Leveraging Potato Chip Industry Residues: Bioenergy Production and Greenhouse Gas Mitigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate and Inoculum Collection
2.2. Anaerobic Digestion and Co-Digestion
2.2.1. BMP Experimental Procedure
2.2.2. Predictive Models
Model | Equation | RMSE | Ref. |
---|---|---|---|
Theoretical models | |||
Met_I | nd | [22] | |
Met_II | solids | nd | [13] |
Met_Ic | |||
Met_IIc | |||
Multivariate regression models | |||
Mod_I | 193.6 | [20] | |
Mod_II | 51.7 | [21] | |
Mod_III | 80.9 | [20] | |
Mod_IV | 78.1 | [20] | |
Computational model | |||
BMPNIR | Computational software based on NIR spectra | 28 | [13] |
2.3. Anaerobic Reactor Design
2.4. Greenhouse Gas Emissions
2.5. Analytical Procedures for Characterization of Samples
2.6. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Potato Peel Residues
3.2. BMP Determination of Potato Industrial Residues
3.3. Assessment of Co-Digestion
3.4. Scale-Up
3.5. Greenhouse Gas Emissions Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eurostat. Shedding Light on Energy in the EU–2023 Edition; Eurostat: Luxembourg, 2023. [Google Scholar] [CrossRef]
- European Commission. Renew. Energy Targets. 2023. Available online: https://energy.ec.europa.eu/topics/renewable-energy/renewable-energy-directive-targets-and-rules/renewable-energy-targets_en (accessed on 12 May 2024).
- de Souza Moraes, B.; Palacios-Bereche, R.; Martins, G.; Nebra, S.A.; Fuess, L.T.; Silva, A.J.; da Silva Clementino, W.; Bajay, S.V.; Manduca, P.C.; Lamparelli, R.A.; et al. Chapter 7—Biogas production: Technologies and applications. In Biofuels and Biorefining; Castro, F.I.G., Gutiérrez-Antonio, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 215–282. [Google Scholar] [CrossRef]
- Achinas, S.; Achinas, V.; Euverink, G.J.W. A relook on the biofuels: How can industrial processes underpin the drive for sustainable development? In Sustainable Biofuels; Ray, R.C., Ed.; Academic Press: New York, NY, USA, 2021; pp. 381–397. [Google Scholar] [CrossRef]
- Ren, J.; Liu, Y.-L.; Zhao, X.-Y.; Cao, J.-P. Methanation of syngas from biomass gasification: An overview. Int. J. Hydrogen Energy 2020, 45, 4223–4243. [Google Scholar] [CrossRef]
- Pathak, P.D.; Mandavgane, S.A.; Puranik, N.M.; Jambhulkar, S.J.; Kulkarni, B.D. Valorization of potato peel: A biorefinery approach. Crit. Rev. Biotechnol. 2018, 38, 218–230. [Google Scholar] [CrossRef] [PubMed]
- Indexbox. EU-Potato Chips-Market Analysis, Forecast, Size, Trends and Insights Update: COVID-19 Impact. 2021. Available online: https://www.indexbox.io/blog/potato-chips-market-in-the-eu-key-insights-2021/ (accessed on 30 November 2022).
- González, R.; Blanco, D.; Cascallana, J.G.; Carrillo-Peña, D.; Gómez, X. Anaerobic co-digestion of sheep manure and waste from a potato processing factory: Techno-economic analysis. Fermentation 2021, 7, 235. [Google Scholar] [CrossRef]
- Achinas, S.; Li, Y.; Achinas, V.; Euverink, G.J.W. Biogas potential from the anaerobic digestion of potato peels: Process performance and kinetics evaluation. Energies 2019, 12, 2311. [Google Scholar] [CrossRef]
- Zhang, Y.; Caldwell, G.S.; Zealand, A.M.; Sallis, P.J. Anaerobic co-digestion of microalgae Chlorella vulgaris and potato processing waste: Effect of mixing ratio, waste type and substrate to inoculum ratio. Biochem. Eng. J. 2019, 143, 91–100. [Google Scholar] [CrossRef]
- Almeida, P.V.; Henriques, F.S.; Gando-Ferreira, L.M.; Quina, M.J. Renewable Energy from Agro-industrial Residues: Potato Peels as a Case Study. In Proceedings of the 9th International Conference on Energy and Environment Research (ICEER), Porto, Portugal, 12–16 September 2022; Caetano, N.S., Felgueiras, M.C., Eds.; Springer: Cham, Switzerland, 2023; pp. 635–644. [Google Scholar] [CrossRef]
- Kryvoruchko, V.; Machmüller, A.; Bodiroza, V.; Amon, B.; Amon, T. Anaerobic digestion of by-products of sugar beet and starch potato processing. Biomass Bioenergy 2009, 33, 620–627. [Google Scholar] [CrossRef]
- Almeida, P.V.; Rodrigues, R.P.; Mendes, C.V.T.; Szeląg, R.; Pietrzyk, D.; Klepacz-Smółka, A.; Quina, M.J. Assessment of NIR spectroscopy for predicting biochemical methane potential of agro-residues–A biorefinery approach. Biomass Bioenergy 2021, 151, 106169. [Google Scholar] [CrossRef]
- Almeida, P.V.; Rodrigues, R.P.; Teixeira, L.M.; Santos, A.F.; Martins, R.C.; Quina, M.J. Bioenergy production through mono and co-digestion of tomato residues. Energies 2021, 14, 5563. [Google Scholar] [CrossRef]
- Parawira, W.; Murto, M.; Zvauya, R.; Mattiasson, B. Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves. Renew. Energy 2004, 29, 1811–1823. [Google Scholar] [CrossRef]
- Zhang, W.; Lang, Q.; Fang, M.; Li, X.; Bah, H.; Dong, H.; Dong, R. Combined effect of crude fat content and initial substrate concentration on batch anaerobic digestion characteristics of food waste. Bioresour. Technol. 2017, 232, 304–312. [Google Scholar] [CrossRef]
- Yu, X.; Yan, L.; Wang, H.; Bi, S.; Zhang, F.; Huang, S.; Wang, Y.; Wang, Y. Anaerobic co-digestion of cabbage waste and cattle manure: Effect of mixing ratio and hydraulic retention time. Renew. Energy 2024, 221, 119743. [Google Scholar] [CrossRef]
- Holliger, C.; Alves, M.; Andrade, D.; Angelidaki, I.; Astals, S.; Baier, U.; Bougrier, C.; Buffière, P.; Carballa, M.; De Wilde, V.; et al. Towards a standardization of biomethane potential tests. Water Sci. Technol. 2016, 74, 2515–2522. [Google Scholar] [CrossRef] [PubMed]
- Chandler, J.A.; Jewell, W.J.; Gossett, J.M.; Van Soest, P.J.; Robertson, J.B. Predicting Methane Fermentation Biodegradability; Solar Energy Research Institute (SERI): Golden, CO, USA, 1980; Volume 10. [Google Scholar]
- Rodrigues, R.P.; Rodrigues, D.P.; Klepacz-smolka, A.; Martins, R.C.; Quina, M.J. Comparative analysis of methods and models for predicting biochemical methane potential of various organic substrates. Sci. Total Environ. 2019, 649, 1599–1608. [Google Scholar] [CrossRef]
- Thomsen, S.T.; Spliid, H.; Østergård, H. Statistical prediction of biomethane potentials based on the composition of lignocellulosic biomass. Bioresour. Technol. 2014, 154, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Buswell, A.M.; Mueller, H.F. Mechanism of Methane Fermentation. Ind. Eng. Chem. 1952, 44, 550–552. [Google Scholar] [CrossRef]
- APA. Fator de Emissão da Eletricidade. 2024. Available online: https://apambiente.pt/sites/default/files/_Clima/Inventarios/FE_GEE_Eletricidade_2024_final.pdf (accessed on 3 March 2024).
- Pilli, S.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. Anaerobic digestion of ultrasonicated sludge at different solids concentrations-Computation of mass-energy balance and greenhouse gas emissions. J. Environ. Manag. 2016, 166, 374–386. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass. Lab. Anal. Proced. 2008, 1617, 1–16. [Google Scholar]
- American Public Health Association (APHA); American Water Works Association (AWWA); Water Environment Federation (WEF). Standard Methods for the Examination of Water and Wastewater, 18th ed.; APHA: Washington, DC, USA, 1992. [Google Scholar]
- Almeida, P.V.; Gando-Ferreira, L.M.; Quina, M.J.; Slezak, R.; Klepacz-Smolka, A. Evaluation of gas-phase pyrolysis from agro-industrial residues. In WASTES: Solutions, Treatments and Opportunities IV; Vilarinho, C., Castro, F., Quina, M.J., Eds.; CRC Press: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Torres, M.D.; Fradinho, P.; Rodríguez, P.; Falqué, E.; Santos, V.; Domínguez, H. Biorefinery concept for discarded potatoes: Recovery of starch and bioactive compounds. J. Food Eng. 2020, 275, 109886. [Google Scholar] [CrossRef]
- Barampouti, E.M.; Christofi, A.; Malamis, D.; Mai, S. A sustainable approach to valorize potato peel waste towards biofuel production. Biomass Convers. Biorefinery 2021, 13, 8197. [Google Scholar] [CrossRef]
- Hijosa-Valsero, M.; Paniagua-García, A.I.; Díez-Antolínez, R. Industrial potato peel as a feedstock for biobutanol production. New Biotechnol. 2018, 46, 54–60. [Google Scholar] [CrossRef]
- Raposo, F.; Fernández-Cegrí, V.; De Rubia, M.A.; Borja, R.; Béline, F.; Cavinato, C.; Demirer, G.; Fernández, B.; Fernández-Polanco, M.; Frigon, J.C.; et al. Biochemical methane potential (BMP) of solid organic substrates: Evaluation of anaerobic biodegradability using data from an international interlaboratory study. J. Chem. Technol. Biotechnol. 2011, 86, 1088–1098. [Google Scholar] [CrossRef]
- Lu, D.; Yan, W.; Le, C.; Low, S.L.; Tao, G.; Zhou, Y. Near-infrared reflectance spectroscopy for rapid prediction of biochemical methane potential of wastewater wasted sludge. Sci. Total Environ. 2024, 912, 169640. [Google Scholar] [CrossRef] [PubMed]
- Appels, L.; Lauwers, J.; Gins, G.; Degr, J.; Van Impe, J.; Dewil, R. Parameter Identification and Modeling of the Biochemical Methane Potential of Waste Activated Sludge. Environ. Sci. Technol. 2011, 45, 4173–4178. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.T.; Huelsemann, B.; Krümpel, J.; Wüst, D.; Oechsner, H.; Lemmer, A. Biochemical Methane Potential of a Biorefinery’s Process-Wastewater and its Components at Different Concentrations and Temperatures. Fermentation 2022, 8, 476. [Google Scholar] [CrossRef]
- Hao, T.; Liu, Z.; Liang, M.; Liu, X.; Chen, J.; Wu, X.; Varjani, S.; Zan, F. The effects of sulfite pretreatment on the biodegradability and solubilization of primary sludge: Biochemical methane potential, kinetics, and potential implications. Sep. Purif. Technol. 2022, 297, 121439. [Google Scholar] [CrossRef]
- Huiliñir, C.; Pinto-villegas, P.; Castillo, A.; Montalvo, S.; Guerrero, L. Biochemical methane potential from sewage sludge: Effect of an aerobic pretreatment and fly ash addition as source of trace elements. Waste Manag. 2017, 64, 140–148. [Google Scholar] [CrossRef]
- Grosser, A. Determination of methane potential of mixtures composed of sewage sludge, organic fraction of municipal waste and grease trap sludge using biochemical methane potential assays. A comparison of BMP tests and semi-continuous trial results. Energy 2018, 143, 488–499. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Ye, X.; Pan, X.; Lv, N.; Fang, H.; Chen, S. Enhanced solubilization and biochemical methane potential of waste activated sludge by combined free nitrous acid and potassium ferrate pretreatment. Bioresour. Technol. 2020, 297, 122376. [Google Scholar] [CrossRef]
- Nazaitulshila, R.; Idris, A.; Harun, R.; Wan Azlina, W.A.K.G. The Influence of Inoculum to Substrate Ratio on the Biochemical Methane Potential of Fat, Oil, and Grease in Batch Anaerobic Assays. Energy Sources Part A Recover. Util. Environ. Eff. 2015, 37, 590–597. [Google Scholar] [CrossRef]
- Li, Y.; Jin, Y.; Borrion, A.; Li, J. Influence of feed/inoculum ratios and waste cooking oil content on the mesophilic anaerobic digestion of food waste. Waste Manag. 2018, 73, 156–164. [Google Scholar] [CrossRef]
- Zhu, H.; Stadnyk, A.; Béland, M.; Seto, P. Co-production of hydrogen and methane from potato waste using a two-stage anaerobic digestion process. Bioresour. Technol. 2008, 99, 5078–5084. [Google Scholar] [CrossRef] [PubMed]
- Salama, E.; Saha, S.; Kurade, M.B.; Dev, S.; Woong, S.; Jeon, B. Recent trends in anaerobic co-digestion: Fat, oil, and grease (FOG) for enhanced biomethanation. Prog. Energy Combust. Sci. 2019, 70, 22–42. [Google Scholar] [CrossRef]
- Pasalari, H.; Gholami, M.; Rezaee, A.; Esrafili, A.; Farzadkia, M. Perspectives on microbial community in anaerobic digestion with emphasis on environmental parameters: A systematic review. Chemosphere 2021, 270, 128618. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Moraes, B.S.; Petersen, S.O.; Zaiat, M.; Sommer, S.G.; Triolo, J.M. Reduction in greenhouse gas emissions from vinasse through anaerobic digestion. Appl. Energy 2017, 189, 21–30. [Google Scholar] [CrossRef]
- Scott, A.; Blanchard, R. The Role of Anaerobic Digestion in Reducing Dairy Farm Greenhouse Gas Emissions. Sustainability 2021, 13, 2612. [Google Scholar] [CrossRef]
- Niu, D.; Huang, H.; Dai, X.; Zhao, Y. Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China. Waste Manag. 2013, 33, 123–128. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, W.; Liu, J. Greenhouse gas emissions from different municipal solid waste management scenarios in China: Based on carbon and energy flow analysis. Waste Manag. 2017, 68, 653–661. [Google Scholar] [CrossRef]
Residues from the Potato Chip Process | WWTP | ||
---|---|---|---|
Potato peel—PP (Mg) | 535 | Wastewater—WW (m3) | 120,861 |
Potato offcuts—OC (Mg) | 641 | Sewage Sludge—SS (Mg) | 1858 |
Waste cooking oil—WCO (Mg) | 113 |
Solid Residues | Liquid Flows | ||||
---|---|---|---|---|---|
Parameter | PP | OC | SS | WCO | WW (*) |
pH | 7.2 ± 0.1 | 5.9 ± 0.1 | 8.4 ± 0.2 | 8.8 ± 0.1 | 5.96 |
TS (%) | 10.6 ± 0.5 | 15.6 ± 0.1 | 22.3 ± 0.1 | 44.7 ± 0.4 | 0.55 ± 0.10 |
VS (%TS) | 89.3 ± 0.5 | 93.5 ± 0.2 | 51.7 ± 0.5 | 99.1 ± 0.2 | 66.13 ± 0.65 |
C (%TS) | 48.9 ± 0.1 | 38.3 ± 0.1 | 27.0 ± 0.2 | - | - |
H (%TS) | 6.56 ± 0.51 | 6.06 ± 0.20 | 3.94 ± 0.39 | - | - |
N (%TS) | 2.00 ± 0.07 | 0.509 ± 0.265 | 3.63 ± 0.01 | - | - |
O (%TS) | 30.9 ± 0.6 | 48.7 ± 0.5 | 17.2 ± 0.6 | - | - |
S (%TS) | <dl | <dl | <dl | - | - |
LGtotal (%TS) | 23.4 ± 0.84 | <dl | 18.9 ± 3.7 | - | - |
CL (%TS) | 18.4 ± 1.9 | 32.3 ± 1.4 | 3.4 ± 0.4 | - | - |
HC (%TS) | 8.6 ± 0.9 | 4.7 ± 0.1 | 1.9 ± 0.16 | - | - |
Starch (%TS) | 3.87 ± 0.21 | - | - | - | - |
Proteins (%TS) | 11.20 ± 0.30 | 5.84 ± 0.17 | 28.4 ± 0.2 | - | - |
Lipids (%TS) | 2.54 ± 0.35 | 0.31 ± 0.06 | 3.31 ± 0.4 | - | - |
CODsolids (mg O2/g TS) | 1339 ± 127 | 1524 ± 80 | 1367 ± 70 | - | - |
BMPNIR (mLCH4/gVS) | 228 ± 28 | 386 ± 28 | 320 ± 28 | - | - |
Empirical formula | C29H46O14N | C88H167O84N | C9H15O4N |
Feed flow rate of PP—FPP (Mgwb/d) | 1.60 | |
Feed flow rate—Qin (m3/d) | 11.3 | |
Methane yield—Y (Nm3CH4/MgVS) | 165 | |
Hydraulic residence time—HRT (d) | 12 | |
Working volume (fraction) | 0.8 | |
Reactor volume—V (m3) | 165 | |
Organic load rate—OLR (kgVS/m3/d) | 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, P.V.; Castro, L.M.; Klepacz-Smółka, A.; Gando-Ferreira, L.M.; Quina, M.J. Leveraging Potato Chip Industry Residues: Bioenergy Production and Greenhouse Gas Mitigation. Sustainability 2025, 17, 5023. https://doi.org/10.3390/su17115023
Almeida PV, Castro LM, Klepacz-Smółka A, Gando-Ferreira LM, Quina MJ. Leveraging Potato Chip Industry Residues: Bioenergy Production and Greenhouse Gas Mitigation. Sustainability. 2025; 17(11):5023. https://doi.org/10.3390/su17115023
Chicago/Turabian StyleAlmeida, Patrícia V., Luís M. Castro, Anna Klepacz-Smółka, Licínio M. Gando-Ferreira, and Margarida J. Quina. 2025. "Leveraging Potato Chip Industry Residues: Bioenergy Production and Greenhouse Gas Mitigation" Sustainability 17, no. 11: 5023. https://doi.org/10.3390/su17115023
APA StyleAlmeida, P. V., Castro, L. M., Klepacz-Smółka, A., Gando-Ferreira, L. M., & Quina, M. J. (2025). Leveraging Potato Chip Industry Residues: Bioenergy Production and Greenhouse Gas Mitigation. Sustainability, 17(11), 5023. https://doi.org/10.3390/su17115023