Systematic Literature Network Analysis of Raw Materials in the Amazon Bioeconomy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Systematic Literature Review (SLR)
2.1.1. Scope of Analysis
2.1.2. Locating Studies
2.1.3. Study Selection and Evaluation
2.2. Bibliometrix
2.3. Bibliographic Network Analysis
2.3.1. VOSviewer
i < j
2.3.2. VOSviewer Terminology
2.3.3. Co-Occurrence Analysis
3. Results
3.1. Descriptive Analysis
3.2. Network Visualization
Overlay Visualization
4. Discussion
4.1. Impact of Food, Cosmetic, and Mineral Industry Applications of Pracaxi and Patauá Oils
4.2. Sustainability of the Application of Pracaxi and Patauá Oils in Highlighted Research Fields
4.3. The Potential of the Bioeconomy: Global and Regional Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Title | Cited by | Reference |
---|---|---|
Fatty acid profiles and tocopherol contents of buriti (Mauritia flexuosa), patawa (Oenocarpus bataua), tucuma (Astrocaryum vulgare), mari (Poraqueiba paraensis) and Inaja (Maximiliana maripa) fruits | 81 | [38] |
Alternative sources of oils and fats from Amazonian plants: Fatty acids, methyl tocols, total carotenoids and chemical composition | 75 | [47] |
Physical properties of Amazonian fats and oils and their blends | 63 | [54] |
Chemical interesterification of blends with palm stearin and patawa oil | 61 | [51] |
Nutritional composition, fatty acid and tocopherol contents of buriti (Mauritia flexuosa) and patawa (Oenocarpus bataua) fruit pulp from the amazon region | 61 | [20] |
Murumuru (Astrocaryum murumuru Mart.) butter and oils of buriti (Mauritia flexuosa Mart.) and pracaxi (Pentaclethra macroloba (Willd.) Kuntze) can be used for biodiesel production: Physico-chemical properties and thermal and kinetic studies | 48 | [46] |
Technological properties of Amazonian oils and fats and their applications in the food industry | 46 | [10] |
The fatty acid composition of vegetable oils and their potential use in wound care | 42 | [37] |
Characterization of Pentaclethra macroloba oil: Thermal stability, gas chromatography and Rancimat | 31 | [6] |
Composition, thermal behavior and antioxidant activity of pracaxi (Pentaclethra macroloba) seed oil obtained by supercritical CO2 | 26 | [52] |
Mushroom tyrosinase inhibitory activity and major fatty acid constituents of Amazonian native flora oils | 25 | [55] |
Apatite flotation using pataua palm tree oil as collector | 23 | [12] |
Case Series: The Effectiveness of Fatty Acids from Pracaxi Oil in a Topical Silicone Base for Scar and Wound Therapy | 18 | [11] |
Lipase catalyzed interesterification of Amazonian pataua oil and palm stearin for preparation of specific-structured oils | 16 | [48] |
Impact of the mode of extraction on the lipidomic profile of oils obtained from selected amazonian fruits | 15 | [56] |
Evaluation of quality parameters and chromatographic, spectroscopic, and thermogravimetric profile of pataua oil (Oenocarpus bataua) | 12 | [57] |
Bionanocomposites of pectin and pracaxi oil nanoemulsion as active packaging for butter | 10 | [45] |
Direct and Solvent-Free Aminolysis of Triglyceride from Oenocarpus bataua (Patawa) Oil Catalyzed by Al2O3 | 10 | [49] |
Predicting Temperature-Dependent Viscosity of Amazonian Vegetable Oils and Their Mixtures from Fatty Acid Composition | 10 | [50] |
Selective flotation of apatite from micaceous minerals using pataua palm tree oil collector | 10 | [41] |
Deacidification of Amazonian Pracaxi (Pentaclethra macroloba) and Patawa (Oenocarpus bataua) oils: experimental and modeling of liquid–liquid extraction using alcoholic solvents | 9 | [58] |
Physicochemical and technological properties of pracaxi oil, cupuassu fat and palm stearin blends enzymatically interesterified for food applications | 4 | [44] |
Pracaxi oil affects xenobiotic metabolisms, cellular proliferation, and oxidative stress without cytotogenotoxic effects in HepG2/C3A cells | 3 | [59] |
Study of the antioxidant power of the waste oil from palm oil bleaching clay | 3 | [60] |
Physicochemical properties of andiroba (Carapa guianensis) and pracaxi (Pentaclethra macroloba) oils | 2 | [61] |
Pracaxi impairs general activity and locomotion in male mice | 2 | [62] |
Preparation and characterization of pataua and pracaxi Brazilian vegetable oil emulsions | 1 | [63] |
Synergetic effects of fatty acids in Amazon oil-based collectors for phosphate flotation | 1 | [43] |
Characterization and subchronic oral toxicity of Pentaclethra macroloba (pracaxi) oil in Rattus norvegicus (lin. Wistar) | 0 | [39] |
From Pataua Oil to Sustainable Polymers: Investigation of Epoxy/Anhydride Crosslink in Different Proportions | 0 | [53] |
Poly (ϵ-caprolactone)-Based Scaffolds with Multizonal Architecture: Synthesis, Characterization, and In Vitro Tests | 0 | [40] |
The use of pracaxi oil collector in the selective flotation of xenotime from silicates | 0 | [42] |
References
- Hanusch, M. Equilíbrio delicado para a Amazônia Legal Brasileira—Um memorando econômico; World Bank Group: Washington, DC, USA, 2023; Volume 1, pp. 2–7. Available online: https://coilink.org/20.500.12592/q10bk3 (accessed on 13 May 2024).
- Instituto Clima e Sociedade. A Bioeconomia Global-Levantamento Preliminar das Estratégias e Práticas do G20:Uma contribuição para a Iniciativa de Bioeconomia do G20. 2024, 1, 1021. Available online: https://climaesociedade.org/publicacoes/a-bioeconomia-global-levantamento-preliminar-das-estrategias-e-praticas-do-g20-uma-contribuicao-para-a-iniciativa-de-bioeconomia-do-g20/ (accessed on 20 May 2024).
- Alves, A.A.; Brambilla, A.K.; Silva, E.d.C.e.; Angelkorte, G.B.; Soares, G.A.; Teixeira, L.; Lopes, M.A.; Zotin, M.Z.; Chagas, M.; Coutinho, P.; et al. Identificação das Oportunidades e o Potencial do Impacto da Bioeconomia para a Descarbonização do Brasil. J. Environ. Res. Public Health 2022, 1, 21–25. (In Portuguese) [Google Scholar]
- Nobre, C.A.; Feltran-Barbieri, R.; De Assis Costa, F.; Haddad, E.A.; Schaeffer, R. Nova economia da Amazônia. New Clim. Econ. 2023, 1, 75–85. [Google Scholar] [CrossRef]
- Albert, J.S.; Carnaval, A.C.; Flantua, S.G.; Lohmann, L.G.; Ribas, C.C.; Riff, D.; Carrillo, J.D.; Fan, Y.; Figueiredo, J.J.; Guayasamin, J.M.; et al. Human impacts outpace natural processes in the Amazon. Science 2023, 379, eabo5003. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Costa, M.N.F.; Muniz, M.A.P.; Negrão, C.A.B.; da Costa, C.E.F.; Lamarão, M.L.N.; Morais, L.; Silva Júnior, J.O.C.; Ribeiro Costa, R.M. Characterization of Pentaclethra macroloba oil: Thermal stability, gas chromatography and Rancimat. J. Therm. Anal. Calorim. 2014, 115, 2269–2275. [Google Scholar] [CrossRef]
- Pesce, C. Oleaginosas da Amazônia; MCT/MPEG: Belém, Brazil, 2009; Available online: https://repositorio.iica.int/handle/11324/12004 (accessed on 7 March 2024).
- Nobre Lamarão, M.L.; Ferreira, L.M.d.M.C.; Gyles Lynch, D.; Morais, L.R.B.; Silva-Júnior, J.O.C.; Ribeiro-Costa, R.M. Pentaclethra macroloba: A review of the biological, pharmacological, phytochemical, cosmetic, nutritional and biofuel potential of this Amazonian plant. Plants 2023, 12, 1330. [Google Scholar] [CrossRef]
- Mosquera Narvaez, L.E.; Ferreira, L.M.d.M.C.; Sanches, S.; Alesa Gyles, D.; Silva-Júnior, J.O.C.; Ribeiro Costa, R.M. A Review of Potential Use of Amazonian Oils in the Synthesis of Organogels for Cosmetic Application. Molecules 2022, 27, 2733. [Google Scholar] [CrossRef]
- Bezerra, C.V.; Rodrigues, A.M.d.C.; de Oliveira, P.D.; da Silva, D.A.; da Silva, L.H.M. Techno-logical properties of amazonian oils and fats and their applications in the food industry. Food Chem. 2017, 221, 1466–1473. [Google Scholar] [CrossRef]
- Banov, D.; Banov, F.; Bassani, A.S. Case Series: The Effectiveness of Fatty Acids from Pracaxi Oil in a Topical Silicone Base for Scar and Wound Therapy. Dermatol. Ther. 2014, 4, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, P.d.; Mansur, H.; Mansur, A.; Silva, G.d.; Clark Peres, A.E. Apatite flotation using pataua palm tree oil as collector. J. Mater. Res. Technol. 2019, 8, 4612–4619. [Google Scholar] [CrossRef]
- Crespi, B.; Guerra, G.A.D. Ocorrência, coleta, processamento primário e usos do pracaxi (Pentaclethra macroloba (Willd.) Kuntze) na Ilha de Cotijuba, Belém-PA. Rev. Bras. Agroecol. 2013, 8, 176–189. [Google Scholar]
- Colicchia, C.; Strozzi, F. Supply chain risk management: A new methodology for a systematic literature review. Supply Chain Manag. Int. J. 2012, 17, 403–418. [Google Scholar] [CrossRef]
- Kim, S.; Colicchia, C.; Menachof, D. Ethical Sourcing: An Analysis of the Literature and Implications for Future Research. J. Bus. Ethics 2018, 152, 1033–1052. [Google Scholar] [CrossRef]
- Colicchia, C.; Creazza, A.; Noè, C.; Strozzi, F. Information sharing in supply chains: A review of risks and opportunities using the systematic literature network analysis (SLNA). Supply Chain Manag. Int. J. 2019, 24, 5–21. [Google Scholar] [CrossRef]
- Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Canavesi, A.; Minelli, E. Servant Leadership: A Systematic Literature Review and Network Analysis. Employ. Respons. Rights J. 2022, 34, 267–289. [Google Scholar] [CrossRef]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. FASEB J. 2008, 22, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Darnet, S.H.; Silva, L.H.M.d.; Rodrigues, A.M.d.C.; Lins, R.T. Nutritional composition, fatty acid and tocopherol contents of buriti (Mauritia flexuosa) and patawa (Oenocarpus bataua) fruit pulp from the amazon region. Food Sci. Technol. 2011, 31, 488–491. [Google Scholar] [CrossRef]
- Van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. Ann. Intern. Med. 2009, 6, e1000100. [Google Scholar]
- Pati, D.; Lorusso, L.N. How to write a systematic review of the literature. HERD: Health. Environ. Res. Des. J. 2018, 11, 15–30. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Oyewola, D.O.; Dada, E.G. Exploring machine learning: A scientometrics approach using bibliometrix and VOSviewer. SN Appl. Sci. 2022, 4, 143. [Google Scholar] [CrossRef]
- Arruda, H.; Silva, E.R.; Lessa, M.; Proença Jr, D.; Bartholo, R. VOSviewer and bibliometrix. J. Med. Libr. Assoc. 2022, 110, 392. [Google Scholar] [CrossRef] [PubMed]
- Börner, K.; Chen, C.; Boyack, K.W. Visualizing knowledge domains. Annu. Rev. Info Sci. Technol. 2003, 37, 179–255. [Google Scholar] [CrossRef]
- Waltman, L.; van Eck, N.J.; Noyons, E.C.M. A unified approach to mapping and clustering of bibliometric networks. J. Informetr. 2010, 4, 629–635. [Google Scholar] [CrossRef]
- Klarin, A. How to conduct a bibliometric content analysis: Guidelines and contributions of content co-occurrence or co-word literature reviews. Int. J. Consum. Stud. 2024, 48, e13031. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L.; Dekker, R.; van den Berg, J. A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 2405–2416. [Google Scholar] [CrossRef]
- Eck, N.J.v.; Waltman, L. How to normalize cooccurrence data? An analysis of some well-known similarity measures. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 1635–1651. [Google Scholar] [CrossRef]
- Caneppele, N.R.; Shigaki, H.B.; Ramos, H.R.; Ribeiro, I. A utilização do software VOSviewer em Pesquisas Científicas. Rev. Ibero-Am. Estratégia 2023, 22, e24970. [Google Scholar] [CrossRef]
- Hyk, V.; Vysochan, O.; Vysochan, O. Sustainability Reporting Trends: A Systematic Literature Network Analysis. Comp. Econ. Res. Cent. East. Eur. 2023, 26, 7–31. [Google Scholar] [CrossRef]
- Hosoya, R.; Ding, Z.; Kamioka, T. A Bibliographic Network Analysis of Big Data Literature. PACIS. 2017. Available online: https://web.archive.org/web/20220802072312id_/https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1259&context=pacis2017 (accessed on 10 June 2024).
- Veronezi, C.M.; da Silva, A.C.; Freitas, I.R.; Jorge, N. Óleos Vegetais: Propriedades Físico-Químicas, Bioativas e Antioxidantes; Agron Food Academy: São Carlos, Brazil, 2022. [Google Scholar]
- Alves, A.Q.; da Silva, V.A.J.; Góes, A.J.S.; Silva, M.S.; de Oliveira, G.G.; Bastos, I.V.G.A.; de Castro Neto, A.G.; Alves, A.J. The Fatty Acid Composition of Vegetable Oils and Their Potential Use in Wound Care. Adv. Skin Wound Care 2019, 32, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.M.D.C.; Darnet, S.; Silva, L.H.M.D. Fatty acid profiles and tocopherol contents of buriti (Mauritia flexuosa), patawa (Oenocarpus bataua), tucuma (Astrocaryum vulgare), mari (Poraqueiba paraensis) and inaja (Maximiliana maripa) fruits. J. Braz. Chem. Soc. 2010, 21, 2000–2004. [Google Scholar] [CrossRef]
- Eberhart, B.d.S.; Komiyama, C.M.; Burbarelli, M.F.d.C.; Castilho Heiss, V.A.R.; Garcia, R.G.; Borges, R.; Felix, G.A.; Cardoso, C.A.L.; Braz, P.H.; Teodoro, C.R.; et al. Characterization and subchronic oral toxicity of Pentaclethra macroloba (pracaxi) oil in Rattus norvegicus (lin. Wistar). Toxicon 2023, 230, 107151. [Google Scholar] [CrossRef] [PubMed]
- Lima, T.d.P.d.L.; Canelas, C.A.d.A.; Dutra, J.d.C.F.; Rodrigues, A.P.D.; Brígida, R.T.S.S.; Concha, V.O.C.; da Costa, F.A.M.; Passos, M.F. Poly (ε-caprolactone)-Based Scaffolds with Multizonal Architecture: Synthesis, Characterization, and In Vitro Tests. Polymers 2023, 15, 4403. [Google Scholar] [CrossRef] [PubMed]
- Angélica Evangelista de Carvalho, J.; Roberto Gomes Brandão, P.; Bicalho Henriques, A.; Silva de Oliveira, P.; Zanoni Lopes Cançado, R.; Rodrigues da Silva, G. Selective flotation of apatite from micaceous minerals using patauá palm tree oil collector. Miner. Eng. 2020, 156, 106474. [Google Scholar] [CrossRef]
- Martins, R.L.; Fernandes De Magalhães, L.; Santos, L.H.; Rodrigues Da Silva, G. The use of pracaxi oil collector in the selective flotation of xenotime from silicates. Heliyon 2023, 9, e15874. [Google Scholar] [CrossRef]
- Santos, L.H.; Santos, A.M.A.; de Magalhães, L.F.; de Souza, T.F.; da Silva, G.R.; Peres, A.E.C. Synergetic effects of fatty acids in amazon oil-based collectors for phosphate flotation. Miner. Eng. 2023, 191, 107932. [Google Scholar] [CrossRef]
- Albuquerque da Silva, D.; Manoel da Cruz Rodrigues, A.; Oliveira dos Santos, A.; Salvador-Reyes, R.; Meller da Silva, L.H. Physicochemical and technological properties of pracaxi oil, cupuassu fat and palm stearin blends enzymatically interesterified for food applications. LWT 2023, 184, 114961. [Google Scholar] [CrossRef]
- Candido, G.S.; Natarelli, C.V.L.; Carvalho, E.E.N.; Oliveira, J.E. Bionanocomposites of pectin and pracaxi oil nanoemulsion as active packaging for butter. Food Packag. Shelf Life 2022, 32, 100862. [Google Scholar] [CrossRef]
- Pereira Lima, R.; Souza da Luz, P.T.; Braga, M.; dos Santos Batista, P.R.; Ferreira da Costa, C.E.; Zamian, J.R.; Santos do Nascimento, L.A.; da Rocha Filho, G.N. Murumuru (Astrocaryum murumuru Mart.) butter and oils of buriti (Mauritia flexuosa Mart.) and pracaxi (Pentaclethra macroloba (Willd.) Kuntze) can be used for biodiesel production: Physico-chemical properties and thermal and kinetic studies. Ind. Crops Prod. 2017, 97, 536–544. [Google Scholar] [CrossRef]
- Serra, J.L.; Rodrigues, A.M.d.C.; de Freitas, R.A.; Meirelles, A.J.d.A.; Darnet, S.H.; Silva, L.H.M.d. Alternative sources of oils and fats from Amazonian plants: Fatty acids, methyl tocols, total carotenoids and chemical composition. Food Res. Int. 2019, 116, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Speranza, P.; Ribeiro, A.P.B.; Macedo, G.A. Lipase catalyzed interesterification of Amazonian patauá oil and palm stearin for preparation of specific-structured oils. J. Food Sci. Technol. 2015, 52, 8268–8275. [Google Scholar] [CrossRef] [PubMed]
- Araújo, P.H.F.; Barata, P.H.d.S.; Araújo, I.F.; Curti, J.M.; Amaral, R.R.; Bereau, D.; Carvalho, J.C.T.; Ferreira, I.M. Direct and Solvent-Free Aminolysis of Triglyceride from Oenocarpus bataua (Patawa) Oil Catalyzed by Al2O3. Catal. Lett. 2018, 148, 843–851. [Google Scholar] [CrossRef]
- Oliveira, P.D.; Araujo, L.A.; Silva, L.H.M.; Rodrigues, A.M.C. Predicting Temperature-Dependent Viscosity of Amazonian Vegetable Oils and Their Mixtures from Fatty Acid Composition. Int. J. Food Prop. 2016, 19, 1972–1982. [Google Scholar] [CrossRef]
- Oliveira, P.D.; Rodrigues, A.M.C.; Bezerra, C.V.; Silva, L.H.M. Chemical interesterification of blends with palm stearin and patawa oil. Food Chem. 2017, 215, 369–376. [Google Scholar] [CrossRef]
- Teixeira, G.L.; Maciel, L.G.; Mazzutti, S.; Gonçalves, C.B.; Ferreira, S.R.S.; Block, J.M. Composition, thermal behavior and antioxidant activity of pracaxi (Pentaclethra macroloba) seed oil obtained by supercritical CO2. Biocatal. Agric. Biotechnol. 2020, 24, 101521. [Google Scholar] [CrossRef]
- Magri, R.; Gaglieri, C.; Alarcon, R.T.; dos Santos, G.I.; Bannach, G. From Patauá Oil to Sustain-633 able Polymers: Investigation of Epoxy/Anhydride Crosslink in Different Proportions. J. Polym. Environ. 2024, 32, 1453–1468. [Google Scholar] [CrossRef]
- Pereira, E.; Ferreira, M.C.; Sampaio, K.A.; Grimaldi, R.; Meirelles, A.J.d.A.; Maximo, G.J. Physical properties of Amazonian fats and oils and their blends. Food Chem. 2019, 278, 208–215. [Google Scholar] [CrossRef]
- Teixeira, R.d.S.; Rocha, P.R.; Polonini, H.C.; Brandão, M.A.F.; Chaves, M.d.G.A.M.; Raposo, N.R.B. Mushroom tyrosinase inhibitory activity and major fatty acid constituents of Amazonian native flora oils. Braz. J. Pharm. Sci. 2012, 48, 399–404. [Google Scholar] [CrossRef]
- Cardona Jaramillo, J.E.C.; Carrillo Bautista, M.P.; Alvarez Solano, O.A.; Achenie, L.E.K.; González Barrios, A.F. Impact of the Mode of Extraction on the Lipidomic Profile of Oils Obtained from Selected Amazonian Fruits. Biomolecules 2019, 9, 329. [Google Scholar] [CrossRef] [PubMed]
- Santos, O.V.d.; Gonçalves, B.S.; Macêdo, C.d.S.; Conceição, L.R.V.d.; Costa, C.E.F.; Mon-teiro Júnior, O.V.; Souza, A.L.G.d.; Lannes, S.C.d.S. Evaluation of quality parameters and chromatographic, spectroscopic, and thermogravimetric profile of Patauá oil (Oenocarpus bataua). Food Sci. Technol. 2019, 40, 76–82. [Google Scholar] [CrossRef]
- Pereira, E.; Pereira, D.T.V.; Ferreira, M.C.; Martínez, J.; Meirelles, A.J.A.; Maximo, G.J. Deacidifi-cation of Amazonian Pracaxi (Pentaclethra macroloba) and Patawa (Oenocarpus bataua) oils: Experimental and modeling of liquid–liquid extraction using alcoholic solvents. Braz. J. Chem. Eng. 2020, 37, 783–794. [Google Scholar] [CrossRef]
- Pires, C.L.; Zanetti, T.A.; Mantovani, M.S.; Gaivão, I.O.d.M.; Perazzo, F.F.; Rosa, P.C.P.; Maistro, E.L. Pracaxi oil affects xenobiotic metabolisms, cellular proliferation, and oxidative stress without cytotogenotoxic effects in HepG2/C3A cells. Toxicol. Vitr. 2022, 83, 105392. [Google Scholar] [CrossRef] [PubMed]
- Cunha de Melo, K.; Silva de Oliveira, I.; Helena de Oliveira Pires, L.; Santos do Nascimento, L.A.; Roberto Zamian, J.; Narciso da Rocha Filho, G.; Fonseca Passos, M.; Santos Lopes, A.; Converti, A.; Costa, C.E.F.d. Study of the Antioxidant Power of the Waste Oil from Palm Oil Bleaching Clay. Energies 2020, 13, 804. [Google Scholar] [CrossRef]
- Lüdtke, F.L.; Grimaldi, L.M.; Silva, T.J.; Ramponi, K.; de Godoi, R.; Silva, M.G.; Grimaldi, R.; Ribeiro, A.P.B. Physicochemical properties of Andiroba (Carapa guianensis) and Pracaxi (Pentaclethra macroloba) oils. Green Mach. 2021, 32, 30. [Google Scholar] [CrossRef]
- Suffredini, I.B.; Frana, S.A.; Santos, Á.M.M.; Díaz, I.E.C. Pracaxi impairs general activity andlocomotion in male mice. PhOL-PharmacologyOnLine 2017, 3, 91–104. [Google Scholar]
- Ximango, P.B.; da Rocha, E.B.D.; de Sousa, A.M.F.; Scofield, C.F.; Paredes, M.L.L.; Lima, E.R.d.A. Preparation and characterization of patauá and pracaxi Brazilian vegetable oil emulsions. J. Dispers. Sci. Technol. 2023, 44, 2452–2462. [Google Scholar] [CrossRef]
- Khasseh, A.A.; Soheili, F.; Moghaddam, H.S.; Chelak, A.M. Intellectual structure of knowledge in iMetrics: A co-word analysis. Inf. Process. Manag. 2017, 53, 705–720. [Google Scholar] [CrossRef]
- Dos Santos, O.V.; Langley, A.C.d.C.P.; de Lima, A.J.M.; Moraes, V.S.V.; Soares, S.D.; Teixeira-Costa, B.E. Nutraceutical potential of Amazonian oilseeds in modulating the immune system against COVID-19–A narrative review. J. Funct. Foods 2022, 94, 105123. [Google Scholar] [CrossRef]
- Shvindina, H. Coopetition as an Emerging Trend in Research: Perspectives for Safety & Security. Safety 2019, 5, 61. [Google Scholar] [CrossRef]
- Khalili Tilami, S.; Kouřimská, L. Assessment of the nutritional quality of plant lipids using atherogenicity and thrombogenicity indices. Nutrients 2022, 14, 3795. [Google Scholar] [CrossRef] [PubMed]
- Montúfar, R.; Laffargue, A.; Pintaud, J.C.; Hamon, S.; Avallone, S.; Dussert, S. Oenocarpus bataua Mart. (Arecaceae): Rediscovering a Source of High Oleic Vegetable Oil from Amazonia. J. Am. Oil Chem. Soc. 2010, 87, 167–172. [Google Scholar] [CrossRef]
- Şimşek, E.K.; Kara, M.; Kalıpçı, M.B.; Eren, R. Sustainability and the Food Industry: A Biblio-metric Analysis. Sustainability 2024, 16, 3070. [Google Scholar] [CrossRef]
- Vogt, M.; Frankenreiter, I. Bioeconomy: The Innovative Twin of Sustainability. Sustainability 2022, 14, 14924. [Google Scholar] [CrossRef]
Title 1 | Title 2 | Title 3 |
---|---|---|
1 | TITLE-ABS-KEY | “pracaxi” |
2 | TITLE-ABS-KEY | “patauá” |
3 | TITLE-ABS-KEY | “patawa” |
4 | TITLE-ABS-KEY | 2010–2023 |
Term | Definition |
---|---|
Items | Objects of analysis, such as publications, researchers, or terms |
Link | Connection between two items |
Strength | Positive numerical value indicating link intensity |
Attributes | Numerical values like weight and score |
Network | Collection of items linked together |
Cluster | Group of items labeled by cluster numbers |
Weight | Numerical value indicating item importance |
Score | Numerical property of items |
Journal | Number of Publications | Percentage of Publications |
---|---|---|
Food Chemistry | 3 | 9.37 |
Ciência e Tecnologia | 2 | 6.25 |
Minerals Engineering | 2 | 6.25 |
Advances in Skin and Wound Care | 1 | 3.12 |
Biocatalysis and Agricultural Biotechnology | 1 | 3.12 |
Parameter | Value |
---|---|
Annual Growth Rate (%) | 16.15 |
Average Citations per Document | 22.12 |
Average Citations per Year per Document | 3.002 |
Total Number of References | 1413 |
Authors | Articles | Fractionalized Articles |
---|---|---|
DA SILVA LHM | 3 | 0.783 |
OLIVEIRA PD | 3 | 0.700 |
RODRIGUES AMC | 3 | 0.750 |
RODRIGUES DA SILVA G | 3 | 0.583 |
BEZERRA CV | 2 | 0.500 |
Keyword | Occurrences | Total Link Strength | |
---|---|---|---|
Cluster 1 | Vegetable oil | 10 | 87 |
Plant oils | 7 | 78 | |
Oils and fats | 6 | 54 | |
Triacylglycerol | 5 | 51 | |
Fatty acid analysis | 4 | 45 | |
Crystallization | 3 | 41 | |
Fat content | 3 | 41 | |
Food industry | 3 | 41 | |
Lipid composition | 3 | 41 | |
Melting point | 3 | 41 | |
Oil | 3 | 24 | |
Interesterification | 3 | 21 | |
Brazil nut | 3 | 16 | |
Cluster 2 | Pracaxi oil | 9 | 39 |
Unclassified drug | 6 | 53 | |
Oleic acid | 5 | 54 | |
Pentaclethra macroloba | 5 | 24 | |
Nonhuman | 4 | 30 | |
Behenic acid | 3 | 31 | |
Lauric acid | 3 | 27 | |
Controlled study | 3 | 26 | |
Male | 3 | 20 | |
Human | 3 | 13 | |
Cluster 3 | Fatty acid | 17 | 98 |
Palm oil | 9 | 62 | |
Palmitic acid | 7 | 58 | |
Physicochemical property | 7 | 34 | |
Linoleic acid | 6 | 37 | |
Alkalinity | 4 | 15 | |
Apatite | 3 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baia, T.G.C.; Meneses, C.C.F.; Lameira, J.; Silva, J.R.A.; Alves, C.N. Systematic Literature Network Analysis of Raw Materials in the Amazon Bioeconomy. Sustainability 2025, 17, 5015. https://doi.org/10.3390/su17115015
Baia TGC, Meneses CCF, Lameira J, Silva JRA, Alves CN. Systematic Literature Network Analysis of Raw Materials in the Amazon Bioeconomy. Sustainability. 2025; 17(11):5015. https://doi.org/10.3390/su17115015
Chicago/Turabian StyleBaia, Talissa G. Caldas, Carla Carolina F. Meneses, Jerônimo Lameira, José Rogério A. Silva, and Cláudio Nahum Alves. 2025. "Systematic Literature Network Analysis of Raw Materials in the Amazon Bioeconomy" Sustainability 17, no. 11: 5015. https://doi.org/10.3390/su17115015
APA StyleBaia, T. G. C., Meneses, C. C. F., Lameira, J., Silva, J. R. A., & Alves, C. N. (2025). Systematic Literature Network Analysis of Raw Materials in the Amazon Bioeconomy. Sustainability, 17(11), 5015. https://doi.org/10.3390/su17115015