Next Article in Journal
Multi-Scenario Simulations of “Production–Living–Ecological” Functional Patterns and Ecological Effects in the Upper Reaches of Huaihe River
Previous Article in Journal
Systematic Literature Network Analysis of Raw Materials in the Amazon Bioeconomy
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Aquatic Invasive Species in the Protected Areas of the Yucatan Peninsula and Adjacent Marine Zone, Mexico

by
Eduardo Rendón-Hernández
1,*,
Luis Amado Ayala-Pérez
2,
Jordan Golubov
2,
Ricardo Torres-Lara
3 and
Brenda Iliana Vega-Rodríguez
4
1
Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México 04960, Mexico
2
Departamento El Hombre y su Ambiente, Universidad Autónoma Metropolitana–Xochimilco, Ciudad de México 04960, Mexico
3
Departamento de Ciencias, Universidad Autónoma del Estado de Quintana Roo, Chetumal 77019, Mexico
4
Laboratorio de Ecología Aplicada, Universidad Autónoma Metropolitana–Xochimilco, Ciudad de México 04960, Mexico
*
Author to whom correspondence should be addressed.
Sustainability 2025, 17(11), 5017; https://doi.org/10.3390/su17115017
Submission received: 15 April 2025 / Revised: 27 May 2025 / Accepted: 28 May 2025 / Published: 30 May 2025
(This article belongs to the Section Sustainability, Biodiversity and Conservation)

Abstract

Biological invasions are one of the main causes of biodiversity loss globally, affecting the quality of ecosystem services, the economy, and public health. Research on the presence, distribution, impacts, and introduction pathways of invasive alien species is essential for understanding and tackling the invasion process. Continental, coastal, and marine aquatic ecosystems of the Yucatan Peninsula concentrate a high number of native species; however, the states that are in the region (Campeche, Yucatan, and Quintana Roo) also have the largest loss of natural capital at the national level. The presence of aquatic invasive species has contributed to this downward trend, mainly in protected areas. For this research, an analysis of the national biodiversity information system, the global biodiversity information facility, and the specialized scientific literature was carried out to determine the presence of aquatic invasive species within the protected areas of the Yucatan Peninsula and adjacent marine zone. The results indicated that there are 22 documented aquatic invasive species in 25 protected areas, which were classified into the following taxonomic groups: marine macroalgae (3 species), plants (2), inland and marine fish (11), crustaceans (2), mollusks (2), and hydrozoans (2). A total of 15 of these species had a very high invasiveness score, 6 had a high score, and 1 had a medium score. This research will be useful in strengthening regional public policy and guiding decision makers on the management of aquatic invasive species, mainly for those that are seriously affecting aquatic ecosystems, such as Pterygoplichthys disjunctivus and P. pardalis in freshwater protected areas and Pterois volitans in marine protected areas. Efficient management strategies will be a key element in the protection of biodiversity and ecosystem services, and for sustainable regional development.

1. Introduction

Invasive alien species are a threat to global biodiversity, ecosystem services, economies, and public health [1,2,3]. The ecological impacts of invasive alien species include the disruption of food webs, competition for resources and space, changes in nutrient cycling, and modifications in physical characteristics, with cascading effects on biodiversity at all trophic levels, from individuals (including extinctions) to ecosystems [1,4,5]. Economic costs caused by invasive alien species can arise through a wide variety of impacts, such as damage to productive activities, infrastructure, and public health, and extend to the costs of prevention, control, or eradication [6,7]. According to the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, the global economic cost of invasive alien species exceeded US$423 billion annually in 2019, with costs having at least quadrupled every decade since 1970 [3].
Invasions interact synergistically with other environmental problems, increasing their global impact, such as changes in land and sea use, and climate change [3]. In recent decades, climate change has compounded the effects of species redistribution [8] such that, in the future, invasive alien species will continue to establish and spread and be a significant cause of biodiversity loss worldwide [3]. The number of invasive alien species is expected to increase 36% over the next three decades [6,9], requiring enormous resources to manage their impacts [2].
Aquatic ecosystems can be severely threatened by invasive alien species; as they can substantially change the structure of native communities and alter ecosystem functioning [6,10]. Aquatic invasive species can alter community composition; reduce species’ richness and therefore diminish the ability of biotic resistance [11]. In the freshwater ecosystems, biodiversity is depleting alarmingly due to the introduction of invasive species; which causes, among other things, the alteration of food webs [12,13]. Invasions of nonnative fish could also interrupt resource flows and have far reaching effects on interconnected ecosystems [14]. Marine invasive species may negatively impact coastal societies, affecting ecosystem services such as food provision, tourism, and recreation [15]. They can also decrease the economic production of activities based on marine environments and resources, such as fisheries, aquaculture, and marine infrastructure [3,16]. These effects have related social impacts through decreases in employment in economic activities directly affected by marine invasive species but also through decreases in people’s welfare from the reduced quality of their surroundings [16]. Aquatic invasive species are therefore a major challenge for people in all regions and countries [3,11].
Biological invasions are regarded as one of the most critical threats to protected areas, as they disrupt the functioning of ecological systems, which is the primary rationale for their establishment [17,18,19]. In many cases, protected areas are changing to modified landscapes due to anthropogenic activities, providing pathways for the introduction of invasive species [12,17]. A major challenge in managing biological invasions is that when the presence of a species is noticeable, it is generally already widely distributed in the receiving ecosystem. An early detection and rapid response strategy is cost-effective for managers and having an updated system of the presence of species and their impacts helps determine the best strategy for their management, control, or eradication. This paper presents a diagnosis of the presence of aquatic invasive species in the protected areas of the Yucatan Peninsula and the adjacent marine areas, which include the southeastern Gulf of Mexico and the Mexican Caribbean, which may be useful for decision-making on the restoration and conservation of the region’s aquatic ecosystems.

2. Methods

2.1. Study Area

The Yucatan Peninsula in southeastern Mexico includes three states (Campeche, Yucatan, and Quintana Roo) and is bordered by the Gulf of Mexico to the west and the north, and the Caribbean Sea, Guatemala, and Belize to the east and southeast [20]. The Yucatán Peninsula can be described as an area of limestone rocks with karst geology (highly fractured calcareous terrain) that has given rise to an underground hydrological system (caverns and cenotes) hundreds of meters deep and tens of kilometers long. Elevations are generally less than 350 m above sea level, and it has scarce surface hydrography, with average annual temperatures between 25 °C and 28 °C, which is reflected in significant changes in vegetation cover and floristic diversity. This area is made up of diverse plant communities, including (a) coastal vegetation; (b) mangrove swamp; (c) low deciduous forest; (d) medium sub deciduous forest; (e) medium sub evergreen forest; (f) low flooded forest; (g) savannas; (h) petenes; (i) hydrophilic communities; and (j) secondary vegetation [21,22,23].
In this geographical unit with high biodiversity, there are several priority regions for conservation: (1) biogeographic provinces (Peten and Yucatan) [20]; (2) hydrological regions (Laguna de Terminos, Sur de Campeche, Calakmul, Anillo de cenotes, Contoy, Isla Mujeres, Corredor Cancun-Tulum, Cozumel, Cenotes Tulum-Coba, and Sian Ka’an) [21]; (3) marine regions (Laguna de Terminos, Cayos Campeche, Escarpe Campeche, Arrecife Alacranes, Sonda de Campeche, Dzilam-Contoy, Punta Maroma-Nizuc, Tulum-Xpuha, Sian Ka’an, Xcalak-Majahual, Cozumel, and Banco Chinchorro) [22]; and (4) terrestrial regions (Petenes-Ria Celestun, Dzilam-Ria Lagartos-Yum Balam, Sian Ka’an-Uaymil-Xcalak, and Silvituc-Calakmul) [23]. In Yucatan Peninsula territory, there are 40 protected areas of federal jurisdiction, classified into four protection categories: the Biosphere Reserve, Flora and Fauna Protection Area, National Park, and Wildlife Sanctuary [24]. In these protected areas, there are diverse aquatic ecosystems, among which the following stand out: rivers, lakes, waterholes, cenotes, petenes, mangroves, lagoons, seagrass meadows, and coral reefs [20,21,22,23,24].

2.2. Data Collection

To determine the presence of aquatic invasive species in the protected areas of the Yucatan Peninsula and adjacent marine zone, we analyzed the National Biodiversity Information System [25]; the Global Biodiversity Information Facility [26]; and scientific papers consulted on the electronic platforms Springer Nature, SciELO, PubMed, and Google Scholar with combinations of the following keywords: “aquatic invasive species, invasive alien macroalgae, invasive alien plants, invasive alien hydroids, invasive alien mollusks, invasive alien crustaceans, invasive alien fish, protected areas, peninsula of Yucatan, Campeche, Yucatan, Quintan Roo, Mexican Caribbean and southeast Gulf of Mexico”, as well as the conservation and management programs of the protected areas [27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46] and the taxonomic lists in white papers of the Arrecifes del Golfo de Mexico-Sur and Bajos del Norte National Parks [47,48].
For this research, aquatic invasive species were considered to be those found in freshwater and marine ecosystems that have been analyzed through the Rapid Invasiveness Assessment Method (MERI for its acronym in Spanish), which determines the invasiveness risk of alien species for Mexico [49]. The determination of the MERI value is based on the following considerations: (a) invasiveness documented in other regions of the world; (b) the relationship with nearby invasive taxa; (c) the vector of other invasive species; (d) the risk of introduction; (e) the risk of establishment; (f) the spread risk; (g) the health impacts; (h) the economic and social impacts; (i) the ecosystem impacts; and (j) the impacts on biodiversity [49].
To determine similarity of species in protected areas and identify potential connectivity regions, we generated a dendrogram using the Jaccard index with the PAST statistical program [50]. Jaccard’s index varies between 0 and 1; a value of 0 indicates no species in common, while a value of 1 indicates that the sites have maximum similarity in species composition.

3. Results

A total of 22 aquatic invasive species were found in 25 of the 40 protected areas (9 in Biosphere Reserves, 6 in Flora and Fauna Protection Areas, 9 in National Parks, and 1 in the Wildlife Sanctuary; Figure 1). These species were classified into six taxonomic groups: (a) macroalgae, (b) plants, (c) hydrozoans, (d) mollusks, (e) crustaceans, and (f) fish (Table 1). The 25 protected areas have a total surface of 14,682,654.45 ha, of which 12,491,665.27 ha correspond to marine surface and 2,190,989.18 ha to terrestrial surface and inland waters [24].
Regarding the invasiveness index, 15 species have a very high index of invasiveness, 6 have a high index, and 1 was assessed with a medium index (Table 1), representing a severe threat to the aquatic ecosystems of protected areas of the region. The species Caulerpa taxifolia, Eichhornia crassipes, Oreochromis mossambicus, and Cyprinus carpio, in addition to having a very high index of invasiveness in protected areas from the Yucatan Peninsula, are also species listed among the 100 worst invasive alien species in the world.
According to the analysis of similarity of protected areas, high similarities were found for Arrecife de Puerto Morelos-Arrecifes de Sian Ka’an-Arrecifes de Xcalak-Costa Isla Mujeres-Isla Contoy, with the species Caulerpa verticillata, Ulva Lactuca, and Pterois volitans; Arrecifes de Cozumel-Caribe Mexicano-Isla Cozumel-Yum Balam, with the species Caulerpa verticillata and Pterois volitans; Bajos del Norte-Tiburon Ballena, with the species Pterois volitans; and Manglares de Nichupte-Playa Ria Lagartos with the species Caulerpa verticillata (Table 1; Figure 2 and Figure 3). Among the protected areas with intermediate values, we found the following: Arrecife Alacranes-Arrecifes del Golfo de Mexico-Sur, with the species Caulerpa taxifolia, Caulerpa verticillata, Plumularia setacea, and Pterois volitans; and Ría Celestun-Ria Lagartos, with the species Panaeus monodon and Caulerpa verticillata (Table 1; Figure 2 and Figure 3). The protected area with the least similarity was Laguna de Terminos, which concentrates 59% of the aquatic invasive species reported for the region, of which 61.53% are found only in this protected area [Tarebia granifera, Charybdis (Charybdis) helleri, Parachromis motaguensis, P. managuensis, Ctenopharyngodon idella, Cyprinus carpio, Pterygoplichthys disjunctivus, and P. pardalis; Table 1; Figure 2 and Figure 3].
Laguna de Terminos Flora and Fauna Protection Area (Figure 1), which contains coastal, marine, and freshwater ecosystems, is the protected area with the highest presence of aquatic invasive species (N = 13, Figure 2). The aquatic invasive species with the highest presence in protected areas were: Caulerpa verticillata in 18 areas, and Pterois volitans in 16 (Table 1; Figure 2), which is evidence of their wide distribution in the marine environment. The most representative taxonomic group was fish, with nine freshwater species and two marine species (Table 1; Figure 1).

4. Discussion

In this article, we take an important step towards establishing a baseline on the presence of aquatic invasive species in protected areas in the Yucatan Peninsula and adjacent marine zone. Updating species lists and distribution data is crucial for successful long-term management [17]. Specifically, the information generated in protected areas on invasive species must be given the same importance as the information generated for species at risk, since, depending on the level of knowledge available, the best decisions can be made for the restoration and conservation of ecosystems.
Although the region’s protected areas present diverse ecosystems, protection categories, extension, and problems, the Laguna de Terminos Flora and Fauna Protection Area (Figure 1) stand out due to the 13 aquatic invasive species distributed there, 70% of which have a very high invasive risk. The species that represent the greatest risk in this protected area are invasive fish: Pterygoplichthys disjunctivus and P. pardalis, which have been widely studied for their effects on the trophic chains of freshwater ecosystems [55,66,67,68,70], these effects are characterized by alterations in the structure of the fish community, positioning them as dominant species in estuarine systems, as occurs in the Palizada-Del Este area [68]; adaptive capacity to brackish environments competing for space with native fish, as has been documented at the mouth of the Chumpan River [67]; incidence on siltation and erosion processes [70], and the destruction of fishing gear, causing a decrease in the catch sizes of commercially important species [55,70].
In the marine environment, the lionfish (Pterois volitans) represents the species with the greatest presence, since it is found in all the protected areas of the northern Yucatan Peninsula and the Mexican Caribbean. Pterois volitans is a threat to the marine ecosystems, mainly for coral reefs [74,75,76,77,78,79] because individuals reproduce fast [74,78], reach high population densities [74,76], consume a wide range of native fish and invertebrate species [75,76,77,79], and can potentially compete for shelter with native species [79]. In addition, the lionfish has economic risks because its diet habits not only include juveniles of commercially important species, such as lobsters, but because it also competes with snappers (Lutjanidae) and groupers (Serranidae) for food and habitat [76].
The similarity analysis determined that the groups of protected areas, including Bajos del Norte-Tiburon Ballena, Arrecifes de Cozumel-Caribe Mexicano-Isla Cozumel-Yum Balam, and Arrecife Puerto Morelos-Arrecifes de Sian Ka’an-Arrecifes de Xcalak-Costa Isla Mujeres-Isla Contoy (Figure 3) present the same species composition in each group; all areas are marine, and Pterois volitans is present in all these areas. Banco Chinchorro has a similarity of 0.75 (Figure 3) with the group Arrecife Puerto Morelos-Arrecifes de Sian Ka’an-Arrecifes de Xcalak-Costa Isla Mujeres-Isla Contoy, the difference is that Banco Chinchorro has an additional species: Pterois miles, which was the only species that had a single record in a protected area [72] (Guzmán-Méndez et al. 2017). In the Arrecife Alacranes-Arrecifes del Golfo de Mexico-Sur group, it is noteworthy that they are adjacent areas (Figure 1 and Figure 3), and that together they conserve a marine surface of 4,443,433 ha [24]. The Ria Celestun-Ria Lagartos cluster (Figure 3) stands out because both biosphere reserves share characteristics of shape, extension, ecosystems, and problems [53], although they are located at opposite ends of the coastal zone of the state of Yucatan (Figure 1). Similarity results can guide management measures for invasive species, since, by sharing species, protected area managers must implement coordinated actions at a regional level, mainly in marine areas with high connectivity. The key elements to achieve this coordination could be trained personnel, standardized control and notification methods per species or taxonomic group, systematic monitoring, early detection, rapid response, and long-term maintenance programs [17].

5. Conclusions

According to the information analysis, 22 aquatic invasive species were found in 25 protected areas of the Yucatan Peninsula and adjacent marine zone. A total of 15 of these species have a very high invasiveness index, according to the results of the rapid invasiveness assessment method. Laguna de Terminos was the protected area with the highest number of recorded species (13), which represents an alert for the implementation of immediate control actions, mainly for fish, crustaceans, and mollusks.
The ecosystems of the protected areas of the Yucatan Peninsula and the adjacent marine zone are under constant pressure from the presence, distribution, and impacts of aquatic invasive species, mainly in coral reefs, rivers, and lagoons. The invasion of lionfish (Pterois volitans) has had repercussions on the structure and functioning of reef systems and seagrasses in 16 protected areas (Table 1), in addition to negative impacts on the tourism and fishing sectors. The sailfin catfishes (Pterygoplichthys disjunctivus and P. pardalis) have significantly altered the food webs of the rivers that flow into Laguna de Terminos, reducing the biomass of ecologically and commercially important species and affecting the fishing gear and infrastructure of local fishermen. These impacts are just some examples of the deterioration of the region’s aquatic ecosystems and should serve as a precedent for planning short-term actions to reverse this trend. In addition, prevention, early detection, and rapid response efforts must be sufficiently efficient to counteract the spread of new or existing species and must focus on the pathways of introduction and vectors of the species. The information generated in this work can be useful for decision makers in the protected areas of the Yucatan Peninsula and the adjacent marine zone, as it provides updated information on the presence of aquatic invasive species, their level of invasiveness, and their pathways of introduction.

Author Contributions

Conceptualization: E.R.-H., L.A.A.-P. and J.G.; Data curation: E.R.-H.; Formal analysis: E.R.-H., J.G. and R.T.-L.; Funding acquisition: E.R.-H. and L.A.A.-P.; Investigation: E.R.-H., L.A.A.-P., J.G., R.T.-L. and B.I.V.-R.; Methodology: E.R.-H., L.A.A.-P. and J.G.; Project administration: E.R.-H.; Resources: E.R.-H., L.A.A.-P., J.G., R.T.-L. and B.I.V.-R.; Software: E.R.-H. and B.I.V.-R.; Supervision: E.R.-H.; Validation: E.R.-H., L.A.A.-P., J.G., R.T.-L. and B.I.V.-R.; Visualization: E.R.-H.; Writing—original draft: E.R.-H. and L.A.A.-P.; Writing—review & editing: E.R.-H., L.A.A.-P., J.G., R.T.-L. and B.I.V.-R. All authors have read and agreed to the published version of the manuscript.

Funding

E.R.-H. was supported by a PhD grant from the Ministry of Science, Humanities, Technology and Innovation (SECIHTI, Mexico). L.A.A.-P. was funded by the Metropolitan Autonomous University–Xochimilco, through the project “Ecology models and fish population dynamics in tropical coastal estuarine systems”.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The original contributions presented in this study are included in the article. Further inquiries can be directed to the corresponding author.

Acknowledgments

The authors thank the Division of Biological and Health Sciences of the Metropolitan Autonomous University–Xochimilco for their support in producing this paper. We further thank the comments provided by reviewers.

Conflicts of Interest

The authors have declared that no competing interests exist.

References

  1. Blackburn, T.M.; Bellard, C.; Ricciardi, A. Alien versus native species as drivers of recent extinctions. Front. Ecol. Environ. 2019, 17, 203–207. [Google Scholar] [CrossRef]
  2. Pyšek, P.; Hulme, P.E.; Simberloff, D.; Bacher, S.; Blackburn, T.M.; Carlton, J.T.; Dawson, W.; Essl, F.; Foxcroft, L.C.; Genovesi, P.; et al. Scientists’ warning on invasive alien species. Biol. Rev. Camb. Philos. Soc. 2020, 95, 1511–1534. [Google Scholar] [CrossRef]
  3. IPBES. Thematic Assessment Report on Invasive Alien Species and Their Control of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2023. [Google Scholar] [CrossRef]
  4. Gallardo, B.; Clavero, M.; Sánchez, M.I.; Vilà, M. Global ecological impacts of invasive species in aquatic ecosystems. Glob. Change Biol. 2016, 22, 151–163. [Google Scholar] [CrossRef]
  5. Meira, A.; Carvalho, F.; Castro, P.; Souza, R. Applications of biosensors in non-native freshwater species: A systematic review. NeoBiota 2024, 96, 211–236. [Google Scholar] [CrossRef]
  6. Cuthbert, R.N.; Pattison, Z.; Taylor, N.G.; Verbrugge, L.; Diagne, C.; Ahmed, D.A.; Leroy, B.; Angulo, E.; Briski, E.; Capinha, C.; et al. Global economic costs of aquatic invasive alien species. Sci. Total Environ. 2021, 775, 145238. [Google Scholar] [CrossRef]
  7. Rico-Sanchez, A.E.; Haubrock, P.J.; Cuthbert, R.N.; Angulo, E.; Ballesteros-Mejia, L.; Lopez-Lopez, E.; Duboscq-Carra, V.G.; Nunez, M.A.; Diagne, C.; Courchamp, F. Economic costs of invasive alien species in Mexico. In The Economic Costs of Biological Invasions Around the World; Zenni, R.D., McDermott, S., Garcia-Berthou, E., Essl, F., Eds.; Pensoft Publishers: Sofia, Bulgaria, 2021; Volume 67, pp. 459–483. [Google Scholar] [CrossRef]
  8. Perrin, S.W.; Lundmark, C.; Wenaas, C.P.; Finstad, A.G. Contrasts in perception of the interaction between non-native species and climate change. NeoBiota 2024, 96, 343–361. [Google Scholar] [CrossRef]
  9. Seebens, H.; Bacher, S.; Blackburn, T.M.; Capinha, C.; Dawson, W.; Dullinger, S.; Genovesi, P.; Hulme, P.E.; van Kleunen, M.; Kühn, I.; et al. Projecting the continental accumulation of alien species through to 2050. Glob. Change Biol. 2021, 27, 970–982. [Google Scholar] [CrossRef]
  10. Vitousek, P.M.; D’Antonio, C.M.; Loope, L.L.; Rejmánek, M.; Westbrooks, R. Introduced species: A significant component of human-caused global change. N. Z. J. Ecol. 1997, 21, 1–16. Available online: http://www.jstor.org/stable/24054520 (accessed on 5 January 2025).
  11. Havel, J.E.; Kovalenko, K.E.; Thomaz, S.M.; Amalfitano, S.; Kats, L.B. Aquatic invasive species: Challenges for the future. Hydrobiologia 2015, 750, 147–170. [Google Scholar] [CrossRef]
  12. Saunders, D.L.; Meeuwig, J.J.; Vincent, A.C. Freshwater protected areas: Strategies for conservation. Conserv. Biol. 2002, 16, 30–41. [Google Scholar] [CrossRef]
  13. Kiruba-Sankar, R.; Praveen, J.; Saravanan, K.; Lohith, K.; Raymond, J.; Velmurugan, A.; Dam, S. Invasive species in freshwater ecosystems—Threats to ecosystem services. In Biodiversity and Climate Change Adaptation in Tropical Islands; Sivaperuman, C., Velmurugan, A., Kumar, A., Jaisankar, I., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 257–296. [Google Scholar] [CrossRef]
  14. Baxter, C.V.; Fausch, K.D.; Murakami, M.; Chapman, P.L. Fish invasion restructures stream and forest food webs by interrupting reciprocal prey subsidies. Ecology 2004, 85, 2656–2663. [Google Scholar] [CrossRef]
  15. Dimitriadis, C.; Fournari-Konstantinidou, I.; Sourbès, L.; Koutsoubas, D.; Katsanevakis, S. Long term interactions of native and invasive species in a marine protected area suggest complex cascading effects challenging conservation outcomes. Diversity 2021, 13, 71. [Google Scholar] [CrossRef]
  16. Bax, N.; Williamson, A.; Agüero, M.; Gonzalez, E.; Geeves, W. Marine invasive alien species: A threat to global biodiversity. Mar. Policy 2003, 27, 313–323. [Google Scholar] [CrossRef]
  17. Foxcroft, L.C.; Richardson, D.M.; Pyšek, P.; Genovesi, P. Invasive alien plants in protected areas: Threats, opportunities, and the way forward. In Plant Invasions in Protected Areas. Invading Nature—Springer Series in Invasion Ecology; Foxcroft, L.C., Richardson, D.M., Pyšek, P., Genovesi, P., Eds.; Springer: Dordrecht, The Netherlands, 2013; Volume 7, pp. 621–639. [Google Scholar] [CrossRef]
  18. Braun, M.; Schindler, S.; Essl, F. Distribution and management of invasive alien plant species in protected areas in Central Europe. J. Nat. Conserv. 2016, 33, 48–57. [Google Scholar] [CrossRef]
  19. Holenstein, K.; Simonson, W.D.; Smith, K.G.; Blackburn, T.M.; Charpentier, A. Non-native species surrounding protected areas influence the community of non-native species within them. Front. Ecol. Evol. 2021, 8, 625137. [Google Scholar] [CrossRef]
  20. CONABIO. Provincias Biogeográficas de México, Escala 1: 4,000,000. Available online: http://geoportal.conabio.gob.mx/descargas/mapas/imagen/96/rbiog4mgw (accessed on 7 January 2025).
  21. Arriaga, L.; Aguilar, V.; Alcocer, J. Aguas Continentales y Diversidad Biológica de México; Comisión Nacional Para el Conocimiento y Uso de la Biodiversidad: Mexico City, Mexico, 2002; Available online: https://www.biodiversidad.gob.mx/pais/regiones-hidrologicas-prioritarias-de-Mexico (accessed on 7 January 2025).
  22. Arriaga, L.; Vázquez, E.; González, J.; Jiménez, R.; Muñoz, E.; Aguilar, V. Regiones Marinas Prioritarias de México; Comisión Nacional Para el Conocimiento y Uso de la Biodiversidad: Mexico City, Mexico, 1998; Available online: https://www.biodiversidad.gob.mx/pais/regiones-marinas-prioritarias-de-mexico (accessed on 8 January 2025).
  23. Arriaga, L.; Espinoza-Rodríguez, J.M.; Aguilar-Zúñiga, C.; Martínez-Romero, E.; Gómez-Mendoza, L.; Loa, E. Regiones Terrestres Prioritarias de México; Comisión Nacional Para el Conocimiento y Uso de la Biodiversidad: Mexico City, Mexico, 2000; Available online: https://bioteca.biodiversidad.gob.mx/janium-bin/detalle.pl?Id=20250103185318 (accessed on 8 January 2025).
  24. CONANP. Listado de las Áreas Naturales Protegidas de México. Available online: https://sig.conanp.gob.mx/General (accessed on 7 January 2025).
  25. CONABIO. Sistema Nacional de Información Sobre Biodiversidad. Available online: https://www.snib.mx/ (accessed on 6 January 2025).
  26. GBIF Global Biodiversity Information Facility (2025) GBIF México. Available online: https://www.gbif.org/ (accessed on 8 January 2025).
  27. CONANP. Programa de Manejo Reserva de la Biosfera Ría Celestún; Comisión Nacional de Áreas Naturales Protegidas: Mexico City, Mexico, 2000; Available online: https://www.conanp.gob.mx/que_hacemos/pdf/programas_manejo/celestun.pdf (accessed on 10 January 2025).
  28. CONANP. Programa de Manejo Parque Nacional Arrecifes de Xcalak; Comisión Nacional de Áreas Naturales Protegidas: Mexico City, Mexico, 2004; Available online: https://www.conanp.gob.mx/que_hacemos/pdf/programas_manejo/Xcalak_ok.pdf (accessed on 11 January 2025).
  29. CONANP. Programa de Conservación y Manejo Parque Nacional Arrecife Alacranes; Comisión Nacional de Áreas Naturales Protegidas: Mexico City, Mexico, 2006; Available online: https://www.conanp.gob.mx/que_hacemos/pdf/programas_manejo/alacranes_ok.pdf (accessed on 11 January 2025).
  30. CONANP. Programa de Conservación y Manejo Reserva de la Biosfera Los Petenes; Comisión Nacional de Áreas Naturales Protegidas: Mexico City, Mexico, 2006; Available online: https://www.conanp.gob.mx/que_hacemos/pdf/programas_manejo/petenes_final.pdf (accessed on 13 January 2025).
  31. CONANP. Programa de Conservación y Manejo Área de Protección de Flora y Fauna Bala’an K’aax; Comisión Nacional de Áreas Naturales Protegidas: Mexico City, Mexico, 2007; Available online: https://www.conanp.gob.mx/que_hacemos/pdf/programas_manejo/Final_BallanKaxx.pdf (accessed on 17 January 2025).
  32. CONANP. Programa de Conservación y Manejo Reserva de la Biosfera Ría Lagartos; Comisión Nacional de Áreas Naturales Protegidas: Mexico City, Mexico, 2007; Available online: https://www.conanp.gob.mx/anp/consulta/PCM_RiaLagartos.pdf (accessed on 14 January 2025).
  33. CONANP. Programa de Manejo Área de Protección de Flora y Fauna Manglares de Nichupté; Comisión Nacional de Áreas Naturales Protegidas: Mexico City, Mexico, 2014; Available online: https://www.conanp.gob.mx/que_hacemos/pdf/programas_manejo/2015/Manglares_de_Nichupt%C3%A9.pdf (accessed on 15 January 2025).
  34. CONANP. Programa de Manejo Complejo Sian Ka’an: Reserva de la Biosfera Sian Ka’an, Área de Protección de Flora y Fauna Uaymil y Reserva de la Biosfera Arrecifes de Sian Ka’an; Comisión Nacional de Áreas Naturales Protegidas: Mexico City, Mexico, 2014; Available online: https://www.conanp.gob.mx/que_hacemos/pdf/programas_manejo/2015/Complejo_Sian_Ka_an.pdf (accessed on 20 January 2025).
  35. CONANP. Programa de Manejo Parque Nacional Isla Contoy; Comisión Nacional de Áreas Naturales Protegidas: Mexico City, Mexico, 2015; Available online: https://www.conanp.gob.mx/que_hacemos/pdf/programas_manejo/2015/Isla_Contoy_completo.pdf (accessed on 25 January 2025).
  36. CONANP. Programa de Manejo Reserva de la Biosfera Tiburón Ballena; Comisión Nacional de Áreas Naturales Protegidas: Mexico City, Mexico, 2015; Available online: https://www.conanp.gob.mx/que_hacemos/pdf/programas_manejo/2015/Tiburon_Ballena_Libro.pdf (accessed on 21 January 2025).
  37. CONANP. Programa de Manejo Área de Protección de Flora y Fauna La Porción Norte y la Franja Costera Oriental, Terrestres y Marinas de la Isla de Cozumel; Comisión Nacional de Áreas Naturales Protegidas: Mexico City, Mexico, 2016; Available online: https://www.conanp.gob.mx/que_hacemos/pdf/programas_manejo/2017/Isla%20Cozumel%20(completo).pdf (accessed on 28 January 2025).
  38. CONANP. Programa de Manejo Parque Nacional Costa Occidental de Isla Mujeres, Punta Cancún y Punta Nizuc; Comisión Nacional de Áreas Naturales Protegidas: Mexico City, Mexico, 2016; Available online: https://www.conanp.gob.mx/que_hacemos/pdf/programas_manejo/2017/Isla%20Mujeres%20Punta%20Canc%C3%BAn.pdf (accessed on 26 January 2025).
  39. CONANP. Programa de Manejo Parque Nacional Dzibilchantún; Comisión Nacional de Áreas Naturales Protegidas: Mexico City, Mexico, 2016; Available online: https://www.conanp.gob.mx/acciones/pdf/PMDZIBILCHANTUNCompleto.pdf (accessed on 29 January 2025).
  40. CONANP. Programa de Manejo Área de Protección de Flora y Fauna Yum Balam; Comisión Nacional de Áreas Naturales Protegidas: Mexico City, Mexico, 2019; Available online: https://www.conanp.gob.mx/programademanejo/PMYumBalam.pdf (accessed on 24 January 2025).
  41. CONANP. Programa de Manejo Reserva de la Biosfera Caribe Mexicano; Comisión Nacional de Áreas Naturales Protegidas: Mexico City, Mexico, 2019; Available online: https://www.conanp.gob.mx/programademanejo/PMCaribeMexicano.pdf (accessed on 27 January 2025).
  42. INE. Programa de Manejo del Área de Protección de Flora y Fauna Laguna de Términos; Instituto Nacional de Ecología: Mexico City, Mexico, 1997; Available online: https://www.conanp.gob.mx/que_hacemos/pdf/programas_manejo/APFFTerminos.pdf (accessed on 17 January 2025).
  43. INE. Programa de Manejo Parque Marino Nacional Arrecifes de Cozumel; Instituto Nacional de Ecología: Mexico City, Mexico, 1998; Available online: https://www.conanp.gob.mx/que_hacemos/pdf/programas_manejo/cozumel.pdf (accessed on 19 January 2025).
  44. INE. Programa de Manejo Parque Nacional Arrecife de Puerto Morelos; Instituto Nacional de Ecología: Mexico City, Mexico, 2000; Available online: https://www.conanp.gob.mx/que_hacemos/pdf/programas_manejo/puerto_morelos.pdf (accessed on 18 January 2025).
  45. INE. Programa de Manejo Reserva de la Biosfera Banco Chinchorro; Instituto Nacional de Ecología: Mexico City, Mexico, 2000; Available online: https://www.conanp.gob.mx/que_hacemos/pdf/programas_manejo/chinchorro.pdf (accessed on 24 January 2025).
  46. INE. Programa de Manejo Reserva de la Biosfera Calakmul; Instituto Nacional de Ecología: Mexico City, Mexico, 2000; Available online: https://www.conanp.gob.mx/que_hacemos/pdf/programas_manejo/calakmul.pdf (accessed on 20 January 2025).
  47. CONANP. Estudio Previo Justificativo Para el Establecimiento del Área Natural Protegida Parque Nacional Bajos del Norte, Golfo de México; Comisión Nacional de Áreas Naturales Protegidas: Mexico City, Mexico, 2023; Available online: https://www.conanp.gob.mx/pdf/separata/EPJ-PN-BajosDelNorte.pdf (accessed on 30 January 2025).
  48. CONANP. Estudio Previo Justificativo Para el Establecimiento del Área Natural Protegida Arrecifes del Golfo de México-Sur; Comisión Nacional de Áreas Naturales Protegidas: Mexico City, Mexico, 2024; Available online: https://www.conanp.gob.mx/pdf/separata/EPJ-PN-ArrecifesDelGolfoDeMexico-Sur.pdf (accessed on 30 January 2025).
  49. CONABIO. Método de Evaluación Rápida de Invasividad (MERI) Para Especies exóticas en México; Comisión Nacional Para el Conocimiento y Uso de la Biodiversidad: Mexico City, Mexico, 2015; Available online: https://www.biodiversidad.gob.mx/media/1/especies/Invasoras/files/Instrutivo_MERI_2020.pdf (accessed on 8 January 2025).
  50. PAST Core Team. PAST: A Software for Scientific Data Analysis. Available online: https://www.nhm.uio.no/english/research/resources/past/ (accessed on 10 January 2025).
  51. Collado-Vides, L.; González-González, J.; Ezcurra, E. Patrones de distribución ficofloristica en el sistema lagunar de Nichupté, Quintana Roo, México. Acta Botánica Mex. 1995, 31, 19–32. [Google Scholar] [CrossRef]
  52. Espinoza-Avalos, J.; Aguilar-Rosas, L.E.; Aguilar-Rosas, R.; Gómez-Poot, J.M.; Raigoza-Figueras, R. Presencia de caulerpaceae (Chlorophyta) en la Península de Yucatán, México. Bot. Sci. 2015, 93, 845–854. [Google Scholar] [CrossRef]
  53. Rendón-Hernández, E.; Ayala-Pérez, L.A.; Golubov, J.; Torres-Lara, R. Especies exóticas invasoras y sus implicaciones sobre los bosques de manglar en las Reservas de la Biosfera Ría Celestún y Ría Lagartos. Madera Bosques 2024, 30, 3042627. [Google Scholar] [CrossRef]
  54. Endañú-Huerta, E.; López-Contreras, J.E.; Amador-Del Ángel, L.E.; Guevara-Carrió, E.; Alderete-Chávez, A.; Brito-Pérez, R. Flora exótica naturalizada e invasora del Área de Protección de Flora y Fauna Laguna de Términos, Campeche: Estado actual, impactos, necesidades y perspectivas. In Problemas Contemporáneos Regionales del Sureste Mexicano El Caso del Estado de Campeche; Amador-Del Ángel, L.E., Frutos-Cortés, M., Eds.; Universidad Autónoma del Carmen: Ciudad del Carmen, Mexico, 2015; pp. 280–307. [Google Scholar]
  55. Amador-Del Ángel, L.E.; Endañú-Huerta, E.; López-Contreras, J.E.; Wakida-Kusunoki, A.T.; Guevara-Carrió, E.; Brito-Pérez, R. Fauna exótica establecida e invasora en el Área de Protección de Flora y Fauna Laguna de Términos, Campeche: Estado actual, impactos, necesidades y perspectivas. In Problemas Contemporáneos Regionales del Sureste Mexicano El Caso del Estado de Campeche; Amador-Del Ángel, L.E., Frutos-Cortés, M., Eds.; Universidad Autónoma del Carmen: Ciudad del Carmen, Mexico, 2015; pp. 128–154. [Google Scholar]
  56. Trinidad-Ocaña, C.; Juárez-Flores, J.; Sánchez, A.J.; Barba-Macías, E. Diversidad de moluscos y crustáceos acuáticos en tres zonas en la cuenca del Río Usumacinta, México. Rev. Mex. Biodivers. 2018, 89, S65–S78. [Google Scholar] [CrossRef]
  57. Gómez-Ponce, M.A.; Bolaños-Martínez, N.; Díaz-Jaimes, P.; Bortolini-Rosales, J.L.; Castellanos, P. A new record of a tiger shrimp Penaeus monodon Fabricius, 1798 breeding female in the coast of Campeche, Mexico. Lat. Am. J. Aquat. Res. 2020, 48, 150–155. [Google Scholar] [CrossRef]
  58. Wakida-Kusunoki, A.T.; Rojas-González, R.I.; González-Cruz, A.; Del Ángel, A.; Sánchez-Cruz, J.L.; López, N.A. Presence of giant tiger shrimp Penaeus monodon Fabricius, 1798 on the Mexican coast of the Gulf of Mexico. BioInvasions Rec. 2013, 2, 325–328. [Google Scholar] [CrossRef]
  59. Wakida-Kusunoki, A.T.; De Anda-Fuentes, D.; López-Téllez, N.A. Presence of giant tiger shrimp Penaeus monodon (Fabricius, 1798) in eastern Peninsula of Yucatan coast, Mexico. Lat. Am. J. Aquat. Res. 2016, 44, 155–158. [Google Scholar] [CrossRef]
  60. Wakida-Kusunoki, A.T.; Cruz-Sánchez, J.L.; López-Téllez, N.A. A review of recent sightings and reports of the giant tiger shrimp Penaeus monodon (Decapoda: Penaeidae) on the Mexican coast of the Gulf of Mexico (2012–2019). Rev. De Biol. Mar. Oceanografía 2021, 56, 83–88. [Google Scholar] [CrossRef]
  61. Simoes, N.; Wakida-Kusunoki, A.T.; Cruz-Sánchez, J.L.; Alvarez, F.; Villalobos-Hiriart, J.L. On the presence of Charybdis (Charybdis) hellerii (A. Milne-Edwards, 1867) on the Mexican coast of the Gulf of Mexico. BioInvasions Rec. 2019, 8, 670–674. [Google Scholar] [CrossRef]
  62. Torres-Castro, I.L.; Vega-Cendejas, M.A.; Schmitter-Soto, J.J.; Palacio-Aponte, G.; Rodiles-Hernández, R. Ictiofauna de Sistemas Cárstico-Palustres Con Impacto Antrópico: Los Petenes de Campeche, México. Rev. Biol. Tropical 2009, 57, 141–157. Available online: https://www.scielo.sa.cr/scielo.php?pid=S0034-77442009000100014&script=sci_arttext (accessed on 5 January 2025). [CrossRef]
  63. Vega-Cendejas, M.A. Estudio de Caso: Los Peces de la Reserva de Calakmul. In La Biodiversidad en Campeche: Estudio de Estado; Villalobos-Zapata, G.J., Mendoza, J., Eds.; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Mexico City, Mexico; Gobierno del Estado de Campeche: Campeche, Mexico; Universidad Autónoma de Campeche: Campeche, Mexico; El Colegio de la Frontera Sur: Campeche, Mexico, 2010; Available online: https://bioteca.biodiversidad.gob.mx/janium/Documentos/7371.pdf (accessed on 3 January 2025).
  64. Amador-Del Ángel, L.E.; Wakida-Kusunoki, A.T.; Guevara-Carrió, E.C.; Brito-Pérez, R.; Cabrera-Rodríguez, P. Peces Invasores de Agua Dulce en la Región de la Laguna de Términos, Campeche. UNACAR Tecnociencia 2009, 3, 11–28. Available online: https://biblat.unam.mx/hevila/UNACARtecnociencia/2009/no2/2.pdf (accessed on 4 January 2025).
  65. Ayala-Pérez, L.A.; Ramos-Miranda, J.; Flores-Hernández, D. La Comunidad de Peces de la Laguna de Términos: Estructura Actual Comparada. Biol. Trop. 2003, 50, 783–793. Available online: https://www.redalyc.org/articulo.oa?id=44911882020 (accessed on 18 January 2025).
  66. Amador-Del Ángel, L.E.; Guevara, E.; Brito, R.; Wakida-Kusunoki, A.T.; Cabrera-Rodríguez, P. Aportaciones recientes al estudio de la ictiofauna del Área de Protección de Flora y Fauna Laguna de Términos, Campeche. In Aspectos Hidrológicos y Ambientales en la Laguna de Términos; Ruíz, A., Canedo, Y., Zavala, J.C., Campos, S.C., Sabido, M.Y., Ayala, L.A., Amador-Del Ángel, L.E., Eds.; Universidad Autónoma del Carmen: Ciudad del Carmen, Mexico, 2012; pp. 128–154. [Google Scholar]
  67. Álvarez-Pliego, N.; Sánchez, A.J.; Florido, R.; Salcedo, M.A. First record of South American suckermouth armored catfishes (Loricariidae, Pterygoplichthys spp.) in the Chumpan River system, southeast Mexico. BioInvasions Records 2015, 4, 309–314. [Google Scholar] [CrossRef]
  68. Ayala-Pérez, L.A.; Pineda-Peralta, A.D.; Álvarez-Guillen, H.; Amador-Del Ángel, L.E. El pez diablo (Pterygoplichthys spp.) en las cabeceras estuarinas de la Laguna de Términos, Campeche. In Especies Invasoras Acuáticas: Casos de Estudio en Ecosistemas de México; Low, A., Quijón, P., Peters, E., Eds.; Secretaría de Medio Ambiente y Recursos Naturales: Mexico City, Mexico; Instituto Nacional de Ecología y Cambio Climático: Mexico City, Mexico; University of Prince Edward Island: Charlottetown, PE, Canada, 2014; pp. 313–336. Available online: https://agua.org.mx/biblioteca/especies-invasoras-acuaticas-casos-de-estudio-en-ecosistemas-de-mexico-2/ (accessed on 16 January 2025).
  69. Rendón, E.; Bernal, J.F.; Hernández, B.; Müller, E. Estrategias de atención a especies exóticas invasoras en áreas naturales protegidas de competencia federal en México. In Principales Retos que Enfrenta México Ante las Especies Exóticas Invasoras; Born-Schmidt, G., de Alba, F., Parpal, J., Koleff, P., Eds.; Centro de Estudios Sociales y de Opinión Pública: Mexico City, Mexico; Cámara de Diputados: Mexico City, Mexico, 2017; pp. 209–224. [Google Scholar]
  70. Wakida-Kusunoki, A.T.; Amador-Del Ángel, L.E. Nuevos Registros de los Plecos Pterygoplichthys pardalis (Castelnau 1855) y P. disjunctivus (Weber 1991) (Siluriformes: Loricariidae) en el Sureste de México. Hidrobiológica 2008, 18, 251–256. Available online: https://hidrobiologica.izt.uam.mx/index.php/revHidro/article/view/916 (accessed on 19 January 2025).
  71. Toro-Ramírez, A.; Wakida-Kusunoki, A.T.; Amador-Del Ángel, L.E.; Cruz-Sánchez, J.L. Common snook Centropomus undecimalis (Bloch, 1792) preys on the invasive Amazon sailfin catfish Pterygoplichthys pardalis (Castelnau, 1855) in the Palizada River, Campeche, southeastern Mexico. J. Appl. Ichthyol. 2014, 30, 532–534. [Google Scholar] [CrossRef]
  72. Guzmán-Méndez, I.A.; Rivera-Madrid, R.; Díaz-Jaimes, P.; García-Rivas, M.C.; Aguilar-Espinosa, M.; Arias-González, J.E. First genetically confirmed record of the invasive devil firefish Pterois miles (Bennett, 1828) in the Mexican Caribbean. BioInvasions Rec. 2017, 6, 99–103. [Google Scholar] [CrossRef]
  73. Aguilar-Perera, A.; Tuz-Sulub, A. Non-native, invasive red lionfish (Pterois volitans Linnaeus, 1758: Scorpaenidae), is first recorded in the southern Gulf of Mexico, off the northern Yucatan Peninsula, Mexico. Aquat. Invasions 2010, 5, S9–S12. [Google Scholar] [CrossRef]
  74. Aguilar-Perera, A.; Quijano-Puerto, L.; Hernández-Landa, R.C. Lionfish invaded the mesophotic coral ecosystem of the Parque Nacional Arrecife Alacranes, Southern Gulf of Mexico. Mar. Biodivers. 2017, 47, 15–16. [Google Scholar] [CrossRef]
  75. Arias-González, J.E.; González-Gándara, C.; Cabrera, J.L.; Christensen, V. Predicted impact of the invasive lionfish Pterois volitans on the food web of a Caribbean coral reef. Environ. Res. 2011, 111, 917–925. [Google Scholar] [CrossRef] [PubMed]
  76. Arredondo-Chávez, A.T.; Sánchez-Jiménez, J.A.; Ávila-Morales, O.G.; Torres-Chávez, P.; Herrerias-Diego, Y.; Medina-Nava, M.; Madrigal-Gurdi, X.; Campos-Mendoza, A.; Domínguez-Domínguez, O.; Caballero-Vázquez, J.A. Spatio-temporal variation in the diet composition of red lionfish, Pterois volitans (Actinopterygii: Scorpaeniformes: Scorpaenidae), in the Mexican Caribbean: Insights into the ecological effect of the alien invasion. Acta Ichthyol. Piscat. 2016, 46, 185–200. [Google Scholar] [CrossRef]
  77. Cobián-Rojas, D.; Schmitter-Soto, J.J.; Aguilar, C.M.; Aguilar-Perera, A.; Ruiz-Zárate, M.A.; González-Sansón, G.; Chevalier, P.P.; Herrera, R.; García, A.; Corrada, R.I.; et al. The community diversity of two Caribbean MPAs invaded by lionfish does not support the biotic resistance hypothesis. J. Sea Res. 2018, 134, 26–33. [Google Scholar] [CrossRef]
  78. Loreto-Viruel, R.M.; Rendón-Hernández, E.; Espindola, S. Plan de Acción Nacional Para el Manejo y Control del pez León en México; Comisión Nacional de Áreas Naturales Protegidas: Mexico City, Mexico; Amigos de Sian Ka’an, A.C.: Cancún, Mexico; Mesoamerican Reef Fund: Mexico City, Mexico, 2023; Available online: https://marfund.org/es/wp-content/uploads/2023/03/Mexico-Plan-Accion_Pez-leon_feb23_opt.pdf (accessed on 1 February 2025).
  79. Côté, I.M.; Green, S.J.; Hixon, M.A. Predatory fish invaders: Insights from Indo-Pacific lionfish in the western Atlantic and Caribbean. Biol. Conserv. 2013, 164, 50–61. [Google Scholar] [CrossRef]
Figure 1. Map of the protected areas of the Yucatan Peninsula and adjacent marine zone with presence of aquatic invasive species. The acronyms of the protection categories correspond to the following: BR-Biosphere Reserve, FFPA-Flora and Fauna Protection Area, NP-National Park, and WS-Wildlife Sanctuary.
Figure 1. Map of the protected areas of the Yucatan Peninsula and adjacent marine zone with presence of aquatic invasive species. The acronyms of the protection categories correspond to the following: BR-Biosphere Reserve, FFPA-Flora and Fauna Protection Area, NP-National Park, and WS-Wildlife Sanctuary.
Sustainability 17 05017 g001
Figure 2. Presence–absence relationship of aquatic invasive species in the protected areas of the Yucatan peninsula and adjacent marine zone. The bigger the circle, the greater the presence. Identification keys for protected areas according to Table 1.
Figure 2. Presence–absence relationship of aquatic invasive species in the protected areas of the Yucatan peninsula and adjacent marine zone. The bigger the circle, the greater the presence. Identification keys for protected areas according to Table 1.
Sustainability 17 05017 g002
Figure 3. Dendrogram of Jaccard’s index of aquatic invasive species in protected areas of the Yucatan peninsula and adjacent marine zone. Identification keys for protected areas according to Table 1.
Figure 3. Dendrogram of Jaccard’s index of aquatic invasive species in protected areas of the Yucatan peninsula and adjacent marine zone. Identification keys for protected areas according to Table 1.
Sustainability 17 05017 g003
Table 1. Presence of aquatic invasive species in protected areas of the Yucatan peninsula and adjacent marine zone. Protected areas are represented by the following identification keys: Arrecife Alacranes (AA), Arrecife de Puerto Morelos (AP), Arrecifes de Cozumel (AC), Arrecifes de Sian Ka’an (AS), Arrecifes de Xcalak (AX), Arrecifes del Golfo de Mexico-Sur (AG), Bajos del Norte (BN), Bala’an K’aax (BK), Banco Chinchorro (BC), Calakmul (CA), Caribe Mexicano (CM), Costa Isla Mujeres (IM), Dzibilchantun (DZ), Isla Contoy (CN), Isla Cozumel (CZ), Laguna de Terminos (LT), Los Petenes (PE), Manglares de Nichupte (MN), Playa Ria Lagartos (PR), Ria Celestun (RC), Ria Lagartos (RL), Sian Ka’an (SK), Tiburon Ballena (TB), Uaymil (UA), and Yum Balam (YB). The invasiveness index is represented by the following symbols: very high (▲), high (■), and medium (●).
Table 1. Presence of aquatic invasive species in protected areas of the Yucatan peninsula and adjacent marine zone. Protected areas are represented by the following identification keys: Arrecife Alacranes (AA), Arrecife de Puerto Morelos (AP), Arrecifes de Cozumel (AC), Arrecifes de Sian Ka’an (AS), Arrecifes de Xcalak (AX), Arrecifes del Golfo de Mexico-Sur (AG), Bajos del Norte (BN), Bala’an K’aax (BK), Banco Chinchorro (BC), Calakmul (CA), Caribe Mexicano (CM), Costa Isla Mujeres (IM), Dzibilchantun (DZ), Isla Contoy (CN), Isla Cozumel (CZ), Laguna de Terminos (LT), Los Petenes (PE), Manglares de Nichupte (MN), Playa Ria Lagartos (PR), Ria Celestun (RC), Ria Lagartos (RL), Sian Ka’an (SK), Tiburon Ballena (TB), Uaymil (UA), and Yum Balam (YB). The invasiveness index is represented by the following symbols: very high (▲), high (■), and medium (●).
Taxonomic GroupFamilyTaxonProtected AreasReference Number
MacroalgaeCaulerpaceaeCaulerpa taxifolia
(M.Vahl) C.Agardh 1817
AA, AG[25,29,48]
Caulerpa verticillata
J. Agardh, 1847
AA, AP, AC, AS, AX, AG, BC, CM, IM, CN, CZ, PE, MN, PR, RC, RL, SK, YB[25,28,29,34,35,37,38,40,41,44,45,48,51,52,53]
UlvaceaeUlva Lactuca
(Linnaeus, 1753)
AA, AP, AS, AX, BC, IM, CN, RL, SK[25,26,28,29,32,34,35,44,45,53]
PlantsHydrocharitaceaeEgeria densa
Planch.
CA, DZ[25,39,46]
PontederiaceaeEichhornia crassipes
(Mart.) Solms
CA, LT, PE, SK, UA[25,34,46,54]
HydrozoansCordylophoridaeCordylophora caspia
(Pallas, 1771)
AG[25,26,48]
PlumulariidaePlumularia setacea
(Linnaeus, 1758)
AA, AG[25,26,48]
MollusksThiaridaeMelanoides tuberculata
(O. F. Müller, 1774)
LT, SK[25,34,55]
Tarebia granifera
(Lamarck, 1816)
LT[25,55,56]
CrustaceansPenaeidaePenaeus monodon
(Fabricius, 1798)
LT, RC, RL[25,26,53,55,57,58,59,60]
PortunidaeCharybdis (Charybdis) helleri ■ (A. Milne-Edwards, 1867)LT[25,61]
FishCichlidaeOreochromis aureus
(Steindachner, 1864)
LT, PE[25,26,62]
Oreochromis mossambicus
(Peters, 1852)
CA[25,63]
Oreochromis niloticus
(Linnaeus, 1758)
BK, CA, LT, PE, RC[25,31,53,62,63,64,65]
Parachromis managuensis
(Günther, 1867)
LT[25,55,64,66]
Parachromis motaguensis
(Günther, 1867)
LT[25,55]
CyprinidaeCtenopharyngodon idella
(Valenciennes, 1844)
LT[25,55,64,66]
Cyprinus carpio
(Linnaeus, 1758)
LT[25,55]
LoricariidaePterygoplichthys disjunctivus
(Weber, 1991)
LT[25,55,64,66,67,68,69,70]
Pterygoplichthys pardalis
(Castelnau, 1855)
LT[25,55,64,66,67,68,69,70,71]
ScorpaenidaePterois miles
(Bennett, 1828)
BC[72]
Pterois volitans
(Linnaeus, 1758)
AA, AP, AC, AS, AX, AG, BN, BC, CM, IM, CN, CZ, PE, SK, TB, YB[25,35,36,37,38,40,41,47,48,69,73,74,75,76,77,78]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Rendón-Hernández, E.; Ayala-Pérez, L.A.; Golubov, J.; Torres-Lara, R.; Vega-Rodríguez, B.I. Aquatic Invasive Species in the Protected Areas of the Yucatan Peninsula and Adjacent Marine Zone, Mexico. Sustainability 2025, 17, 5017. https://doi.org/10.3390/su17115017

AMA Style

Rendón-Hernández E, Ayala-Pérez LA, Golubov J, Torres-Lara R, Vega-Rodríguez BI. Aquatic Invasive Species in the Protected Areas of the Yucatan Peninsula and Adjacent Marine Zone, Mexico. Sustainability. 2025; 17(11):5017. https://doi.org/10.3390/su17115017

Chicago/Turabian Style

Rendón-Hernández, Eduardo, Luis Amado Ayala-Pérez, Jordan Golubov, Ricardo Torres-Lara, and Brenda Iliana Vega-Rodríguez. 2025. "Aquatic Invasive Species in the Protected Areas of the Yucatan Peninsula and Adjacent Marine Zone, Mexico" Sustainability 17, no. 11: 5017. https://doi.org/10.3390/su17115017

APA Style

Rendón-Hernández, E., Ayala-Pérez, L. A., Golubov, J., Torres-Lara, R., & Vega-Rodríguez, B. I. (2025). Aquatic Invasive Species in the Protected Areas of the Yucatan Peninsula and Adjacent Marine Zone, Mexico. Sustainability, 17(11), 5017. https://doi.org/10.3390/su17115017

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop