog. Phys. Geogr. 2016, 40, 247–275. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S. Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Process. Landf. 2014, 39, 1413–1420. [Google Scholar] [CrossRef]
- Nocerino, E.; Menna, F.; Remondino, F. Accuracy of typical photogrammetric networks in cultural heritage 3D modeling projects. Inf. Sci. 2014, 40, 465–472. [Google Scholar] [CrossRef]
- Agüera-Vega, F.; Carvajal-Ramírez, F.; Martínez-Carricondo, P. Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle. Vehicle. Meas. 2017, 98, 221–227. [Google Scholar] [CrossRef]
- Bi, R.; Gan, S.; Yuan, X.; Li, R.; Gao, S.; Yang, M.; Hu, L. Multi-view analysis of high-resolution geomorphic features in complex mountains based on UAV-LiDAR and SfM-MVS: A case study of the northern pit rim structure of the mountains of Lufeng, China. Appl. Sci. 2023, 13, 738. [Google Scholar] [CrossRef]
- Simpson, J.E.; Smith, T.E.; Wooster, M.J. Assessment of errors caused by forest vegetation structure in airborne LiDAR-derived DTMs. Remote Sens. 2017, 9, 1101. [Google Scholar] [CrossRef]
- Grabowski, R.C.; Surian, N.; Gurnell, A.M. Characterizing geomorphological change to support sustainable river restoration and management. Water 2014, 1, 483–512. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S.; Smith, M.W. 3-D Uncertainty-Based Topographic Change Detection with Structure-from-Motion Photogrammetry and Precision Maps. In EGU General Assembly Conference Abstracts, Proceedings of the EGU General Assembly 2017, Vienna, Austria, 23–28 April 2017; European Geosciences Union: Vienna, Austria, 2017; p. 7200. [Google Scholar]
- Barba, S.; Barbar, M.; Di Benedetto, A.; Fiani, M.; Gujski, L.; Limongiello, M. Accuracy assessment of 3D photogrammetric models from an unmanned aerial vehicle. Drones 2019, 3, 79. [Google Scholar] [CrossRef]
- Eltner, A.; Kais, A.; Castillo, C.; Rock, G.; Neugirg, F.; Abellán, A. Image-based surface reconstruction in geomorphometry-merits, limits and developments. Earth Surf. Dyn. 2016, 4, 359–389. [Google Scholar] [CrossRef]
- Bontemps, S.; Arias, M.; Cara, C.; Dedieu, G.; Guzzonato, E.; Hagolle, O.; Inglada, J.; Matton, N.; Morin, D.; Popescu, R.; et al. Building a Data Set over 12 Globally Distributed Sites to Support the Development of Agriculture Monitoring Applications with Sentinel-2. Remote Sens. 2015, 7, 16062–16090. [Google Scholar] [CrossRef]
- Ahmadi, H.; Pekkan, E. Fault-Based Geological Lineaments Extraction Using Remote Sensing and GIS—A Review. Geosciences 2021, 11, 183. [Google Scholar] [CrossRef]
- Hugenholtz, C.H.; Walk, J.; Brown, O.; Myshak, S. Earthwork volumetrics with an unmanned aerial vehicle and softcopy photogrammetry. J. Surv. Eng. 2015, 141, 06014003. [Google Scholar] [CrossRef]
- Rango, A.; Laliberte, A.; Herrick, J.E.; Winters, C.; Havstad, K.; Steele, C.; Browning, D. Unmanned aerial vehicle-based remote sensing for rangeland assessment, monitoring, and management. J. Appl. Remote Sens. 2009, 3, 033542. [Google Scholar]
- Tubog, M.V.; Emsellem, K.; Bouissou, S. Detection of Agricultural Terraces Platforms Using Machine Learning from Orthophotos and LiDAR-Based Digital Terrain Model: A Case Study in Roya Valley of Southeast France. Land 2025, 14, 962. [Google Scholar] [CrossRef]
- Yavuz, M.; Koutalakis, P.; Diaconu, D.C.; Gkiatas, G.; Zaimes, G.N.; Tufekcioglu, M.; Mar, M. Identification of streamside landslides with the use of unmanned aerial vehicles (UAVs) in Greece, Romania, and Turkey. Remote Sens. 2023, 15, 1006. [Google Scholar] [CrossRef]
- Micu, M.; Vasile, M.; Miron, F.; Onaca, A.; Sîrbu, F.; Skyline Drones Team. Deciphering Complex Morphology and Structural Connectivity of High-Magnitude Deep-Seated Landslides via Airborne Laser Scanning: A Case Study in the Vrancea Seismic Region, Romanian Carpathians. Remote Sens. 2023, 15, 5286. [Google Scholar] [CrossRef]
- Diaz-Varela, R.A.; Zarco-Tejada, P.J.; Angileri, V.; Loudjani, P. Automatic identification of agricultural terraces through object-oriented analysis of very high resolution DSMs and multispectral imagery obtained from an unmanned aerial vehicle. J. Environ. Manag. 2014, 134, 117–126. [Google Scholar] [CrossRef]
- Das, P.; Purkayastha, P. Spatial Analysis of Gender Based Workforce in India Using QGIS: A Comparative Study of Village-Level Census Data for Three Districts of Cachar, Karimganj, Hailakandi in Assam State, North East India, for the Years 1991, 2001, and 2011; Kalpaz Publications: Delhi, India, 2025; 342p, ISBN 978-9357229494. [Google Scholar]
- Brandolini, F.; Domingo-Ribas, G.; Zerboni, A.; Turner, S. A Google Earth Engine-enabled Python approach for the identification of anthropogenic palaeo-landscape features. Open Res. Eur. 2021, 1, 22. [Google Scholar]
- Zárate, B.A.; El Hamdouni, R.; Fernández Del Castillo, T. Characterization and Analysis of Landslide Evolution in Intramountain Areas in Loja (Ecuador) Using RPAS Photogrammetric Products. Remote Sens. 2023, 15, 3860. [Google Scholar] [CrossRef]
- Stanchi, S.; Freppaz, M.; Agnelli, A.; Reinsch, T.; Zanini, E. Properties, best management practices and conservation of terraced soils in Southern Europe (from Mediterranean areas to the Alps): A review. Quat. Int. 2012, 265, 90–100. [Google Scholar] [CrossRef]
- Kladnik, D.; Kruse, A.; Komac, B. Terraced landscapes: An increasingly prominent cultural landscape type. Acta Geogr. Slov. 2017, 57, 73–81. [Google Scholar] [CrossRef]
- Sakellariou, M.; Psiloglou, B.E.; Giannakopoulos, C.; Mylona, P.V. Integration of abandoned lands in sustainable agriculture: The case of terraced landscape re-cultivation in mediterranean island conditions. Land 2021, 10, 457. [Google Scholar] [CrossRef]
- Pepe, G.; Mandarino, A.; Raso, E.; Scarpellini, P.; Brand, P.; Cevasco, A. Investigation on farmland abandonment of terraced slopes using multitemporal data sources comparison and its implication on hydro-geomorphological processes. Water 2019, 11, 1552. [Google Scholar] [CrossRef]
- Güler, K.; Kâhya, Y. Developing an approach for conservation of abandoned rural settlements in Turkey. A| Z ITU. J. Fac. Archit. 2019, 16, 97–115. [Google Scholar] [CrossRef]
- Reddy, C.S.; Manaswini, G.; Satish, K.V.; Singh, S.; Jha, C.S.; Dadhwal, V.K. Conservation priorities of forest ecosystems: Evaluation of deforestation and degradation hotspots using geospatial techniques. Ecol. Eng. 2016, 91, 333–342. [Google Scholar] [CrossRef]
- Poesen, J.; Nachtergaele, J.; Verstraeten, G.; Val, C. Gully erosion and environmental change: Importance and research needs. Catena 2003, 50, 91–133. [Google Scholar] [CrossRef]
- Bhattacharjee, P.; Mitra, P. A survey of density based clustering algorithms. Front. Comput. Sci. 2021, 15, 1–27. [Google Scholar] [CrossRef]
- Bataineh, B. Fast component density clustering in spatial databases: A novel algorithm. Information 2022, 13, 477. [Google Scholar] [CrossRef]
- Xiao, T.; Wan, Y.; Jin, R.; Qin, J.; Wu, T. Integrating Gaussian mixture dual-clustering and DBSCAN for exploring heterogeneous characteristics of urban spatial agglomeration areas. Remote Sens. 2022, 14, 5689. [Google Scholar] [CrossRef]
- Tu, X.; Fu, C.; Huang, A.; Chen, H.; Ding, X. DBSCAN spatial clustering analysis of urban “Production-Living-Ecological” space based on POI data: A case study of central urban Wuhan, China. Int. J. Environ. Res. Public Health 2022, 19, 5153. [Google Scholar] [CrossRef]
- Campello, R.J.; Moulavi, D.; Sander, J. Density-Based Clustering Based on Hierarchical Density Estimates. In Advances in Knowledge Discovery and Data Mining. PAKDD 2013; Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7819, pp. 160–172. Available online: https://link.springer.com/chapter/10.1007/978-3-642-37456-2_14 (accessed on 10 June 2025).
- Hao, Y.; Li, Z.; Wu, J. Sustainable Spatial Features of Settlements along the Miao Frontier Wall and Miao Frontier Corridor Analyzed through Machine Learning Clustering. Sustainability 2024, 16, 8943. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; Watson, C. An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds. Remote Sens. 2012, 4, 1392–1410. [Google Scholar] [CrossRef]
- Nex, F.; Remondino, F. UAV for 3D mapping applications: A review. Appl. Geomat. 2014, 6, 1–15. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, T.; Liu, D.; Zheng, Y.; Chen, Y.; Li, F. An Automatic Identification Method of Crested Ibis (Nipponia nippon) Habitat Based on Spatiotemporal Density Detection. Animals. 2022, 12, 2220. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, A.; Ma, Y. An Integrated Mechanism and Challenges of Mountainous Sustainable Development: A Review of Hani Terraces, China. Sustain. Dev. 2024, 32, 101–118. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, S.; Zhong, Q.; Zhu, K.; Fu, H. Assessing Eco-Environmental Effects and Its Impacts Mechanisms in the Mountainous City: Insights from Ecological-Production-Living Spaces Using Machine Learning Models in Chongqing. Land 2024, 13, 1196. [Google Scholar] [CrossRef]
- Golden, C.; Scherer, A.K.; Schroder, W.; Murtha, T.; Morell-Hart, S.; Fernandez Diaz, J.C.; Jiménez Álvarez, S.d.P.; Alcover Firpi, O.; Agostini, M.; Bazarsky, A.; et al. Airborne LiDAR Survey, Density-Based Clustering, and Ancient Maya Settlement in the Upper Usumacinta River Region of Mexico and Guatemala. Remote Sens. 2021, 13, 4109. [Google Scholar] [CrossRef]
- Plekhov, D.; VanValkenburgh, P.; Rojas Vega, C.; Reátegui Díaz, A. Is terraced agriculture ‘sustainable’?: A view from the Middle Utcubamba Valley, Peru. Archaeol. Anthropol. Sci. 2024, 16, 102. [Google Scholar] [CrossRef]
- Dong, S.; Xin, L.; Li, S.; Xie, H.; Zhao, Y.; Wang, X.; Lu, Y. Extent and spatial distribution of terrace abandonment in China. J. Geogr. Sci. 2023, 33, 1361–1376. [Google Scholar] [CrossRef]
- Latocha, A.; Reczyńska, K.; Gradowski, T.; Świerkosz, K. Landscape memory in abandoned areas—Physical and ecological perspectives (Central European mountains case study). Landsc. Res. 2019, 44, 600–613. [Google Scholar] [CrossRef]
- Kangalawe, R.Y. Changing land use/cover patterns and implications for sustainable environmental management in the Irangi Hills, central Tanzania. Environ. Dev. Sustain. 2010, 12, 449–461. [Google Scholar] [CrossRef]
- Priori, S.; Barbetti, R.; Meini, L.; Morelli, A.; Zampolli, A.; D’avino, L. Towards economic land evaluation at the farm scale based on soil physical-hydrological features and ecosystem services. Water 2019, 11, 1527. [Google Scholar] [CrossRef]
- Gibling, M.R. River systems and the anthropocene: A late pleistocene and Holocene timeline for human influence. Quaternary 2018, 1, 21. [Google Scholar] [CrossRef]
- Prantl, J.; Barros-Platiau, A.F.; Aoki Inoue, C.Y.; Castro Pereira, J.; Lemos Ribeiro, T.; Viola, E. Building Capabilities for Earth System Governance; Elements in Earth System Governance Series; Cambridge University Press: Cambridge, UK, 2024. [Google Scholar] [CrossRef]
- Zimmerer, K.S. Biological diversity in agriculture and global change. Annu. Rev. Environ. Resour. 2010, 35, 137–166. [Google Scholar] [CrossRef]
- Adamsone-Fiskovica, A.; Grivins, M. Understanding the Potential of Sustainability Turn in Farming: Review of Sociotechnical Adoption Factors of Agri-Environmental Cropping Practices. Renew. Agric. Food Syst. 2024, 39, e16. [Google Scholar] [CrossRef]
- De Molina, M.G. Agroecology and politics. How to get sustainability? About the necessity for a political agroecology. Agroecol. Sustain. Food Syst. 2013, 37, 45–59. [Google Scholar]
- Bergmeier, E.; Strid, A. Regional diversity, population trends and threat assessment of the weeds of traditional agriculture in Greece. Bot. J. Linn. Soc. 2014, 175, 607–623. [Google Scholar] [CrossRef]
- Brown, A.G.; Pears, B.; Cucchiaro, S.; Tarolli, P.; Lang, A.; Zhao, P.; Fallu, D. The Geoarchaeology of Agricultural Terraces in Europe: Construction, Resilience and Implications for Sediment Delivery. Geoarchaeology 2025, 40, E70008. [Google Scholar] [CrossRef]
- Singh, C.; Chauhan, N.; Upadhyay, S.K.; Singh, R.; Rani, A. The Himalayan natural resources: Challenges and conservation for sustainable development. J. Pharmacogn. Phytochem. 2021, 10, 1643–1648. [Google Scholar]
- Fukamachi, K. Sustainability of terraced paddy fields in traditional satoyama landscapes of Japan. J. Environ. Manag. 2017, 202, 543–549. [Google Scholar] [CrossRef]
- Nogueira, J.; Araújo, J.P.; Alonso, J.M.; Simões, S. Common lands, landscape management and rural development: A case study in a mountain village in northwest Portugal. Acta Geogr. Slov. 2023, 63, 51–67. [Google Scholar] [CrossRef]
- Magno, F. Forest Devolution and Social Capital: State—Civil Society Relations in the Philippines. Environ. Hist. 2001, 6, 264–286. [Google Scholar] [CrossRef]
- Bocco, G.; Napoletano, B.M. The Prospects of Terrace Agriculture as an Adaptation to Climate Change in Latin America. Geogr. Compass 2017, 11, e12330. [Google Scholar] [CrossRef]
- Elliott, M. Evaluating evidence for warfare and environmental stress in settlement pattern data from the Malpaso Valley, Zacatecas, Mexico. J. Anthropol. Archaeol. 2005, 24, 297–315. [Google Scholar] [CrossRef]
- Hashemi, S.M.; Bagheri, A.; Marshall, N. Toward sustainable adaptation to future climate change: Insights from vulnerability and resilience approaches analyzing agrarian system of Iran. Environ. Dev. Sustain. 2017, 19, 1–25. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, S. Impact of Climate Change on Himalayan Ecosystem and Traditional Crops. In Climate Change Impact on Himalayan Biodiversity; Kumar, A., Kumar, S., Eds.; Springer: Cham, Switzerland, 2025; pp. 393–413. [Google Scholar] [CrossRef]
- Khan, A.A. How Do They Know? What Do They Know? And How Do They Adapt? Understanding Traditional Climate Change Adaptation Strategies of Pastoralists in Central Karakoram. Ph.D. Dissertation, Washington State University, Pullman, WA, USA, 2023. ProQuest Dissertations & Theses Global, Publication No. 30693309. Available online: https://www.proquest.com/docview/2937213832 (accessed on 10 June 2025).
- Zhao, Y.; Zhou, R.; Yu, Q.; Zhao, L. Revealing the contribution of mountain ecosystem services research to sustainable development goals: A systematic and grounded theory driven review. J. Environ. Manag. 2025, 373, 123452. [Google Scholar] [CrossRef]
- Burel, F.; Baudry, J. Landscape Ecology: Concepts, Methods and Applications; Science Publishers: Enfield, NH, USA, 2003. [Google Scholar]
- Vardopoulos, I.; Saneugenio, F.E.; Sateriano, A.; Salvati, L. Homage (and Criticism) to the Mediterranean City: Regional Sustainability and Economic Resilience; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2024; ISBN 978-1-032-65299-0. [Google Scholar]
- Domingos, T.; Kalapodis, N.; Sakkas, G.; Chandramouli, K.; Gama, I.; Proença, V.; Ribeiro, I.; Pio, M. Advancing Integrated Fire Management and Closer-to-Nature Forest Management: A Holistic Approach to Wildfire Risk Reduction and Ecosystem Resilience in Quinta da França, Portugal. Preprints 2025, 2025, 1524. [Google Scholar] [CrossRef]
- Van Noordwijk, M.; Speelman, E.; Hofstede, G.J.; Farida, A.; Abdurrahim, A.Y.; Miccolis, A.; Teuling, A.J. Sustainable agroforestry landscape management: Changing the game. Land 2020, 9, 243. [Google Scholar] [CrossRef]
- Migliorini, P.; Gkisakis, V.; Gonzalvez, V.; Raigón, M.D.; Bàrberi, P. Agroecology in Mediterranean Europe: Genesis, state and perspectives. Sustainability 2018, 10, 2724. [Google Scholar] [CrossRef]
- Heatherington, T. Wild Sardinia: Indigeneity, Globalism, and the Dreamtimes of Environmentalism; University of Washington Press: Seattle, WA, USA, 2011. [Google Scholar]
- Leach, M.C. Making Hay with the ETS: Legal, Regulatory, and Policy Intersections in the Integration of Agriculture into the European Union Emissions Trading Scheme. Carbon Clim. Law Rev. 2022, 16, 114–128. [Google Scholar] [CrossRef]
- Piras, G.; Muzi, F.; Zylka, C. Integration of BIM and GIS for the digitization of the built environment. Appl. Sci. 2024, 14, 11171. [Google Scholar] [CrossRef]
Typology | Quadcopter |
---|---|
Weight | Approx. 1391 g (including propellers and battery) |
Max. Flight Time | Approx. 30 min (under no-wind conditions) |
Max Speed (near sea level, no wind) | 14 m/s (P Mode) 12 m/s (A Mode) 6 m/s (Tripod Mode) |
Global Navigation Satellite System | GPS + GLONASS + Galileo + BeiDou (with RTK support) |
Controllable Range | Tilt: –90° to +30° |
Gimbal Stabilization | 3-axis (tilt, roll, pan) |
Camera Sensor | 1-inch CMOS, Effective pixels: 20 MP |
Video Resolution | 4K: 4096 × 2160 @ 24/25/30 fps FHD: 1920×1080 @ 24/25/30/48/50/60 fps |
Photo Resolution | 5472 × 3648 pixels |
Operating Frequency | 2.400–2.483 GHz, 5.725–5.850 GHz |
Max Transmission Distance | 7 km (unobstructed, free of interference, FCC compliant) |
Ground Sampling Distance (GSD) | ~2.3 cm/pixel at 75 m altitude |
Flight Pattern | Autonomous double-grid, 80% frontal/70% lateral overlap |
RTK Accuracy | Horizontal: ±1 cm + 1 ppm Vertical: ±1.5 cm + 1 ppm |
Output Type | Spatial Resolution | File Format | Data Volume | Projection | Compression |
---|---|---|---|---|---|
DEM (DSM) | 0.10 m/pixel | GeoTIFF | 2.8 GB | EPSG:32637 | LZW |
Orthophoto | 0.07 m/pixel | GeoTIFF | 4.2 GB | EPSG:32637 | JPEG |
Class Type | Area (m2) | Typical Use | Slope Association (°) | Notes |
---|---|---|---|---|
Micro | <20 | Household strips | 15–25 | Often abandoned |
Small | 20–100 | Subsistence farming | 15–30 | Transition zones |
Medium | 100–400 | Communal/mixed farming | 25–35 | Moderate degradation risk |
Large | >400 | Historical macro-parcels | >35 | High erosion risk |
Cluster ID | ε (m) | minPts | No. of Terraces | Avg. TDI (%) | Avg. FSI Score | Dominant Slope Class | Functional Type |
---|---|---|---|---|---|---|---|
Cluster 1 | 35 | 5 | 54 | 62.1 | 0.82 | 15–30° | Active/Semi-Active |
Cluster 2 | 35 | 5 | 38 | 59.7 | 0.76 | 15–30° | Partially Abandoned |
Cluster 6 | 35 | 5 | 47 | 58.0 | 0.48 | >30° | Morphologically stable, degraded |
Cluster 9 | 35 | 5 | 16 | 41.2 | 0.33 | <15° | Abandoned/Fragmented |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karahan, A.; Gökçe, O.; Demircan, N.; Özgeriş, M.; Karahan, F. Integrating UAV Photogrammetry and GIS to Assess Terrace Landscapes in Mountainous Northeastern Türkiye for Sustainable Land Management. Sustainability 2025, 17, 5855. https://doi.org/10.3390/su17135855
Karahan A, Gökçe O, Demircan N, Özgeriş M, Karahan F. Integrating UAV Photogrammetry and GIS to Assess Terrace Landscapes in Mountainous Northeastern Türkiye for Sustainable Land Management. Sustainability. 2025; 17(13):5855. https://doi.org/10.3390/su17135855
Chicago/Turabian StyleKarahan, Ayşe, Oğuz Gökçe, Neslihan Demircan, Mustafa Özgeriş, and Faris Karahan. 2025. "Integrating UAV Photogrammetry and GIS to Assess Terrace Landscapes in Mountainous Northeastern Türkiye for Sustainable Land Management" Sustainability 17, no. 13: 5855. https://doi.org/10.3390/su17135855
APA StyleKarahan, A., Gökçe, O., Demircan, N., Özgeriş, M., & Karahan, F. (2025). Integrating UAV Photogrammetry and GIS to Assess Terrace Landscapes in Mountainous Northeastern Türkiye for Sustainable Land Management. Sustainability, 17(13), 5855. https://doi.org/10.3390/su17135855