Recent Advances in Protein Extraction Techniques for Meat Secondary Streams
Abstract
1. Introduction
2. Meat Secondary Streams
2.1. Meat Secondary Streams from Mammalian Species
2.2. Meat Secondary Streams from Aquatic Species
2.3. Meat Secondary Streams from Avian Species
3. Traditional Protein Extraction Methods from Meat and Meat By-Products
3.1. pH Shift Extraction
3.2. Salt Extraction
3.3. Chemical Hydrolysis
3.4. Denaturing Solutions and Detergent Extraction
3.5. Surimi Extraction/Processing
4. Novel Methods for Protein Extraction
4.1. Enzyme-Assisted Extraction
4.2. Ultrasound/Cavitation-Assisted Extraction
4.3. Microwave-Assisted Extraction
4.4. Pulse Electric Field Extraction
4.5. Supercritical Fluid Extraction
4.6. Liquid Biphasic Floatation
4.7. Deep Eutectic Solvent Extraction
4.8. Electroactivation Methods
4.9. Thermal Hydrolysis
4.10. Pressurized Liquid Extraction
4.11. Steam Explosion-Assisted Extraction
4.12. Others Emerging Methods and Combinations of Technologies
5. Conclusion and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of Food and Agriculture: Moving Forward on Food Loss and Waste Reduction; FAO Licence: CC BY-NC-SA 3.0 IGO, Global; FAO: Rome, Italy, 2019; p. 182. [Google Scholar]
- Cattaneo, A.; Sánchez, M.V.; Torero, M.; Vos, R. Reducing food loss and waste: Five challenges for policy and research. Food Policy 2021, 98, 101974. [Google Scholar] [CrossRef] [PubMed]
- Ominski, K.; McAllister, T.; Stanford, K.; Mengistu, G.; Kebebe, E.G.; Omonijo, F.; Cordeiro, M.; Legesse, G.; Wittenberg, K. Utilization of by-products and food waste in livestock production systems: A Canadian perspective. Anim. Front. 2021, 11, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, B.; Hanson, C.; Waite, R.; Searchinger, T.; Lomax, J. Reducing Food Loss and Waste. Working Paper, Installment 2 of Creating a Sustainable Food Future; World Resources Institute: Washington, DC, USA, 2013; Available online: https://www.wri.org/research/reducing-food-loss-and-waste?page (accessed on 2 March 2025).
- Mora, L.; Toldrá-Reig, F.; Reig, M.; Toldrá, F. Chapter 8-Possible Uses of Processed Slaughter Byproducts. In Sustainable Meat Production and Processing; Galanakis, C.M., Ed.; Academic Press: New York, NY, USA, 2019; pp. 145–160. [Google Scholar]
- Mullen, A.M.; Álvarez, C. Offal: Types and Composition. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: New York, NY, USA, 2016; pp. 152–157. [Google Scholar]
- Toldrá, F.; Aristoy, M.C.; Mora, L.; Reig, M. Innovations in value-addition of edible meat by-products. Meat Sci. 2012, 92, 290–296. [Google Scholar] [CrossRef]
- Bhaskar, N.; Modi, V.K.; Govindaraju, K.; Radha, C.; Lalitha, R.G. Utilization of meat industry by products: Protein hydrolysate from sheep visceral mass. Bioresour. Technol. 2007, 98, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Kamal, H.; Le, C.F.; Salter, A.M.; Ali, A. Extraction of protein from food waste: An overview of current status and opportunities. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2455–2475. [Google Scholar] [CrossRef]
- Costello, C.; Birisci, E.; McGarvey, R.G. Food waste in campus dining operations: Inventory of pre- and post-consumer mass by food category, and estimation of embodied greenhouse gas emissions. Renew. Agric. Food Syst. 2016, 31, 191–201. [Google Scholar] [CrossRef]
- Chen, C.; Chaudhary, A.; Mathys, A. Nutritional and environmental losses embedded in global food waste. Resour. Conserv. Recycl. 2020, 160, 104912. [Google Scholar] [CrossRef]
- Malva, A.d.; Albenzio, M.; Santillo, A.; Russo, D.; Figliola, L.; Caroprese, M.; Marino, R. Methods for Extraction of Muscle Proteins from Meat and Fish Using Denaturing and Nondenaturing Solutions. J. Food Qual. 2018, 2018, 8478471. [Google Scholar] [CrossRef]
- Dara, P.K.; Geetha, A.; Mohanty, U.; Raghavankutty, M.; Mathew, S.; Chandragiri Nagarajarao, R.; Rangasamy, A. Extraction and Characterization of Myofibrillar Proteins from Different Meat Sources: A Comparative Study. J. Bioresour. Bioprod. 2021, 6, 367–378. [Google Scholar] [CrossRef]
- Gault, N.F.S.; Lawrie, R.A. Efficiency of protein extraction and recovery from meat industry by-products. Meat Sci. 1980, 4, 167–190. [Google Scholar] [CrossRef]
- Pinto, J.; Boavida-Dias, R.; Matos, H.A.; Azevedo, J. Analysis of the Food Loss and Waste Valorisation of Animal By-Products from the Retail Sector. Sustainability 2022, 14, 2830. [Google Scholar] [CrossRef]
- Mathijs, E. Exploring future patterns of meat consumption. Meat Sci. 2015, 109, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.A.; Mullen, A.M.; O’Neill, E.; Drummond, L.; Álvarez, C. Opportunities and perspectives for utilisation of co-products in the meat industry. Meat Sci. 2018, 144, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Jayathilakan, K.; Sultana, K.; Radhakrishna, K.; Bawa, A.S. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: A review. Journal of Food Science and Technology 2012, 49, 278–293. [Google Scholar] [CrossRef] [PubMed]
- Plavnik, I.; Hurwitz, S. Organ weights and body composition in chickens as related to the energy and amino acid requirements: Effects of strain, sex, and age. Poult. Sci. 1983, 62, 152–163. [Google Scholar] [CrossRef]
- Okareh, O.T.; Awe, A.O.; Sridhar, M.K.C. Effect of processed feather waste as mulch on crop growth and soil fertilization. J Agric. Eco Res. Int. 2015, 4, 25–35. [Google Scholar] [CrossRef]
- Iwujia, T.; Iheanachoa, G.; Ogambaa, M.; Odunfab, O. Relationship between live weight, internal organs, and body part weights of broiler chickens. Malay. Anim. Husband. J. 2022, 2, 64–66. [Google Scholar]
- FAO. The State of World Fisheries and Aquaculture (SOFIA); Food and Agriculture Organization of the United Nations: Rome, Italy, 2022; Available online: https://www.fao.org/documents/card/en/c/cc0461en (accessed on 15 January 2025).
- Boler, D.D.; Woerner, D.R. What is meat? A perspective from the American Meat Science Association. Anim. Front. 2017, 7, 8–11. [Google Scholar] [CrossRef]
- AMSA. What are Meat Byproducts? American Meat Science Association: Savoy, IL, USA, 2015; Available online: https://meatscience.org/students/meat-judging-program/meat-judging-news/article/2015/11/20/what-are-animal-byproducts (accessed on 16 March 2021).
- Soladoye, P.O.; Juárez, M.; Estévez, M.; Fu, Y.; Álvarez, C. Exploring the prospects of the fifth quarter in the 21st century. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1439–1461. [Google Scholar] [CrossRef]
- Abdollahi, M.; Wu, H.; Undeland, I. Impact of processing technology on macro-and micronutrient profile of protein-enriched products from fish backbones. Foods 2021, 10, 950. [Google Scholar] [CrossRef]
- Tan, Y.; Gao, H.; Chang, S.K.C.; Bechtel, P.J.; Mahmoud, B.S.M. Comparative studies on the yield and characteristics of myofibrillar proteins from catfish heads and frames extracted by two methods for making surimi-like protein gel products. Food Chem. 2019, 272, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chang, S.K.C. Protein extraction from catfish byproducts and physicochemical properties of the protein isolates. J. Food Sci. 2021, 86, 3061–3074. [Google Scholar] [CrossRef] [PubMed]
- Ganjeh, A.M.; Saraiva, J.A.; Pinto, C.A.; Casal, S.; Silva, A.M.S. Emergent technologies to improve protein extraction from fish and seafood by-products: An overview. Appl. Food Res. 2023, 3, 100339. [Google Scholar] [CrossRef]
- Sachindra, N.M.; Bhaskar, N.; Mahendrakar, N.S. Carotenoids in different body components of Indian shrimps. J. Sci. Food Agric. 2005, 85, 167–172. [Google Scholar] [CrossRef]
- Wu, H.; Forghani, B.; Abdollahi, M.; Undeland, I. Lipid oxidation in sorted herring (Clupea harengus) filleting co-products from two seasons and its relationship to composition. Food Chem. 2022, 373, 131523. [Google Scholar] [CrossRef] [PubMed]
- van Berlo, E.; Undeland, I.; Abdollahi, M. Physicochemical and functional properties of protein isolated from herring co-products; effects of catching season, pre-sorting, and co-product combination. Food Chem. 2023, 398, 133947. [Google Scholar] [CrossRef]
- Wisuthiphaet, N.; Kongruang, S.; Chamcheun, C. Production of fish protein hydrolysates by acid and enzymatic hydrolysis. J. Med. Bioeng. 2015, 4, 466–470. [Google Scholar] [CrossRef]
- Borrajo, P.; Pateiro, M.; Barba, F.J.; Mora, L.; Franco, D.; Toldrá, F.; Lorenzo, J.M. Antioxidant and Antimicrobial Activity of Peptides Extracted from Meat By-products: A Review. Food Anal. Methods 2019, 12, 2401–2415. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Jaczynski, J. Gelation of protein recovered from whole Antarctic krill (Euphausia superba) by isoelectric solubilization/precipitation as affected by functional additives. J. Agric. Food Chem. 2007, 55, 1814–1822. [Google Scholar] [CrossRef]
- Pym, R. Poultry genetics and breeding in developing countries: Genetic diversity of genetic resources. In FAO Poultry Development Review; FAO: Rome, Italy, 2013; pp. 1–3. [Google Scholar]
- GCDL. Our World in Data: Yearly Number of Animals Slaughtered for MEAT, World, 1961–2018. 2020. Available online: https://ourworldindata.org/grapher/animals-slaughtered-for-meat?tab=table (accessed on 27 July 2022).
- Das, P.K.; Samanta, I. Role of backyard poultry in South-East Asian countries: Post COVID-19 perspective. World’s Poult. Sci. J. 2021, 77, 415–426. [Google Scholar] [CrossRef]
- Mottet, A.; Tempio, G. Global poultry production: Current state and future outlook and challenges. World’s Poult. Sci. J. 2017, 73, 245–256. [Google Scholar] [CrossRef]
- Fan, H.; Wu, J. Conventional use and sustainable valorization of spent egg-laying hens as functional foods and biomaterials: A review. Bioresour. Bioprocess. 2022, 9, 43. [Google Scholar] [CrossRef] [PubMed]
- Wattanachant, S.; Benjakul, S.; Ledward, D.A. Composition, color, and texture of Thai indigenous and broiler chicken muscles. Poult. Sci. 2004, 83, 123–128. [Google Scholar] [CrossRef]
- Zubair, M. Proteins Derived Bionanocomposites from Poultry By-Product for Food Packaging Applications. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 2017. [Google Scholar]
- Nurkhoeriyati, T.; Huda, N.; Ahmad, R. Gelation properties of spent duck meat surimi-like material produced using acid–alkaline solubilization methods. J. Food Sci. 2011, 76, S48–S55. [Google Scholar] [CrossRef]
- Moayedi, V.; Omana, D.A.; Chan, J.; Xu, Y.; Betti, M. Alkali-aided protein extraction of chicken dark meat: Composition and stability to lipid oxidation of the recovered proteins. Poult. Sci. 2010, 89, 766–775. [Google Scholar] [CrossRef]
- Barbut, S. Pale, soft, and exudative poultry meat—Reviewing ways to manage at the processing plant. Poult. Sci. 2009, 88, 1506–1512. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, X.; Han, M.-Y.; Qian, C.; Xu, X.-L.; Zhou, G.-H. Application of isoelectric solubilization/precipitation processing to improve gelation properties of protein isolated from pale, soft, exudative (PSE)-like chicken breast meat. LWT-Food Sci. Technol. 2016, 72, 141–148. [Google Scholar] [CrossRef]
- Momen, S.; Alavi, F.; Aider, M. Alkali-mediated treatments for extraction and functional modification of proteins: Critical and application review. Trends Food Sci. Technol. 2021, 110, 778–797. [Google Scholar] [CrossRef]
- Nolsøe, H.; Undeland, I. The acid and alkaline solubilization process for the isolation of muscle proteins: State of the art. Food Bioprocess. Technol. 2009, 2, 1–27. [Google Scholar] [CrossRef]
- Kristinsson, H.G.; Hultin, H.O. Changes in conformation and subunit assembly of cod myosin at low and high pH and after subsequent refolding. J. Agric. Food Chem. 2003, 51, 7187–7196. [Google Scholar] [CrossRef]
- Vareltzis, P.K.; Undeland, I. Protein isolation from blue mussels (Mytilus edulis) using an acid and alkaline solubilisation technique—Process characteristics and functionality of the isolates. J. Sci. Food Agric. 2012, 92, 3055–3064. [Google Scholar] [CrossRef] [PubMed]
- Undeland, I.; Kelleher, S.D.; Hultin, H.O. Recovery of functional proteins from herring (Clupea harengus) light muscle by an acid or alkaline solubilization process. J. Agric. Food Chem. 2002, 50, 7371–7379. [Google Scholar] [CrossRef]
- Chomnawang, C.; Yongsawatdigul, J. Protein Recovery of Tilapia Frame By-Products by pH-Shift Method. J. Aquat. Food Prod. Technol. 2013, 22, 112–120. [Google Scholar] [CrossRef]
- Nisov, A.; Kakko, T.; Alakomi, H.-L.; Lantto, R.; Honkapää, K. Comparison of enzymatic and pH shift methods to extract protein from whole Baltic herring (Clupea harengus membras) and roach (Rutilus rutilus). Food Chem. 2022, 373, 131524. [Google Scholar] [CrossRef] [PubMed]
- Batista, I.; Pires, C.; Nelhas, R.; Godinho, V. Acid and alkaline-aided protein recovery from Cape hake by-products. In Seafood Research from Fish to Dish. Quality, Safety and Processing of Wild and Farmed Fish; Academic Publishers: Wageningen, The Netherlands, 2006; pp. 427–438. [Google Scholar]
- Shahidi, F.; Synowiecki, J. Alkali-assisted extraction of proteins from meat and bone residues of harp seal (Phoca groenlandica). Food Chem. 1996, 57, 317–321. [Google Scholar] [CrossRef]
- Kristinsson, H.G.; Demir, N. Functional fish protein ingredients from fish species of warm and temperate waters: Comparison of acid-and alkali-aided processing vs. conventional surimi processing. In Alaska Sea Grant College Program; University of Alaska Fairbanks: Fairbanks, AK, USA, 2003; pp. 277–295. [Google Scholar]
- Hrynets, Y.; Omana, D.A.; Xu, Y.; Betti, M. Effect of acid-and alkaline-aided extractions on functional and rheological properties of proteins recovered from mechanically separated turkey meat (MSTM). J. Food Sci. 2010, 75, E477–E486. [Google Scholar] [CrossRef]
- Hrynets, Y.; Omana, D.A.; Xu, Y.; Betti, M. Comparative study on the effect of acid- and alkaline-aided extractions on mechanically separated turkey meat (MSTM): Chemical characteristics of recovered proteins. Process Biochem. 2011, 46, 335–343. [Google Scholar] [CrossRef]
- Omana, D.A.; Moayedi, V.; Xu, Y.; Betti, M. Alkali-aided protein extraction from chicken dark meat: Textural properties and color characteristics of recovered proteins. Poult. Sci. 2010, 89, 1056–1064. [Google Scholar] [CrossRef]
- Hultin, H.O.; Kelleher, S.D. Process for Isolating a Protein Composition from a Muscle Source and Protein Composition. U.S. Patent US6288216B1, 11 September 2001. [Google Scholar]
- Hultin, H.O.; Kelleher, S.D. Protein Composition and Process for Isolating a Protein Composition from a Muscle Source. U.S. Patent US6451975B1, 17 September 2002. [Google Scholar]
- Hultin, H.O.; Kelleher, S.D. Process for Isolating a Protein Composition from a Muscle Source and Protein Composition. Google Patents MXPA97008100A, 12 November 1998. [Google Scholar]
- Abdollahi, M.; Undeland, I. A novel cold biorefinery approach for isolation of high quality fish oil in parallel with gel-forming proteins. Food Chem. 2020, 332, 127294. [Google Scholar] [CrossRef]
- Álvarez, C.; Lélu, P.; Lynch, S.A.; Tiwari, B.K. Optimised protein recovery from mackerel whole fish by using sequential acid/alkaline isoelectric solubilization precipitation (ISP) extraction assisted by ultrasound. LWT 2018, 88, 210–216. [Google Scholar] [CrossRef]
- Hinchcliffe, J.; Carlsson, N.G.; Jönsson, E.; Sundell, K.; Undeland, I. Aquafeed ingredient production from herring (Clupea harengus) by-products using pH-shift processing: Effect from by-product combinations, protein solubilization-pH and centrifugation force. Anim. Feed. Sci. Technol. 2019, 247, 273–284. [Google Scholar] [CrossRef]
- Abdollahi, M.; Undeland, I. Physicochemical and gel-forming properties of protein isolated from salmon, cod and herring by-products using the pH-shift method. LWT 2019, 101, 678–684. [Google Scholar] [CrossRef]
- Kristinsson, H.G.; Liang, Y. Effect of pH-shift processing and surimi processing on Atlantic croaker (Micropogonias undulates) muscle proteins. J. Food Sci. 2006, 71, C304–C312. [Google Scholar] [CrossRef]
- Kristinsson, H.G.; Theodore, A.E.; Demir, N.; Ingadottir, B. A comparative study between acid-and alkali-aided processing and surimi processing for the recovery of proteins from channel catfish muscle. J. Food Sci. 2005, 70, C298–C306. [Google Scholar] [CrossRef]
- Costa, C.G.C.D.; Paula, M.M.d.O.; Massingue, A.A.; Torres Filho, R.d.A.; Ramos, E.M.; Carneiro, J.d.D.d.S. Protein concentrates obtained from pig by-products using pH-shifting technique: A preliminary study. Ciência Rural 2019, 49, e20181048. [Google Scholar] [CrossRef]
- Lynch, S.A.; Álvarez, C.; O’Neill, E.E.; Keenan, D.F.; Mullen, A.M. Optimization of protein recovery from bovine lung by pH shift process using response surface methodology. J. Sci. Food Agric. 2018, 98, 1951–1960. [Google Scholar] [CrossRef]
- Park, J.D.; Hung, C.H.; Kim, J.S.; Choi, Y.J.; Cho, D.M.; Cho, M.S. Surimi processing using acid and alkali solubilization of fish muscle protein. J. Korean Soc. Food Sci. Nutr. 2003, 32, 400–405. [Google Scholar]
- Batista, I. Recovery of proteins from fish waste products by alkaline extraction. Eur. Food Res. Technol. 1999, 210, 84–89. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y.; Wang, X.-X.; Ma, F.; Xu, B.-C.; Li, P.-J.; Chen, C.-G. Origin of high-pressure induced changes in the properties of reduced-sodium chicken myofibrillar protein gels containing CaCl2: Physicochemical and molecular modification perspectives. Food Chem. 2020, 319, 126535. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y.; Li, P.-J.; Wang, X.-X.; Cai, K.-Z.; Chen, C.-G. Combined effect of CaCl2 and high pressure processing on the solubility of chicken breast myofibrillar proteins under sodium-reduced conditions. Food Chem. 2018, 269, 236–243. [Google Scholar] [CrossRef]
- Hashimoto, K.; Watabe, S.; KoNo, M.; Shiro, K. Muscle protein composition of sardine and mackerel. Bull. Jpn. Soc. Sci. Fish. 1979, 45, 1435–1441. [Google Scholar] [CrossRef]
- Lan, Y.H.; Novakofski, J.; Carr, T.R.; McKeith, F.K. Assay and Storage Conditions Affect Yield of Salt Soluble Protein from Muscle. J. Food Sci. 1993, 58, 963–967. [Google Scholar] [CrossRef]
- Foegeding, E.A. Functional Properties of Turkey Salt-Soluble Proteins. J. Food Sci. 1987, 52, 1495–1499. [Google Scholar] [CrossRef]
- Gillett, T.A.; Meiburg, D.E.; Brown, C.L.; Simon, S. Parameters affecting meat protein extraction and interpretation of model system data for meat emulsion formation. J. Food Sci. 1977, 42, 1606–1610. [Google Scholar] [CrossRef]
- Vega-Warner, V.; Merkel, R.A.; Smith, D.M. Composition, solubility and gel properties of salt soluble proteins from two bovine muscle types. Meat Sci. 1999, 51, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.L.; Lou, X.; Wang, C.; Moody, W.G.; Harmon, R.J. Protein Extraction From Chicken Myofibrils Irrigated with Various Polyphosphate and NaCl Solutions. J. Food Sci. 2000, 65, 96–100. [Google Scholar] [CrossRef]
- Richardson, R.I.; Jones, J.M. The effects of salt concentration and pH upon water-binding, water-holding and protein extractability of turkey meat. Int. J. Food Sci. Technol. 1987, 22, 683–692. [Google Scholar] [CrossRef]
- Munasinghe, D.M.S.; Sakai, T. Sodium chloride as a preferred protein extractant for pork lean meat. Meat Sci. 2004, 67, 697–703. [Google Scholar] [CrossRef]
- Gordon, A.; Barbut, S. Effect of chloride salts on protein extraction and interfacial protein film formation in meat batters. J. Sci. Food Agric. 1992, 58, 227–238. [Google Scholar] [CrossRef]
- Young, R.H.; Lawrie, R.A. Utilization of edible protein from meat industry by-products and waste: I. Factors influencing the extractability of protein from bovine and ovine stomach and lungs. Int. J. Food Sci. Technol. 1974, 9, 69–78. [Google Scholar] [CrossRef]
- DeWitt, C.A.M.; Gomez, G.; James, J.M. Protein extraction from beef heart using acid solubilization. J. Food Sci. 2002, 67, 3335–3341. [Google Scholar] [CrossRef]
- Steen, L.; Glorieux, S.; Goemaere, O.; Brijs, K.; Paelinck, H.; Foubert, I.; Fraeye, I. Functional Properties of Pork Liver Protein Fractions. Food Bioprocess. Technol. 2016, 9, 970–980. [Google Scholar] [CrossRef]
- Zouari, N.; Fakhfakh, N.; Amara-Dali, W.B.; Sellami, M.; Msaddak, L.; Ayadi, M.A. Turkey liver: Physicochemical characteristics and functional properties of protein fractions. Food Bioprod. Process. 2011, 89, 142–148. [Google Scholar] [CrossRef]
- Devatkal, S.; Mendiratta, S.K.; Kondaiah, N.; Sharma, M.C.; Anjaneyulu, A.S.R. Physicochemical, functional and microbiological quality of buffalo liver. Meat Sci. 2004, 68, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Nuckles, R.O.; Smith, D.M.; Merkel, R.A. Meat by-product protein composition and functional properties in model systems. J. Food Sci. 1990, 55, 640–643. [Google Scholar] [CrossRef]
- Krasnowska, G.; Górska, I.; Gergont, J. Evaluation of functional properties of offal proteins. Food/Nahrung 1995, 39, 149–155. [Google Scholar] [CrossRef]
- Rivera, J.A.; Sebranek, J.G.; Rust, R.E.; Tabatabai, L.B. Composition and protein fractions of different meat by-products used for petfood compared with mechanically separated chicken (MSC). Meat Sci. 2000, 55, 53–59. [Google Scholar] [CrossRef]
- Yuan, Z.; Ye, X.; Hou, Z.; Chen, S. Sustainable utilization of proteins from fish processing by-products: Extraction, biological activities and applications. Trends Food Sci. Technol. 2024, 143, 104276. [Google Scholar] [CrossRef]
- Carpio, K.C.R.; Bezerra, R.S.; Cahú, T.B.; Monte, F.T.D.D.; Neri, R.C.A.; Silva, J.F.D.; Santos, P.R.D.; Carvalho, R.P.; Galeno, D.M.L.; Inhamuns, A.J. Extraction and characterization of collagen from the skin of Amazonian freshwater fish pirarucu. Braz. J. Med. Biol. Res. 2023, 56, e12564. [Google Scholar] [CrossRef]
- Truong, T.M.; Nguyen, V.M.; Tran, T.T.; Le, T.M. Characterization of Acid-Soluble Collagen from Food Processing By-Products of Snakehead Fish (Channa striata). Processes 2021, 9, 1188. [Google Scholar] [CrossRef]
- Guan, Y.; He, J.; Chen, J.; Li, Y.; Zhang, X.; Zheng, Y.; Jia, L. Valorization of Fish Processing By-Products: Microstructural, Rheological, Functional, and Properties of Silver Carp Skin Type I Collagen. Foods 2022, 11, 2985. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.A.; Shakir, K.A.; Walsh, M.K. Functional Properties of Collagen Extracted from Catfish (Silurus triostegus) Waste. Foods 2022, 11, 633. [Google Scholar] [CrossRef] [PubMed]
- Vasconcellos, R.S.; Volpato, J.A.; Silva, I.C. Bioactive peptides extracted from hydrolyzed animal byproducts for dogs and cats. Anim. Front. 2024, 14, 38–45. [Google Scholar] [CrossRef]
- Areas, J.A.G. Lipid protein interactions in offal protein isolates: Effect of several solvents on lipid extraction. J. Food Sci. 1985, 50, 1392–1395. [Google Scholar] [CrossRef]
- Rao, B.J.; Kumar, P. Methods of Proteins Recovery from Abattoir Offals—An Overview. J. Meat Sci. Technol. 2016, 4, 76–83. [Google Scholar]
- Ellison, N.S.; Gault, N.F.; Lawrie, R.A. Removal of sodium dodecyl sulphate from complex with recovered offal proteins. Meat Sci. 1980, 4, 77–78. [Google Scholar] [CrossRef]
- Khumalo, M.; Sithole, B.; Tesfaye, T. Valorisation of waste chicken feathers: Optimisation of keratin extraction from waste chicken feathers by sodium bisulphite, sodium dodecyl sulphate and urea. J. Environ. Manag. 2020, 262, 110329. [Google Scholar] [CrossRef]
- Santana, P.; Huda, N.; Yang, T.A. Technology for production of surimi powder and potential of applications. Int. Food Res. J. 2012, 19, 1313–1323. [Google Scholar]
- Martín-Sánchez, A.M.; Navarro, C.; Pérez-Álvarez, J.A.; Kuri, V. Alternatives for efficient and sustainable production of surimi: A review. Compr. Rev. Food Sci. Food Saf. 2009, 8, 359–374. [Google Scholar] [CrossRef]
- Leadbitter, D.; Guenneugues, P.; Park, J. The Production of Surimi and Surimi Seafood from Tropical Fish—A Landscape View of the Industry. 2020. Available online: https://certificationandratings.org/wp-content/uploads/2023/04/Surimi-Landscape-Report-Final-2.pdf (accessed on 28 December 2024).
- Park, J.W.; Nozaki, H.; Suzuki, T.; Beliveau, J.-L. Historical review of surimi technology and market developments. Surimi Surimi Seaf. 2013, 1, 1. [Google Scholar]
- Stangierski, J.; Baranowska, H.M.; Rezler, R.; Kijowski, J. Enzymatic modification of protein preparation obtained from water-washed mechanically recovered poultry meat. Food Hydrocoll. 2008, 22, 1629–1636. [Google Scholar] [CrossRef]
- Cortez-Vega, W.R.; Fonseca, G.G.; Prentice, C. Optimization of parameters for obtaining surimi-like material from mechanically separated chicken meat using response surface methodology. J. Food Sci. Technol. 2015, 52, 763–772. [Google Scholar] [CrossRef]
- Jin, S.-K.; Kim, I.-S.; Choi, Y.-J.; Park, G.-B.; Yang, H.-S. Quality Characteristics of Chicken Breast Surimi as Affected by Water Washing Time and pH Adjustment. Asian-Australas. J. Anim. Sci. 2008, 21, 449–455. [Google Scholar] [CrossRef]
- Jin, S.K.; Kim, I.S.; Jung, H.J.; Kim, D.H.; Choi, Y.J.; Hur, S.J. The Development of Sausage Including Meat from Spent Laying Hen Surimi. Poult. Sci. 2007, 86, 2676–2684. [Google Scholar] [CrossRef]
- Wimmer, M.P.; Sebranek, J.G.; McKelTh, F.K. Washed mechanically separated pork as a surimi-like meat-product ingredient. J. Food Sci. 1993, 58, 254–258. [Google Scholar] [CrossRef]
- Park, S.; Brewer, M.S.; Novakofski, J.; Bechtel, P.J.; McKeith, F.K. Process and characteristics for a surimi-like material made from beef or pork. J. Food Sci. 1996, 61, 422–427. [Google Scholar] [CrossRef]
- Toldrà, M.; Taberner, P.; Parés, D.; Carretero, C. Surimi-like protein ingredient from porcine spleen as lean meat replacer in emulsion-type sausages. Meat Sci. 2021, 182, 108640. [Google Scholar] [CrossRef]
- Desmond, E.M.; Kenny, T.A. Preparation of surimi-like extract from beef hearts and its utilisation in frankfurters. Meat Sci. 1998, 50, 81–89. [Google Scholar] [CrossRef]
- Tina, N.; Nurul, H.; Ruzita, A. Surimi-like material: Challenges and prospects. Int. Food Res. J. 2010, 17, 509–517. [Google Scholar]
- Venugopal, V. Valorization of seafood processing discards: Bioconversion and bio-refinery approaches. Front. Sustain. Food Syst. 2021, 5, 611835. [Google Scholar] [CrossRef]
- Agbowuro, A.A.; Huston, W.M.; Gamble, A.B.; Tyndall, J.D.A. Proteases and protease inhibitors in infectious diseases. Med. Res. Rev. 2018, 38, 1295–1331. [Google Scholar] [CrossRef] [PubMed]
- Matulessy, D.N.; Erwanto, Y.; Nurliyani, N.; Suryanto, E.; Abidin, M.Z.; Hakim, T.R. Characterization and functional properties of gelatin from goat bone through alcalase and neutrase enzymatic extraction. Vet. World 2021, 14, 2397. [Google Scholar] [CrossRef] [PubMed]
- Abedinia, A.; Ariffin, F.; Huda, N.; Nafchi, A.M. Extraction and characterization of gelatin from the feet of Pekin duck (Anas platyrhynchos domestica) as affected by acid, alkaline, and enzyme pretreatment. Int. J. Biol. Macromol. 2017, 98, 586–594. [Google Scholar] [CrossRef]
- Gaspar-Pintiliescu, A.; Stefan, L.M.; Anton, E.D.; Berger, D.; Matei, C.; Negreanu-Pirjol, T.; Moldovan, L. Physicochemical and biological properties of gelatin extracted from marine snail Rapana venosa. Mar. Drugs 2019, 17, 589. [Google Scholar] [CrossRef]
- Laba, W.; Rodziewicz, A. Biodegradation of hard keratins by two Bacillus strains. Jundishapur J. Microbiol. 2014, 7, e8896. [Google Scholar] [CrossRef]
- Liu, R.; Xing, L.; Fu, Q.; Zhou, G.-h.; Zhang, W.-g. A review of antioxidant peptides derived from meat muscle and by-products. Antioxidants 2016, 5, 32. [Google Scholar] [CrossRef]
- Morales, D.; Miguel, M.; Garcés-Rimón, M. Pseudocereals: A novel source of biologically active peptides. Crit. Rev. Food Sci. Nutr. 2021, 61, 1537–1544. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tu, D.; Shen, Q.; Dai, Z. Fish scale valorization by hydrothermal pretreatment followed by enzymatic hydrolysis for gelatin hydrolysate production. Molecules 2019, 24, 2998. [Google Scholar] [CrossRef]
- Pérez-Aguilar, H.; Lacruz-Asaro, M.; Arán-Ais, F. Towards a circular bioeconomy: High added value protein recovery and recycling from animal processing by-products. Sustain. Chem. Pharm. 2022, 28, 100667. [Google Scholar] [CrossRef]
- Ran, X.G.; Wang, L.Y. Use of ultrasonic and pepsin treatment in tandem for collagen extraction from meat industry by-products. J. Sci. Food Agric. 2014, 94, 585–590. [Google Scholar] [CrossRef]
- Lapenña, D.; Vuoristo, K.S.; Kosa, G.; Horn, S.J.; Eijsink, V.G.H. Comparative assessment of enzymatic hydrolysis for valorization of different protein-rich industrial byproducts. J. Agric. Food Chem. 2018, 66, 9738–9749. [Google Scholar] [CrossRef] [PubMed]
- Safar Razavizadeh, R.; Farmani, J.; Motamedzadegan, A. Enzyme-assisted extraction of chicken skin protein hydrolysates and fat: Degree of hydrolysis affects the physicochemical and functional properties. J. Am. Oil Chem. Soc. 2022, 99, 621–632. [Google Scholar] [CrossRef]
- Fallah-Delavar, M.; Farmani, J. Recovery and characterization of enzymatic protein hydrolyzates and fat from chicken skin. J. Am. Oil Chem. Soc. 2018, 95, 1151–1161. [Google Scholar] [CrossRef]
- de Queiroz, A.L.M.; Bezerra, T.; Kênia, A.; de Freitas Pereira, S.; da Silva, M.E.C.; de Almeida Gadelha, C.A.; Gadelha, T.S.; Pacheco, M.; Teresa, B.; Madruga, M.S. Functional protein hydrolysate from goat by-products: Optimization and characterization studies. Food Biosci. 2017, 20, 19–27. [Google Scholar] [CrossRef]
- Pagán, J.; Ibarz, A.; Falguera, V.; Benítez, R. Enzymatic hydrolysis kinetics and nitrogen recovery in the protein hydrolysate production from pig bones. J. Food Eng. 2013, 119, 655–659. [Google Scholar] [CrossRef]
- Bah, C.S.F.; Bekhit, A.E.-D.A.; McConnell, M.A.; Carne, A. Generation of bioactive peptide hydrolysates from cattle plasma using plant and fungal proteases. Food Chem. 2016, 213, 98–107. [Google Scholar] [CrossRef]
- Batista, I.; Ramos, C.; Mendonça, R.; Nunes, M.L. Enzymatic Hydrolysis of Sardine (Sardina pilchardus) By-products and Lipid Recovery. J. Aquat. Food Prod. Technol. 2009, 18, 120–134. [Google Scholar] [CrossRef]
- Chiodza, K.; Goosen, N.J. Emulsion formation during enzymatic protein hydrolysis and its effect on protein recovery and molecular weight distribution of protein hydrolysates from sardine (Sardina pilchardus) by-products. Biomass Convers. Biorefinery 2023, 14, 24069–24080. [Google Scholar] [CrossRef]
- Liceaga-Gesualdo, A.M.; Li-Chan, E.C.Y. Functional properties of fish protein hydrolysate from herring (Clupea harengus). J. Food Sci. 1999, 64, 1000–1004. [Google Scholar] [CrossRef]
- Jain, S.; Anal, A.K. Optimization of extraction of functional protein hydrolysates from chicken egg shell membrane (ESM) by ultrasonic assisted extraction (UAE) and enzymatic hydrolysis. LWT-Food Sci. Technol. 2016, 69, 295–302. [Google Scholar] [CrossRef]
- Rodríguez-Díaz, J.C.; Kurozawa, L.E.; Netto, F.M.; Hubinger, M.D. Optimization of the enzymatic hydrolysis of Blue shark skin. J. Food Sci. 2011, 76, C938–C949. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Franco, C.; Zhang, W. Process optimisation and physicochemical characterisation of enzymatic hydrolysates of proteins from co-products of Atlantic Salmon (Salmo salar) and Yellowtail Kingfish (Seriola lalandi). Int. J. Food Sci. Technol. 2012, 47, 2397–2404. [Google Scholar] [CrossRef]
- Szucs, M.; Angulo, M.; Costa, C.; Márquez, M. Meat waste valorization through protein hydrolysis using different types of proteases. Recent. Prog. Mater. 2021, 3, 1–17. [Google Scholar] [CrossRef]
- Dhakal, D.; Koomsap, P.; Lamichhane, A.; Sadiq, M.B.; Anal, A.K. Optimization of collagen extraction from chicken feet by papain hydrolysis and synthesis of chicken feet collagen based biopolymeric fibres. Food Biosci. 2018, 23, 23–30. [Google Scholar] [CrossRef]
- Mokhtar, N.D.; Wahab, W.A.; Hamdan, N.A.; Hadi, H.A.; Abu Hassan, M.S.; Bunnori, N.M. Extraction, optimization and characterization of collagen from chicken (Gallus gallus domesticus) feet. In Proceedings of the 5th International Conference on Chemical, Agricultural, Biological and Environmental Sciences, Kyoto, Japan, 18–19 April 2017; pp. 18–19. [Google Scholar]
- Zhou, C.; Li, Y.; Yu, X.; Yang, H.; Ma, H.; Yagoub, A.E.A.; Cheng, Y.; Hu, J.; Otu, P.N.Y. Extraction and characterization of chicken feet soluble collagen. LWT 2016, 74, 145–153. [Google Scholar] [CrossRef]
- AraÚJo, Í.B.d.S.; Bezerra, T.K.A.; Nascimento, E.S.d.; Gadelha, C.A.d.A.; Santi-Gadelha, T.; Madruga, M.S. Optimal conditions for obtaining collagen from chicken feet and its characterization. Food Sci. Technol. 2018, 38, 167–173. [Google Scholar] [CrossRef]
- Woo, H.; Jeong, G.A.; Choi, H.; Lee, C.J. Characterization of Low-Molecular-Weight Collagen from Korean Native Chicken Feet Hydrolyzed Using Alcalase. J. Microbiol. Biotechnol. 2023, 33, 656–661. [Google Scholar] [CrossRef]
- Hatab, S.; Chen, M.-L.; Miao, W.; Lin, J.; Wu, D.; Wang, C.; Yuan, P.; Deng, S. Protease hydrolysates of filefish (Thamnaconus modestus) byproducts effectively inhibit foodborne pathogens. Foodborne Pathog. Dis. 2017, 14, 656–666. [Google Scholar] [CrossRef]
- Zou, Y.; Shahidi, F.; Shi, H.; Wang, J.; Huang, Y.; Xu, W.; Wang, D. Values-added utilization of protein and hydrolysates from animal processing by-product livers: A review. Trends Food Sci. Technol. 2021, 110, 432–442. [Google Scholar] [CrossRef]
- Arslan, B.; Xiong, Y.L.; Soyer, A. Antioxidant properties of bovine liver protein hydrolysates and their practical application in biphasic systems. J. Sci. Food Agric. 2023, 104, 2980–2989. [Google Scholar] [CrossRef]
- Mintah, B.K.; He, R.; Dabbour, M.; Xiang, J.; Jiang, H.; Agyekum, A.A.; Ma, H. Characterization of edible soldier fly protein and hydrolysate altered by multiple-frequency ultrasound: Structural, physical, and functional attributes. Process Biochem. 2020, 95, 157–165. [Google Scholar] [CrossRef]
- Patist, A.; Bates, D. Ultrasonic innovations in the food industry: From the laboratory to commercial production. Innov. Food Sci. Emerg. Technol. 2008, 9, 147–154. [Google Scholar] [CrossRef]
- Bernardi, S.; Lupatini-Menegotto, A.L.; Kalschne, D.L.; Moraes Flores, É.L.; Bittencourt, P.R.S.; Colla, E.; Canan, C. Ultrasound: A suitable technology to improve the extraction and techno-functional properties of vegetable food proteins. Plant Foods Hum. Nutr. 2021, 76, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Gogate, P.; Tayal, R.K.; Pandit, A. Cavitation: A technology on the horizon. Curr. Sci. 2006, 91, 35–46. [Google Scholar]
- Kingwascharapong, P.; Chaijan, M.; Karnjanapratum, S. Ultrasound-assisted extraction of protein from Bombay locusts and its impact on functional and antioxidative properties. Sci. Rep. 2021, 11, 17320. [Google Scholar] [CrossRef]
- Ojha, K.S.; Aznar, R.; O’Donnell, C.; Tiwari, B.K. Ultrasound technology for the extraction of biologically active molecules from plant, animal and marine sources. TrAC Trends Anal. Chem. 2020, 122, 115663. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, L.; Li, P.; Cai, P.; Zhang, M.; Sun, Z.; Sun, C.; Geng, Z.; Xu, W.; Xu, X. Effects of ultrasound assisted extraction on the physiochemical, structural and functional characteristics of duck liver protein isolate. Process Biochem. 2017, 52, 174–182. [Google Scholar] [CrossRef]
- Panda, D.; Manickam, S. Cavitation Technology—The Future of Greener Extraction Method: A Review on the Extraction of Natural Products and Process Intensification Mechanism and Perspectives. Appl. Sci. 2019, 9, 766. [Google Scholar] [CrossRef]
- Duppeti, H.; Nakkarike Manjabhatta, S.; Bheemanakere Kempaiah, B. Optimization of ultrasonic-assisted extraction of flavor compounds from shrimp by-products and characterization of flavor profile of the extract. Ultrason. SonoChem. 2023, 101, 106651. [Google Scholar] [CrossRef]
- Zou, Y.; Bian, H.; Li, P.; Sun, Z.; Sun, C.; Zhang, M.; Geng, Z.; Xu, W.; Wang, D. Optimization and physicochemical properties of nutritional protein isolate from pork liver with ultrasound-assisted alkaline extraction. Anim. Sci. J. 2018, 89, 456–466. [Google Scholar] [CrossRef]
- Friedman, M. Lysinoalanine in Food and in Antimicrobial Proteins. In Impact of Processing on Food Safety; Jackson, L.S., Knize, M.G., Morgan, J.N., Eds.; Springer: Greer, SC, USA, 1999; pp. 145–159. [Google Scholar]
- Surasani, V.K.R. Acid and alkaline solubilization (pH shift) process: A better approach for the utilization of fish processing waste and by-products. Environ. Sci. Pollut. Res. 2018, 25, 18345–18363. [Google Scholar] [CrossRef]
- Tang, Z.-X.; Ying, R.-F.; Shi, L.-E. Physicochemical and functional characteristics of proteins treated by a pH-shift process: A review. Int. J. Food Sci. Technol. 2021, 56, 515–529. [Google Scholar] [CrossRef]
- Lee, C.H. A Simple Outline of Methods for Protein Isolation and Purification. Endocrinol. Metab. 2017, 32, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Nadar, S.S.; Rao, P.; Rathod, V.K. Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Res. Int. 2018, 108, 309–330. [Google Scholar] [CrossRef]
- Picot-Allain, C.; Mahomoodally, M.F.; Ak, G.; Zengin, G. Conventional versus green extraction techniques—A comparative perspective. Curr. Opin. Food Sci. 2021, 40, 144–156. [Google Scholar] [CrossRef]
- Carreira-Casais, A.; Otero, P.; Garcia-Perez, P.; Garcia-Oliveira, P.; Pereira, A.G.; Carpena, M.; Soria-Lopez, A.; Simal-Gandara, J.; Prieto, M.A. Benefits and Drawbacks of Ultrasound-Assisted Extraction for the Recovery of Bioactive Compounds from Marine Algae. Int. J. Environ. Res. Public Health 2021, 18, 9153. [Google Scholar] [CrossRef] [PubMed]
- Sert, D.; Rohm, H.; Struck, S. Ultrasound-Assisted Extraction of Protein from Pumpkin Seed Press Cake: Impact on Protein Yield and Techno-Functionality. Foods 2022, 11, 4029. [Google Scholar] [CrossRef]
- Suchintita Das, R.; Tiwari, B.K.; Chemat, F.; Garcia-Vaquero, M. Impact of ultrasound processing on alternative protein systems: Protein extraction, nutritional effects and associated challenges. Ultrason. Sonochemistry 2022, 91, 106234. [Google Scholar] [CrossRef]
- Ampofo, J.; Ngadi, M. Ultrasound-assisted processing: Science, technology and challenges for the plant-based protein industry. Ultrason. Sonochem. 2022, 84, 105955. [Google Scholar] [CrossRef]
- Barrios, C.; Fernández-Delgado, M.; López-Linares, J.C.; García-Cubero, M.T.; Coca, M.; Lucas, S. A techno-economic perspective on a microwave extraction process for efficient protein recovery from agri-food wastes. Ind. Crops Prod. 2022, 186, 115166. [Google Scholar] [CrossRef]
- Peñas, E.; Hernandez-Ledesma, B.; Martinez-Villaluenga, C. Microwave-assisted extraction of plant proteins. In Green Protein Processing Technologies from Plants: Novel Extraction and Purification Methods for Product Development; Springer: Belin, Germany, 2023; pp. 211–236. [Google Scholar]
- Zhou, Y.; He, Q.; Zhou, D. Optimization extraction of protein from mussel by high-Intensity pulsed electric fields. J. Food Process. Preserv. 2017, 41, e12962. [Google Scholar] [CrossRef]
- Li, M.; Lin, J.I.E.; Chen, J.; Fang, T. Pulsed electric field-assisted enzymatic extraction of protein from abalone (Haliotis discus hannai Ino) viscera. J. Food Process Eng. 2016, 39, 702–710. [Google Scholar] [CrossRef]
- Rocha, C.M.R.; Genisheva, Z.; Ferreira-Santos, P.; Rodrigues, R.; Vicente, A.A.; Teixeira, J.A.; Pereira, R.N. Electric field-based technologies for valorization of bioresources. Bioresour. Technol. 2018, 254, 325–339. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Gullón, B.; Wang, M.; Gullón, P.; Lorenzo, J.M.; Barba, F.J. The Application of Supercritical Fluids Technology to Recover Healthy Valuable Compounds from Marine and Agricultural Food Processing By-Products: A Review. Processes 2021, 9, 357. [Google Scholar] [CrossRef]
- Wrona, O.; Rafińska, K.; Możeński, C.; Buszewski, B. Supercritical Fluid Extraction of Bioactive Compounds from Plant Materials. J. AOAC Int. 2017, 100, 1624–1635. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, W.; Zhang, N.; Soladoye, O.P.; Zhang, Y.; Fu, Y. Deep eutectic solvents as new media for green extraction of food proteins: Opportunity and challenges. Food Res. Int. 2022, 161, 111842. [Google Scholar] [CrossRef]
- Socas-Rodríguez, B.; Torres-Cornejo, M.V.; Álvarez-Rivera, G.; Mendiola, J.A. Deep Eutectic Solvents for the Extraction of Bioactive Compounds from Natural Sources and Agricultural By-Products. Appl. Sci. 2021, 11, 4897. [Google Scholar] [CrossRef]
- Bowen, H.; Durrani, R.; Delavault, A.; Durand, E.; Chenyu, J.; Yiyang, L.; Lili, S.; Jian, S.; Weiwei, H.; Fei, G. Application of deep eutectic solvents in protein extraction and purification. Front. Chem. 2022, 10, 912411. [Google Scholar] [CrossRef]
- Suthar, P.; Kaushal, M.; Vaidya, D.; Thakur, M.; Chauhan, P.; Angmo, D.; Kashyap, S.; Negi, N. Deep eutectic solvents (DES): An update on the applications in food sectors. J. Agric. Food Res. 2023, 14, 100678. [Google Scholar] [CrossRef]
- Karabulut, G.; Köroğlu, D.G.; Feng, H.; Karabulut, Z. Sustainable fungi-based protein extraction from agro-waste mushroom stem using deep eutectic solvents. Food Chemistry X 2024, 24, 101931. [Google Scholar] [CrossRef]
- Zhang, J.; Wen, C.; Zhang, H.; Duan, Y.; Ma, H. Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends Food Sci. Technol. 2020, 95, 183–195. [Google Scholar] [CrossRef]
- Dong, Y.; Yan, W.; Zhang, X.-D.; Dai, Z.-Y.; Zhang, Y.-Q. Steam explosion-assisted extraction of protein from fish backbones and effect of enzymatic hydrolysis on the extracts. Foods 2021, 10, 1942. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, H.; Qi, L.; Xv, X.; Li, X.; Guo, Y.; Jia, W.; Zhang, C.; Richel, A. Application of steam explosion treatment on the collagen peptides extraction from cattle bone. Innov. Food Sci. Emerg. Technol. 2023, 85, 103336. [Google Scholar] [CrossRef]
- Sharma, P.; Zalpouri, R. Microwave-assisted extraction of proteins and carbohydrates from marine resources. In Innovative and Emerging Technologies in the Bio-Marine Food Sector; Academic Press: New York, NY, USA, 2022; pp. 361–374. [Google Scholar]
- Sosa-Hernández, J.E.; Escobedo-Avellaneda, Z.; Iqbal, H.M.N.; Welti-Chanes, J. State-of-the-art extraction methodologies for bioactive compounds from algal biome to meet bio-economy challenges and opportunities. Molecules 2018, 23, 2953. [Google Scholar] [CrossRef] [PubMed]
- Leonelli, C.; Veronesi, P.; Cravotto, G. Microwave-assisted extraction: An introduction to dielectric heating. In Microwave-Assisted Extraction for Bioactive Compounds: Theory and Practice; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–14. [Google Scholar]
- Gomez, L.; Tiwari, B.; Garcia-Vaquero, M. Emerging extraction techniques: Microwave-assisted extraction. In Sustainable Seaweed Technologies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 207–224. [Google Scholar]
- Liu, T.; Dai, H.; Ma, L.; Yu, Y.; Tang, M.; Li, Y.; Hu, W.; Feng, X.; Zhang, Y. Structure of Hyla rabbit skin gelatin as affected by microwave-assisted extraction. Int. J. Food Prop. 2019, 22, 1594–1607. [Google Scholar] [CrossRef]
- Feng, X.; Dai, H.; Zhu, J.; Ma, L.; Yu, Y.; Zhu, H.; Wang, H.; Sun, Y.; Tan, H.; Zhang, Y. Improved solubility and interface properties of pigskin gelatin by microwave irradiation. Int. J. Biol. Macromol. 2021, 171, 1–9. [Google Scholar] [CrossRef]
- Lee, Y.S.; Phang, L.-Y.; Ahmad, S.A.; Ooi, P.T. Microwave-alkali treatment of chicken feathers for protein hydrolysate production. Waste Biomass Valorization 2016, 7, 1147–1157. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Fabiano-Tixier, A.-S.; Nutrizio, M.; Jambrak, A.R.; Munekata, P.E.S.; Lorenzo, J.M.; Barba, F.J.; Binello, A.; Cravotto, G. A review of sustainable and intensified techniques for extraction of food and natural products. Green. Chem. 2020, 22, 2325–2353. [Google Scholar] [CrossRef]
- Arshad, R.N.; Abdul-Malek, Z.; Roobab, U.; Qureshi, M.I.; Khan, N.; Ahmad, M.H.; Liu, Z.W.; Aadil, R.M. Effective valorization of food wastes and by-products through pulsed electric field: A systematic review. J. Food Process Eng. 2021, 44, e13629. [Google Scholar] [CrossRef]
- Martínez, J.M.; Delso, C.; Maza, M.; Álvarez, I.; Raso, J. Utilising pulsed electric field processing to enhance extraction processes. In Innovative Food Processing Technologies: A Comprehensive Review; Elsevier: Amsterdam, The Netherlands, 2020; pp. 281–287. [Google Scholar]
- Golberg, A.; Sack, M.; Teissie, J.; Pataro, G.; Pliquett, U.; Saulis, G.; Stefan, T.; Miklavcic, D.; Vorobiev, E.; Frey, W. Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development. Biotechnol. Biofuels 2016, 9, 94. [Google Scholar] [CrossRef]
- Chatzimitakos, T.; Athanasiadis, V.; Kalompatsios, D.; Mantiniotou, M.; Bozinou, E.; Lalas, S.I. Pulsed electric field applications for the extraction of bioactive compounds from food waste and by-products: A critical review. Biomass 2023, 3, 367–401. [Google Scholar] [CrossRef]
- Ghosh, S.; Gillis, A.; Sheviryov, J.; Levkov, K.; Golberg, A. Towards waste meat biorefinery: Extraction of proteins from waste chicken meat with non-thermal pulsed electric fields and mechanical pressing. J. Clean. Prod. 2019, 208, 220–231. [Google Scholar] [CrossRef]
- Bocker, R.; Silva, E.K. Pulsed electric field assisted extraction of natural food pigments and colorings from plant matrices. Food Chem. X 2022, 15, 100398. [Google Scholar] [CrossRef] [PubMed]
- Puértolas, E.; Koubaa, M.; Barba, F.J. An overview of the impact of electrotechnologies for the recovery of oil and high-value compounds from vegetable oil industry: Energy and economic cost implications. Food Res. Int. 2016, 80, 19–26. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, J.; Pallarés, N.; Bäuerl, C.; Collado, M.C.; Dar, B.N.; Barba, F.J. Role of Extracts Obtained from Rainbow Trout and Sole Side Streams by Accelerated Solvent Extraction and Pulsed Electric Fields on Modulating Bacterial and Anti-Inflammatory Activities. Separations 2021, 8, 187. [Google Scholar] [CrossRef]
- de la Fuente, B.; Pallarés, N.; Barba, F.J.; Berrada, H. An Integrated Approach for the Valorization of Sea Bass (Dicentrarchus labrax) Side Streams: Evaluation of Contaminants and Development of Antioxidant Protein Extracts by Pressurized Liquid Extraction. Foods 2021, 10, 546. [Google Scholar] [CrossRef]
- Bekhit, A.E.-D.A.; van de Ven, R.; Suwandy, V.; Fahri, F.; Hopkins, D.L. Effect of pulsed electric field treatment on cold-boned muscles of different potential tenderness. Food Bioprocess. Technol. 2014, 7, 3136–3146. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Morton, J.D.; Mason, S.L.; Bekhit, A.E.-D.A. Current and future prospects for the use of pulsed electric field in the meat industry. Crit. Rev. Food Sci. Nutr. 2019, 59, 1660–1674. [Google Scholar] [CrossRef]
- Calleja-Gomez, M.; Pallares, N.; Salgado-Ramos, M.; Barba, F.J.; Berrada, H.; Castagnini, J.M. Sustainable processing of food side streams and underutilized leftovers into high-added-value chemicals assisted by pulsed electric fields-and high-pressure processing-based technologies. TrAC Trends Anal. Chem. 2024, 171, 117506. [Google Scholar] [CrossRef]
- Pataro, G.; Ferrari, G. Limitations of pulsed electric field utilization in food industry. In Pulsed Electric Fields to Obtain Healthier and Sustainable Food for Tomorrow; Elsevier: Amsterdam, The Netherlands, 2020; pp. 283–310. [Google Scholar]
- Zhou, J.; Wang, M.; Saraiva, J.A.; Martins, A.P.; Pinto, C.A.; Prieto, M.A.; Simal-Gandara, J.; Cao, H.; Xiao, J.; Barba, F.J. Extraction of lipids from microalgae using classical and innovative approaches. Food Chem. 2022, 384, 132236. [Google Scholar] [CrossRef]
- Herrero, M.; Cifuentes, A.; Ibañez, E. Sub-and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review. Food Chem. 2006, 98, 136–148. [Google Scholar] [CrossRef]
- Mendiola, J.A.; Herrero, M.; Castro-Puyana, M.; Ibáñez, E. Supercritical fluid extraction. In Natural Product Extraction; The Royal Society of Chemistry: Cambridge, UK, 2013; p. 196. [Google Scholar]
- Baiano, A. Recovery of biomolecules from food wastes—A review. Molecules 2014, 19, 14821–14842. [Google Scholar] [CrossRef] [PubMed]
- Melgosa, R.; Trigueros, E.; Sanz, M.T.; Cardeira, M.; Rodrigues, L.; Fernández, N.; Matias, A.A.; Bronze, M.R.; Marques, M.; Paiva, A. Supercritical CO2 and subcritical water technologies for the production of bioactive extracts from sardine (Sardina pilchardus) waste. J. Supercrit. Fluids 2020, 164, 104943. [Google Scholar] [CrossRef]
- Ling Wen Xia, F.; Supri, S.; Djamaludin, H.; Nurdiani, R.; Leong Seng, L.; Wee Yin, K.; Rovina, K. Turning waste into value: Extraction and effective valorization strategies of seafood by-products. Waste Manag. Bull. 2024, 2, 84–100. [Google Scholar] [CrossRef]
- Al Khawli, F.; Pateiro, M.; Domínguez, R.; Lorenzo, J.M.; Gullón, P.; Kousoulaki, K.; Ferrer, E.; Berrada, H.; Barba, F.J. Innovative Green Technologies of Intensification for Valorization of Seafood and Their By-Products. Mar. Drugs 2019, 17, 689. [Google Scholar] [CrossRef]
- Gondo, T.F.; Jönsson, M.; Karlsson, E.N.; Sandahl, M.; Turner, C. Extractability, selectivity, and comprehensiveness in supercritical fluid extraction of seaweed using ternary mixtures of carbon dioxide, ethanol, and water. J. Chromatogr. A 2023, 1706, 464267. [Google Scholar] [CrossRef]
- Grosso, C.; Valentão, P.; Ferreres, F.; Andrade, P.B. Alternative and efficient extraction methods for marine-derived compounds. Mar. Drugs 2015, 13, 3182–3230. [Google Scholar] [CrossRef]
- Hawthorne, S.B.; Yang, Y.; Miller, D.J. Extraction of organic pollutants from environmental solids with sub-and supercritical water. Anal. Chem. 1994, 66, 2912–2920. [Google Scholar] [CrossRef]
- Park, J.Y.; Back, S.S.; Chun, B.S. Protein properties of mackerel viscera extracted by supercritical carbon dioxide. J. Environ. Biol. 2008, 29, 443–448. [Google Scholar]
- Rahman, M.S.; Seo, J.-K.; Choi, S.-G.; Gul, K.; Yang, H.-S. Physicochemical characteristics and microbial safety of defatted bovine heart and its lipid extracted with supercritical-CO2 and solvent extraction. LWT 2018, 97, 355–361. [Google Scholar] [CrossRef]
- Haque, A.R.; Park, J.-S.; Ho, T.C.; Roy, V.C.; Ali, M.S.; Kiddane, A.T.; Kim, G.-D.; Chun, B.-S. Characterization of oil and amino acids obtained from yellow corvina by-products using subcritical and supercritical fluids. J. Supercrit. Fluids 2023, 199, 105970. [Google Scholar] [CrossRef]
- Tham, P.E.; Ng, Y.J.; Sankaran, R.; Khoo, K.S.; Chew, K.W.; Yap, Y.J.; Malahubban, M.; Aziz Zakry, F.A.; Show, P.L. Recovery of protein from dairy milk waste product using alcohol-salt liquid biphasic flotation. Processes 2019, 7, 875. [Google Scholar] [CrossRef]
- Chew, K.W.; Chia, S.R.; Krishnamoorthy, R.; Tao, Y.; Chu, D.-T.; Show, P.L. Liquid biphasic flotation for the purification of C-phycocyanin from Spirulina platensis microalga. Bioresour. Technol. 2019, 288, 121519. [Google Scholar] [CrossRef]
- Koyande, A.K.; Chew, K.W.; Lim, J.W.; Lee, S.Y.; Lam, M.K.; Show, P.L. Optimization of protein extraction from Chlorella Vulgaris via novel sugaring-out assisted liquid biphasic electric flotation system. Eng. Life Sci. 2019, 19, 968–977. [Google Scholar] [CrossRef]
- Phong, W.N.; Show, P.L.; Teh, W.H.; Teh, T.X.; Lim, H.M.Y.; binti Nazri, N.S.; Tan, C.H.; Chang, J.-S.; Ling, T.C. Proteins recovery from wet microalgae using liquid biphasic flotation (LBF). Bioresour. Technol. 2017, 244, 1329–1336. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, R.; Manickam, S.; Yap, Y.J.; Ling, T.C.; Chang, J.-S.; Show, P.L. Extraction of proteins from microalgae using integrated method of sugaring-out assisted liquid biphasic flotation (LBF) and ultrasound. Ultrason. Sonochem. 2018, 48, 231–239. [Google Scholar] [CrossRef]
- Sankaran, R.; Show, P.L.; Cheng, Y.-S.; Tao, Y.; Ao, X.; Nguyen, T.D.P.; Van Quyen, D. Integration process for protein extraction from microalgae using liquid biphasic electric flotation (LBEF) system. Mol. Biotechnol. 2018, 60, 749–761. [Google Scholar] [CrossRef] [PubMed]
- Saw, H.S.; Sankaran, R.; Khoo, K.S.; Chew, K.W.; Phong, W.N.; Tang, M.S.Y.; Lim, S.S.; Mohd Zaid, H.F.; Naushad, M.; Show, P.L. Application of a liquid biphasic flotation (LBF) system for protein extraction from Persiscaria tenulla leaf. Processes 2020, 8, 247. [Google Scholar] [CrossRef]
- Chia, S.R.; Mak, K.Y.; Khaw, Y.J.; Suhaidi, N.; Chew, K.W.; Show, P.L. An efficient and rapid method to extract and purify protein–Liquid Triphasic Flotation system. Bioresour. Technol. 2019, 294, 122158. [Google Scholar] [CrossRef]
- Mainberger, S.; Kindlein, M.; Bezold, F.; Elts, E.; Minceva, M.; Briesen, H. Deep eutectic solvent formation: A structural view using molecular dynamics simulations with classical force fields. Mol. Phys. 2017, 115, 1309–1321. [Google Scholar] [CrossRef]
- Saini, A.; Kumar, A.; Panesar, P.S.; Thakur, A. Potential of deep eutectic solvents in the extraction of value-added compounds from agro-industrial by-products. Appl. Food Res. 2022, 2, 100211. [Google Scholar] [CrossRef]
- Abdallah, M.M.; Cardeira, M.; Matias, A.A.; Bronze, M.R.; Fernández, N. Lactic acid-based natural deep eutectic solvents to extract bioactives from marine by-products. Molecules 2022, 27, 4356. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Vigier, K.D.O.; Royer, S.; Jérôme, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 2012, 41, 7108–7146. [Google Scholar] [CrossRef]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W. Deep eutectic solvents: A review of fundamentals and applications. Chem. Rev. 2020, 121, 1232–1285. [Google Scholar] [CrossRef] [PubMed]
- Kalhor, P.; Ghandi, K. Deep eutectic solvents for pretreatment, extraction, and catalysis of biomass and food waste. Molecules 2019, 24, 4012. [Google Scholar] [CrossRef]
- El Achkar, T.; Greige-Gerges, H.; Fourmentin, S. Basics and properties of deep eutectic solvents: A review. Environ. Chem. Lett. 2021, 19, 3397–3408. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 70–71. [Google Scholar] [CrossRef]
- Rodrigues, L.A.; Leonardo, I.C.; Gaspar, F.B.; Roseiro, L.C.; Duarte, A.R.C.; Matias, A.A.; Paiva, A. Unveiling the potential of betaine/polyol-based deep eutectic systems for the recovery of bioactive protein derivative-rich extracts from sardine processing residues. Sep. Purif. Technol. 2021, 276, 119267. [Google Scholar] [CrossRef]
- Chemat, F.; Abert Vian, M.; Ravi, H.K.; Khadhraoui, B.; Hilali, S.; Perino, S.; Fabiano Tixier, A.-S. Review of alternative solvents for green extraction of food and natural products: Panorama, principles, applications and prospects. Molecules 2019, 24, 3007. [Google Scholar] [CrossRef]
- Bubalo, M.C.; Ćurko, N.; Tomašević, M.; Ganić, K.K.; Redovniković, I.R. Green extraction of grape skin phenolics by using deep eutectic solvents. Food Chem. 2016, 200, 159–166. [Google Scholar] [CrossRef]
- Gerliani, N.; Hammami, R.; Aïder, M. Extraction of protein and carbohydrates from soybean meal using acidic and alkaline solutions produced by electro-activation. Food Sci. Nutr. 2020, 8, 1125–1138. [Google Scholar] [CrossRef]
- Gerzhova, A.; Mondor, M.; Benali, M.; Aider, M. A comparative study between the electro-activation technique and conventional extraction method on the extractability, composition and physicochemical properties of canola protein concentrates and isolates. Food Biosci. 2015, 11, 56–71. [Google Scholar] [CrossRef]
- Robin, A.; Ghosh, S.; Gabay, B.; Levkov, K.; Golberg, A. Identifying critical parameters for extraction of carnosine and anserine from chicken meat with high voltage pulsed electric fields and water. Innov. Food Sci. Emerg. Technol. 2022, 76, 102937. [Google Scholar] [CrossRef]
- Momen, S.; Aider, M. Production of highly soluble and functional whey/canola proteins through complexation using alkaline electro-activation. Food Hydrocoll. 2023, 137, 108395. [Google Scholar] [CrossRef]
- Ohshima, T.; Tanino, T.; Guionet, A.; Takahashi, K.; Takaki, K. Mechanism of pulsed electric field enzyme activity change and pulsed discharge permeabilization of agricultural products. Jpn. J. Appl. Phys. 2021, 60, 060501. [Google Scholar] [CrossRef]
- Eleršek, T.; Flisar, K.; Likozar, B.; Klemenčič, M.; Golob, J.; Kotnik, T.; Miklavčič, D. Electroporation as a solvent-free green technique for non-destructive extraction of proteins and lipids from Chlorella vulgaris. Front. Bioeng. Biotechnol. 2020, 8, 443. [Google Scholar] [CrossRef] [PubMed]
- Tasaki, K. A novel thermal hydrolysis process for extraction of keratin from hog hair for commercial applications. Waste Manag. 2020, 104, 33–41. [Google Scholar] [CrossRef]
- Wilson, C.A.; Novak, J.T. Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment. Water Res. 2009, 43, 4489–4498. [Google Scholar] [CrossRef]
- Schmidt, E. Method for Producing Non-Infectious Products from Infectious Organic Waste Material. United State Patents US8278081B2, 2 October 2012. [Google Scholar]
- Somerville, R.A.; Fernie, K.; Smith, A.; Andrews, R.; Schmidt, E.; Taylor, D.M. Inactivation of a TSE agent by a novel biorefinement system. Process Biochem. 2009, 44, 1060–1062. [Google Scholar] [CrossRef]
- Lu, H.-W.; Xiao, S.; Le, T.; Al-Omari, A.; Higgins, M.; Boardman, G.; Novak, J.; Murthy, S. Evaluation of Solubilization Characteristics of Thermal Hydrolysis Process; Water Environment Federation: Alexandria, VA, USA, 2014. [Google Scholar]
- Yan, W.; Song, M.; Zhou, Y. Redistribution of perfluorooctanoic acid in sludge after thermal hydrolysis: Location of protein plays a major role. Water Res. 2023, 241, 120135. [Google Scholar] [CrossRef]
- Mekonnen, T.H.; Mussone, P.G.; Stashko, N.; Choi, P.Y.; Bressler, D.C. Recovery and characterization of proteinacious material recovered from thermal and alkaline hydrolyzed specified risk materials. Process Biochem. 2013, 48, 885–892. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.; Liu, J.; Wang, Y.; Liu, S.; Sun, M. Comparison between thermal hydrolysis and enzymatic proteolysis processes for the preparation of tilapia skin collagen hydrolysates. Czech J. Food Sci. 2013, 31, 1–4. [Google Scholar] [CrossRef]
- Bhavsar, P.; Zoccola, M.; Patrucco, A.; Montarsolo, A.; Rovero, G.; Tonin, C. Comparative study on the effects of superheated water and high temperature alkaline hydrolysis on wool keratin. Text. Res. J. 2017, 87, 1696–1705. [Google Scholar] [CrossRef]
- Esteban, M.B.; García, A.J.; Ramos, P.; Márquez, M.d.C. Sub-critical water hydrolysis of hog hair for amino acid production. Bioresour. Technol. 2010, 101, 2472–2476. [Google Scholar] [CrossRef] [PubMed]
- Belwal, T.; Chemat, F.; Venskutonis, P.R.; Cravotto, G.; Jaiswal, D.K.; Bhatt, I.D.; Devkota, H.P.; Luo, Z. Recent advances in scaling-up of non-conventional extraction techniques: Learning from successes and failures. TrAC Trends Anal. Chem. 2020, 127, 115895. [Google Scholar] [CrossRef]
- Alvarez-Rivera, G.; Bueno, M.; Ballesteros-Vivas, D.; Mendiola, J.A.; Ibañez, E. Chapter 13—Pressurized Liquid Extraction. In Liquid-Phase Extraction; Poole, C.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 375–398. [Google Scholar]
- Bruno, S.F.; Ekorong, F.J.A.A.; Karkal, S.S.; Cathrine, M.S.B.; Kudre, T.G. Green and innovative techniques for recovery of valuable compounds from seafood by-products and discards: A review. Trends Food Sci. Technol. 2019, 85, 10–22. [Google Scholar] [CrossRef]
- Ramos, L.; Kristenson, E.M.; Brinkman, U.A.T. Current use of pressurised liquid extraction and subcritical water extraction in environmental analysis. J. Chromatogr. A 2002, 975, 3–29. [Google Scholar] [CrossRef]
- Wani, T.A.; Masoodi, F.A.; Dar, M.M.; Akhter, R.; Sharma, O.C. Subcritical treatment of olive oil: Minor phenolic composition and antioxidant properties of the solvent extracts. LWT 2021, 147, 111584. [Google Scholar] [CrossRef]
- de la Fuente, B.; Pallarés, N.; Berrada, H.; Barba, F.J. Salmon (Salmo salar) Side Streams as a Bioresource to Obtain Potential Antioxidant Peptides after Applying Pressurized Liquid Extraction (PLE). Mar. Drugs 2021, 19, 323. [Google Scholar] [CrossRef]
- de la Fuente, B.; Pallarés, N.; Berrada, H.; Barba, F.J. Development of Antioxidant Protein Extracts from Gilthead Sea Bream (Sparus aurata) Side Streams Assisted by Pressurized Liquid Extraction (PLE). Mar. Drugs 2021, 19, 199. [Google Scholar] [CrossRef]
- Espíndola-Cortés, A.; Moreno-Tovar, R.; Bucio, L.; Gimeno, M.; Ruvalcaba-Sil, J.L.; Shirai, K. Hydroxyapatite crystallization in shrimp cephalothorax wastes during subcritical water treatment for chitin extraction. Carbohydr. Polym. 2017, 172, 332–341. [Google Scholar] [CrossRef]
- Kang, K.; Quitain, A.T.; Daimon, H.; Noda, R.; Goto, N.; Hu, H.Y.; Fujie, K. Optimization of amino acids production from waste fish entrails by hydrolysis in sub and supercritical water. Can. J. Chem. Eng. 2001, 79, 65–70. [Google Scholar] [CrossRef]
- Rodrigues, L.A.; Matias, A.A.; Paiva, A. Recovery of antioxidant protein hydrolysates from shellfish waste streams using subcritical water extraction. Food Bioprod. Process. 2021, 130, 154–163. [Google Scholar] [CrossRef]
- Melgosa, R.; Marques, M.; Paiva, A.; Bernardo, A.; Fernández, N.; Sá-Nogueira, I.; Simões, P. Subcritical Water Extraction and Hydrolysis of Cod (Gadus morhua) Frames to Produce Bioactive Protein Extracts. Foods 2021, 10, 1222. [Google Scholar] [CrossRef]
- Wang, C.; Lin, M.; Yang, Q.; Fu, C.; Guo, Z. The Principle of Steam Explosion Technology and Its Application in Food Processing By-Products. Foods 2023, 12, 3307. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Ma, Y.; Qin, X.; Guo, Y.; Zhang, C. Steam explosion as a green method to treat animal waste: A mini-review. Process Saf. Environ. Prot. 2024, 181, 43–52. [Google Scholar] [CrossRef]
- Rigueto, C.V.T.; Rosseto, M.; Alessandretti, I.; Krein, D.D.C.; Emer, C.D.; Loss, R.A.; Dettmer, A.; Pizzutti, I.R. Extraction and improvement of protein functionality using steam explosion pretreatment: Advances, challenges, and perspectives. J. Food Sci. Technol. 2024, 61, 1215–1237. [Google Scholar] [CrossRef]
- Maniet, G.; Schmetz, Q.; Jacquet, N.; Temmerman, M.; Gofflot, S.; Richel, A. Effect of steam explosion treatment on chemical composition and characteristic of organosolv fescue lignin. Ind. Crops Prod. 2017, 99, 79–85. [Google Scholar] [CrossRef]
- Tonin, C.; Zoccola, M.; Aluigi, A.; Varesano, A.; Montarsolo, A.; Vineis, C.; Zimbardi, F. Study on the Conversion of Wool Keratin by Steam Explosion. Biomacromolecules 2006, 7, 3499–3504. [Google Scholar] [CrossRef]
- Shavandi, A.; Silva, T.H.; Bekhit, A.A.; Bekhit, A.E.-D.A. Keratin: Dissolution, extraction and biomedical application. Biomater. Sci. 2017, 5, 1699–1735. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, R.; Zhao, W. Improving digestibility of feather meal by steam flash explosion. J. Agric. Food Chem. 2014, 62, 2745–2751. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, W.; Yang, R. Steam flash explosion assisted dissolution of keratin from feathers. ACS Sustain. Chem. Eng. 2015, 3, 2036–2042. [Google Scholar] [CrossRef]
- Shen, Q.; Wang, H.; Zhang, C.; Qin, X.; Jia, W.; Xu, X.; Richel, A.; Zheng, Q. Liquefaction of porcine hoof shell to prepare peptone substitute by instant catapult steam explosion. J. Biosci. Bioeng. 2020, 129, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Shen, Q.; Guo, Y.; Liu, J.; Zhang, H.; Jia, W.; Xu, X.; Zhang, C. An advanced strategy for efficient recycling of bovine bone: Preparing high-valued bone powder via instant catapult steam-explosion. Food Chem. 2022, 374, 131614. [Google Scholar] [CrossRef]
- Scopel, B.S.; Restelatto, D.; Baldasso, C.; Dettmer, A.; Santana, R.M.C. Steam explosion as pretreatment to increase gelatin extraction yield from chromium tanned leather wastes. Environ. Prog. Sustain. Energy 2019, 38, 367–373. [Google Scholar] [CrossRef]
- Kuwahara, J. Extraction of type I collagen from tilapia scales using acetic acid and ultrafine bubbles. Processes 2021, 9, 288. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; García-Depraect, O.; León-Becerril, E.; Cassano, A.; Conidi, C.; Fíla, V. Recovery of protein-based compounds from meat by-products by membrane-assisted separations: A review. J. Chem. Technol. Biotechnol. 2021, 96, 3025–3042. [Google Scholar] [CrossRef]
- Asaduzzaman, A.K.M.; Getachew, A.T.; Cho, Y.-J.; Park, J.-S.; Haq, M.; Chun, B.-S. Characterization of pepsin-solubilised collagen recovered from mackerel (Scomber japonicus) bone and skin using subcritical water hydrolysis. Int. J. Biol. Macromol. 2020, 148, 1290–1297. [Google Scholar] [CrossRef]
- Kim, H.K.; Kim, Y.H.; Kim, Y.E.; Jung, S.K.; Lee, N.H.; Song, K.-M. Effects of salts on ultrasonic extraction of protein from porcine myocardium. Food Bioprod. Process. 2018, 108, 12–17. [Google Scholar] [CrossRef]
- Sharath Kumar, N.; Dar, A.H.; Dash, K.K.; Kaur, B.; Pandey, V.K.; Singh, A.; Fayaz, U.; Shams, R.; Mukarram, S.A.; Kovács, B. Recent advances in cold plasma technology for modifications of proteins: A comprehensive review. J. Agric. Food Res. 2024, 16, 101177. [Google Scholar] [CrossRef]
- Koddy, J.K.; Miao, W.; Hatab, S.; Tang, L.; Xu, H.; Nyaisaba, B.M.; Chen, M.; Deng, S. Understanding the role of atmospheric cold plasma (ACP) in maintaining the quality of hairtail (Trichiurus Lepturus). Food Chem. 2021, 343, 128418. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhou, X.; Li, J.; Pan, D.; Du, L. Enhancing the functionalities of chickpea protein isolate through a combined strategy with pH-shifting and cold plasma treatment. Innov. Food Sci. Emerg. Technol. 2024, 93, 103607. [Google Scholar] [CrossRef]
- Zheng, X.; Zou, B.; Zhang, J.; Cai, W.; Na, X.; Du, M.; Zhu, B.; Wu, C. Recent advances of ultrasound-assisted technology on aquatic protein processing: Extraction, modification, and freezing/thawing-induced oxidation. Trends Food Sci. Technol. 2024, 144, 104309. [Google Scholar] [CrossRef]
Animal By-Products | Bovine Animal (%) | Porcine Animal (%) | Poultry Animal (Chicken, %) | Aquatic Animal (Fish, %) |
---|---|---|---|---|
Hide/Skin | 7.0 | - | - | 1–3 |
Liver | 1.46 | 1.78 | 1.6–2.5 | 5 |
Blood | 2.4–6 * | 3.60 | 3.3–4.8 | - |
Lungs | 0.99 | 0.78 | 0.7 | - |
Spleen | 0.16 | 0.21 | 0.09–0.15 | - |
Stomach compartments | 2.44 | 0.55 | - | - |
Kidney | 0.19 | 0.33 | 1.2 | - |
Intestine | 4.5 | 6.58 | 3.9 | - |
Heart | 0.43 | 0.38 | 0.3–0.8 | - |
Brain | 0.08–0.12 * | - | 0.2–0.3 | - |
Bone (cut out) | 15–32 * | 7.44 | - | 9–15 |
Feet/hoofs | 0.77 | 2.17 | 3–4 | - |
Fat | 4 | - | - | - |
Head | 2.32 | 3.67 | 3–4 | 9–21 |
Ear | 0.15 | 0.56 | - | - |
Tongue | 0.25 | 0.58 | - | - |
Pancreas | 0.06 | - | 0.3 | - |
Tail | 0.16 | - | - | 1 |
Feather | - | - | 4–9 | - |
Gizzard | - | - | 1.9–2.8 | - |
Visceral parts | - | - | - | 7–18 |
Scales | - | - | - | 5 |
Roe | - | - | - | 4 |
References | Data based on in-house sample collection from around 120 steers. * Data based on cited literature [6,17,18] | Data based on in-house sample collection from around 370 pigs | [6,19,20,21] | [6,22] |
Extraction Method | General Principle | Overall Impacts | Demerits | Merits | Reference |
---|---|---|---|---|---|
pH shift | Protein solubility based on pH changes resulting in changes in charges on side chains and hence solubility and subsequent precipitation. | Proteins are treated under extreme alkaline or acid conditions followed by adjusting pH to isoelectric point to precipitate and isolate proteins. Acid or base could be chosen depending on application. |
|
| [48,158,159] |
Surimi | Concentration of myofibrillar protein derived from mechanically deboned fish flesh, washed with cold water and blended with cryoprotectant. | Method Isolates myofibrillar protein which confers some functional properties such as gel forming ability, emulsification and water holding capacity to this protein |
|
| [103,114] |
Salt extraction | Using salt solution either “salting in” or “salting out” to modify protein solubility. | Addition of salt optimizes the extraction of myofibrillar proteins. |
|
| [85] |
Denaturing solution and detergent extraction | Solubilize membrane proteins by interacting with their hydrophobic regions. | They enable protein extraction via solubilization of proteins by disrupting lipid membranes and forming micelles that encapsulate proteins. |
|
| [12,160] |
Enzyme- assisted | Leverages enzymes to break disruption of cell walls and other structures, facilitating the release and extraction of proteins. | May extract more protein from matrix and break down proteins into smaller peptides or amino acids, potentially improving solubility and functionality. |
|
| [161,162] |
Ultrasound-assisted | Sound waves generate bubbles that rapidly collapse, producing mechanical and chemical forces that disrupt cell walls and membranes. | Ultrasound exerts a mechanical effect by breaking up the matrix and exposing more surface area to the extraction solvent, thereby enhancing extraction. |
|
| [163,164,165,166] |
Microwave-assisted | Transformation of microwave energy into thermal energy through dipolar rotation and ionicconduction. | Disruption of the cell wall with relatively low energy input, enhancing and improving the extraction of intracellular proteins. |
|
| [9,167,168] |
Pulse electric field | Applicationof short pulses of high-voltage electric fields with varying intervals from microseconds to milliseconds. | High voltage results in electrical disruption of cellmembrane or cell membrane electroporation that enhances diffusion of solute. |
|
| [169,170,171] |
Supercritical extraction | When a fluid exceeds either its critical temperature or critical pressure, the boundary between liquid and gas vanishes and the fluid becomes a continuous phase—the supercritical phase. | Supercritical fluids have higher diffusivity and lower viscosity, density, and surface tension, which can be modified by temperature and pressure and allows for increased penetration of the solvent through solid matrices, facilitating the extraction of the desired compounds. |
|
| [172,173] |
Deep Eutectic Solvent | Two or more compounds, typically a hydrogen bond acceptor and a hydrogen bond donor, that exhibit a lower melting point than either individual component. | DESs have a high solvation power, and improve the mass transfer of proteins from various matrices by disrupting cell walls and tissues. |
|
| [174,175,176,177,178] |
Subcritical water extraction/ Pressurized liquid extraction | Subcritical water is water at sufficient pressure to maintain the liquid state at critical temperature between 100 °C (the boiling point of water) and 374 °C (the critical point of water) under the critical pressure (1–22.1 MPa). | With increased temperature, the dielectric constant, viscosity, and surface tension of subcritical water will decrease, but its diffusivity will be improved. This condition results in improved solvent extraction efficiency. |
|
| [29,179] |
Steam explosion | High-pressure steam and temperature (110–260 °C, 0.04–5 MPa), followed by sudden decompression (≤0.00875). | Destabilization of disulfide bond, hydrogen bond and secondary structure thereby disrupting material compact structure. |
|
| [180,181] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soladoye, O.P.; Fu, Y.; Manuel, J.; Bello, I.E.; Mbiriri, D.T.; Oyedeji, A.B.; Tayengwa, T.; Wu, J. Recent Advances in Protein Extraction Techniques for Meat Secondary Streams. Sustainability 2025, 17, 5110. https://doi.org/10.3390/su17115110
Soladoye OP, Fu Y, Manuel J, Bello IE, Mbiriri DT, Oyedeji AB, Tayengwa T, Wu J. Recent Advances in Protein Extraction Techniques for Meat Secondary Streams. Sustainability. 2025; 17(11):5110. https://doi.org/10.3390/su17115110
Chicago/Turabian StyleSoladoye, Olugbenga Philip, Yu Fu, Juárez Manuel, Ifedayo Emmanuel Bello, David Tinotenda Mbiriri, Ajibola Bamikole Oyedeji, Tawanda Tayengwa, and Jianping Wu. 2025. "Recent Advances in Protein Extraction Techniques for Meat Secondary Streams" Sustainability 17, no. 11: 5110. https://doi.org/10.3390/su17115110
APA StyleSoladoye, O. P., Fu, Y., Manuel, J., Bello, I. E., Mbiriri, D. T., Oyedeji, A. B., Tayengwa, T., & Wu, J. (2025). Recent Advances in Protein Extraction Techniques for Meat Secondary Streams. Sustainability, 17(11), 5110. https://doi.org/10.3390/su17115110