Applications for Non-Conventional Water Resources in the Mediterranean Basin: A Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Inclusion Criteria
2.2.1. Managed Aquifer Recharge (MAR)
2.2.2. Rainwater Harvesting (RWH)
2.2.3. Wastewater Reuse (WWR)
2.2.4. Desalination
2.3. Data Collection and NCWR Database Compilation
2.4. Literature Analysis Framework
3. Results
3.1. Geographical Distribution and Spatial Scale of the NCWR Applications
3.2. Temporal Distribution and Method of the NCWR Applications
3.3. Type and Time Frame of Surveys
3.4. Application Objectives
4. Discussion
5. Impacts of NCWR Technologies
5.1. Environmental Impacts
5.1.1. Managed Aquifer Recharge (MAR)
5.1.2. Rainwater Harvesting (RWH)
5.1.3. Wastewater Reuse (WWR)
5.1.4. Desalination
5.2. Non-Environmental Impacts
6. Methodological Limitations
7. The Way Forward
- Policy, institutional, and regulatory frameworks
- Strengthening legal framework: Establishment of clear regulations for the safe use of NCWR, e.g., develop or refine water quality standards for WW reuse, desalination, rainwater harvesting.
- Policy harmonization: Identify common principles or frameworks from different areas that could be harmonized. This may lead to more coordinated regional policies that foster collaboration on cross-border WRM.
- Regional cooperation mechanisms: Investigate opportunities for collaborative networks. This may include joint transboundary NCWR projects between neighboring countries with common challenges (e.g., shared treatment facilities of WW) and/or partnerships across disciplines (e.g., engineers, economists, social scientists, environmentalists). There are several existing mechanisms that facilitate regional cooperation on NCWRs in the Mediterranean. The Union for the Mediterranean (UfM) promotes integrated water governance through its Water Agenda and initiatives like the Mediterranean Water Knowledge Platform [200]. The Middle East Desalination Research Center (MEDRC) fosters cross-border collaboration on desalination and water reuse, including joint projects among countries such as Israel, Jordan, and Palestine [202]. The SWIM and Horizon 2020 Support Mechanism, funded by the EU, has supported pilot projects and capacity-building efforts related to water reuse in several Southern Mediterranean countries [201]. Similarly, the PRIMA Initiative funds transnational research on water scarcity and NCWRs, including projects on managed aquifer recharge and wastewater reuse [199]. These initiatives illustrate that regional cooperation on NCWRs is not only ongoing but also well-documented in both policy frameworks and scientific literature.
- Incentivize innovation: Offer financial support (subsidies, grants, tax reliefs, market-based instruments) for businesses and farmers that adopt/invest in NCWR technologies.
- Integration into climate policies: Embed NCWR strategies within broader climate (continuous) adaptation plans to build resilience against droughts, floods, and changing rainfall patterns.
- Ensure social equity: Design water management systems that ensure marginalized communities have access to affordable and sustainable water resources, preventing disparities in water availability.
- Decentralized systems: Small-scale desalination plants, rainwater harvesting, and greywater reuse serve rural and urban communities more efficiently.
- Capacity building and public awareness
- Education and training: Providing training for local water managers, engineers, farmers on NCWR technologies (through technical training programs, regional workshops, collaborative research initiatives) can enhance their adoption.
- Public awareness campaigns: Understand the social, cultural, psychological dimensions of NCWR adoption, launch campaigns to inform the public about their safety and benefits, reduce resistance due to misconceptions or health concerns and increase public acceptance.
- Stakeholder engagement: Involve stakeholders (farmers, industries, local governments, communities) in the decision-making processes, ensuring that NCWR solutions are co-developed and tailored to local needs and preferences, improve transparency, build trust and support for NCWR projects.
- Technological innovation and optimization
- Identify research gaps: Allocate funds to areas that require further investigation, such as the long-term effects of treated wastewater on soil health or the development of more energy-efficient desalination technologies, such as the integration of renewable energy (solar, wind) to reduce their carbon footprint and long-term operational costs.
- Explore alternative NCWR and innovative nature-based solutions: Conduct research on underexplored water sources such as atmospheric water harvesting (fog or dew collection). Investigate and pilot nature-based solutions, such as constructed wetlands and ecosystem-based (biological) water treatment.
- Data collection and monitoring: Strengthen data collection systems to (long-term) monitor the effectiveness, social acceptance, and environmental impact of NCWR applications over time. This can improve decision-making and public confidence.
- Data sharing: Develop and maintain open-access data platforms where water-related data, research findings, and best practices for NCWRs can be shared among Mediterranean countries.
- Digitization and automation: Leverage advancements in digital technologies, including remote sensing, artificial intelligence, and the Internet of Things (IoT), to improve monitoring, management, and optimization of NCWR systems.
- Pilot projects and demonstration sites: Initiate regional pilot projects considering successful NCWR case studies, allowing for localized viability testing of technologies under real-world conditions before scaling them up. These projects can serve as benchmarks for broader implementation across the Mediterranean.
- Region-specific research: Tailor NCWR strategies to local conditions (e.g., desalination in coastal areas, WW reuse in urban agriculture), and scale them according to community needs and available resources.
- Holistic water-energy-food nexus research: Given the interdependence of water, energy, and food systems in the Mediterranean, researchers should explore how NCWRs can be integrated within this nexus. This could involve optimizing resource use across sectors, for example, by coupling water reuse in agriculture with renewable energy production.
- Economic and financial models
- Cost-effectiveness studies: Encourage studies that compare the long-term economic benefits of NCWRs with conventional water sources, factoring in growing water scarcity.
- Public-private partnerships (PPP): Governments can collaborate with private companies to fund, build, and operate NCWR infrastructure. This reduces financial burdens (and risk) on public authorities.
- International donor support: Tap into international funding programs and climate resilience funds, such as the Green Climate Fund, Horizon Europe, the World Bank, etc., to finance NCWR projects.
- Circular economy models: Investigate how NCWR can be integrated into circular economy models, where water, waste, and energy are reused or recycled in a continuous loop.
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CORDIS | Community Research and Development Information Service |
DB | Database |
DSW | Desalinated Seawater |
EC | European Commission |
EGD | European Green Deal |
EIA | Environmental Impact Assessment |
EU | European Union |
FP | Framework Programmes |
GHG | Greenhouse Gas |
GW | Groundwater |
MAR | Managed Aquifer Recharge |
M/O/S | Measurements/Observations/Sampling |
MS | Member States |
NA | Not Applicable |
NCWR | Non-Conventional Water Resources |
PeIA | Performance-Intellectual Analysis |
PPP | Public-private partnerships |
R&I | Research & Innovation |
RO | Reverse Osmosis |
RWH | Rainwater Harvesting |
SDG | Sustainable Development Goals |
SUDS | Sustainable Urban Drainage Systems |
TM | Text Mining |
UN | United Nations |
WHO | World Health Organization |
WOS | Web Of Science |
WRM | Water Resources Management |
WW | Wastewater |
WWR | Wastewater Reuse |
References
- UN World Water Development Report 2017|UN-Water. Available online: https://www.unwater.org/publications/un-world-water-development-report-2017 (accessed on 17 May 2025).
- SDG—Report. 2020. Available online: https://raportsdg.stat.gov.pl/2020/en/cel6.html?utm_source=chatgpt.com (accessed on 17 May 2025).
- Iglesias, A.; Garrote, L.; Flores, F.; Moneo, M. Challenges to manage the risk of water scarcity and climate change in the Mediterranean. Water Resour. Manag. 2007, 21, 775–788. [Google Scholar] [CrossRef]
- Mancosu, N.; Snyder, R.L.; Kyriakakis, G.; Spano, D. Water Scarcity and Future Challenges for Food Production. Water 2015, 7, 975–992. [Google Scholar] [CrossRef]
- United Nations Development Programme. Human Development Report 2006—Beyond Scarcity: Power, Poverty and the Global Water Crisis. Available online: https://www.undp.org/libya/publications/human-development-report-2006-beyond-scarcity-power-poverty-and-global-water-crisis (accessed on 4 May 2025).
- Barros, V.R.; Field, C.B.; Dokken, D.J.; Mastrandrea, M.D.; Mach, K.J.; Bilir, T.E.; Chatterjee, M.; Ebi, K.L.; Estrada, Y.O.; Genova, R.C.; et al. Climate Change 2014—Impacts, Adaptation and Vulnerability: Part B: Regional Aspects; Working Group II Contribution to the IPCC Fifth Assessment Report; Cambridge University Press: Cambridge, UK, 2014; p. 688. [Google Scholar] [CrossRef]
- Guiot, J.; Cramer, W. Climate change: The 2015 Paris Agreement thresholds and Mediterranean basin ecosystems. Science 2016, 354, 465–468. [Google Scholar] [CrossRef]
- Riemenschneider, C.; Al-Raggad, M.; Moeder, M.; Seiwert, B.; Salameh, E.; Reemtsma, T. Pharmaceuticals, Their Metabolites, and Other Polar Pollutants in Field-Grown Vegetables Irrigated with Treated Municipal Wastewater. J. Agric. Food Chem. 2016, 64, 5784–5792. [Google Scholar] [CrossRef]
- The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW) Launched at FAO Headquarters|Land & Water|Food and Agriculture Organization of the United Nations|Land & Water|Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/land-water/news-archive/news-detail/en/c/267297/ (accessed on 4 May 2025).
- Vanneuville, W.; Werner, B.; Kjeldsen, T.; Miller, J.; Kossida, M.; Tekidou, A.; Kakava, A.; Crouzet, P. Water Resources in Europe in the Context of Vulnerability: EEA 2012 State of Water Assessment; European Environment Agency: Copenhagen, Denmark, 2012; p. 92. [Google Scholar]
- Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef]
- Parkash, V.; Singh, S. A Review on Potential Plant-Based Water Stress Indicators for Vegetable Crops. Sustainability 2020, 12, 3945. [Google Scholar] [CrossRef]
- Report Of the FAO Expert Meeting on How to Feed the World in 2050. In Proceedings of the Expert Meeting on How to Feed the World in 2050, Rome, Italy, 24–26 June 2009.
- de Chatel, F.; Holst-Warhaft, G.; Steenhuis, T. Water Scarcity, Security and Democracy: A Mediterranean Mosaic; Global Water Partnership Mediterranean; Atkinson Center for a Sustainable Future, Cornell University: Ithaca, NY, USA, 2014. [Google Scholar]
- Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 2006, 33, 8707. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Change 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Giorgi, F. Climate change hotspots in the CMIP5 global climate model ensemble. Clim. Chang. 2012, 114, 813–822. [Google Scholar] [CrossRef]
- Milano, M.; Ruelland, D.; Fernandez, S.; Dezetter, A.; Fabre, J.; Servat, E.; Fritsch, J.M.; Ardoin-Bardin, S.; Thivet, G. Current state of Mediterranean water resources and future trends under climatic and anthropogenic changes. Hydrol. Sci. J. 2013, 58, 498–518. [Google Scholar] [CrossRef]
- Van den Besselaar, E.J.M.; Klein Tank, A.M.G.; Buishand, T.A. Trends in European precipitation extremes over 1951–2010. Int. J. Climatol. 2013, 33, 2682–2689. [Google Scholar] [CrossRef]
- Hov, Ø.; Cubasch, U.; Fischer, E.; Höppe, P.; Iversen, T.; Gunnar Kvamstø, N.; Kundzewicz, Z.W.; Rezacova, D.; Rios, D.; Duarte Santos, F.; et al. Extreme Weather Events in Europe: Preparing for Climate Change Adaptation; Norwegian Meteorological Institute: Oslo, Norway, 2013. [Google Scholar]
- Hoerling, M.; Eischeid, J.; Perlwitz, J.; Quan, X.; Zhang, T.; Pegion, P. On the Increased Frequency of Mediterranean Drought. J. Clim. 2012, 25, 2146–2161. [Google Scholar] [CrossRef]
- Pulido-Velazquez, D.; García-Aróstegui, J.L.; Molina, J.L.; Pulido-Velazquez, M. Assessment of future groundwater recharge in semi-arid regions under climate change scenarios (Serral-Salinas aquifer, SE Spain). Could increased rainfall variability increase the recharge rate? Hydrol. Process. 2015, 29, 828–844. [Google Scholar] [CrossRef]
- Nunes, J.P.; Seixas, J.; Keizer, J.J. Modeling the response of within-storm runoff and erosion dynamics to climate change in two Mediterranean watersheds: A multi-model, multi-scale approach to scenario design and analysis. CATENA 2013, 102, 27–39. [Google Scholar] [CrossRef]
- Nunes, J.P.; Seixas, J.; Pacheco, N.R. Vulnerability of water resources, vegetation productivity and soil erosion to climate change in Mediterranean watersheds. Hydrol. Process. 2008, 22, 3115–3134. [Google Scholar] [CrossRef]
- Mourato, S.; Moreira, M.; Corte-Real, J. Water Resources Impact Assessment Under Climate Change Scenarios in Mediterranean Watersheds. Water Resour. Manag. 2015, 29, 2377–2391. [Google Scholar] [CrossRef]
- Zhang, R.; Corte-Real, J.; Moreira, M.; Kilsby, C.; Birkinshaw, S.; Burton, A.; Fowler, H.J.; Forsythe, N.; Nunes, J.P.; Sampaio, E.; et al. Downscaling climate change of water availability, sediment yield and extreme events: Application to a Mediterranean climate basin. Int. J. Climatol. 2019, 39, 2947–2963. [Google Scholar] [CrossRef]
- Freshwater Use—European Environment Agency. Available online: https://www.eea.europa.eu/airs/2018/resource-efficiency-and-low-carbon-economy/freshwater-use (accessed on 4 May 2025).
- Jacobsen, S.E.; Jensen, C.R.; Liu, F. Improving crop production in the arid Mediterranean climate. Field Crops Res. 2012, 128, 34–47. [Google Scholar] [CrossRef]
- Mishra, A.; Bruno, E.; Zilberman, D. Compound natural and human disasters: Managing drought and COVID-19 to sustain global agriculture and food sectors. Sci. Total Environ. 2021, 754, 142210. [Google Scholar] [CrossRef]
- AQUASTAT—FAO’s Global Information System on Water and Agriculture. Available online: https://www.fao.org/aquastat/en/ (accessed on 17 May 2025).
- The 2020 Edition of the State of the Environment and Development in the Mediterranean (SoED)|UNEPMAP. Available online: https://www.unep.org/unepmap/resources/2020-edition-state-environment-and-development-mediterranean-soed (accessed on 17 May 2025).
- Water Governance in the Mediterranean: IEMed. Available online: https://www.iemed.org/publication/water-governance-in-the-mediterranean/ (accessed on 17 May 2025).
- Directive-2000/60-EN-Water Framework Directive—EUR-Lex. Available online: https://eur-lex.europa.eu/eli/dir/2000/60/oj (accessed on 4 May 2025).
- UN World Water Development Report 2012|UN-Water. Available online: https://www.unwater.org/publications/un-world-water-development-report-2012 (accessed on 4 May 2025).
- Iglesias, A. Policy Issues Related to Climate Change in Spain. In Policy and Strategic Behaviour in Water Resource Management; Routledge: Oxfordshire, UK, 2009; pp. 145–172. ISBN 9781849772211. [Google Scholar]
- Winpenny, J.; Heinz, I.; Koo-Oshima, S.; Salgot, M.; Collado, J.; Hernandez, F.; Torricelli, R. The wealth of waste: The economics of wastewater use in agriculture. Water Rep. 2010, 35, 129. [Google Scholar]
- Cosgrove, W.J.; Loucks, D.P. Water management: Current and future challenges and research directions. Water Resour. Res. 2015, 51, 4823–4839. [Google Scholar] [CrossRef]
- Sivapalan, M.; Konar, M.; Srinivasan, V.; Chhatre, A.; Wutich, A.; Scott, C.A.; Wescoat, J.L.; Rodríguez-Iturbe, I. Socio-hydrology: Use-inspired water sustainability science for the Anthropocene. Earth’s Futur. 2014, 2, 225–230. [Google Scholar] [CrossRef]
- Mancuso, G.; Lavrnić, S.; Toscano, A. Reclaimed water to face agricultural water scarcity in the Mediterranean area: An overview using Sustainable Development Goals preliminary data. Adv. Chem. Pollut. Environ. Manag. Prot. 2020, 5, 113–143. [Google Scholar] [CrossRef]
- Gössling, S.; Peeters, P.; Hall, C.M.; Ceron, J.P.; Dubois, G.; Lehmann, L.V.; Scott, D. Tourism and water use: Supply, demand, and security. An international review. Tour. Manag. 2012, 33, 1–15. [Google Scholar] [CrossRef]
- Perales-Momparler, S.; Andrés-Doménech, I.; Hernández-Crespo, C.; Vallés-Morán, F.; Martín, M.; Escuder-Bueno, I.; Andreu, J. The role of monitoring sustainable drainage systems for promoting transition towards regenerative urban built environments: A case study in the Valencian region, Spain. J. Clean. Prod. 2017, 163, S113–S124. [Google Scholar] [CrossRef]
- Burn, L.S.; De Silva, D.; Shipton, R.J. Effect of demand management and system operation on potable water infrastructure costs. Urban Water 2002, 4, 229–236. [Google Scholar] [CrossRef]
- EUR-Lex-01991L0271-20140101-EN-EUR-Lex. Available online: https://eur-lex.europa.eu/eli/dir/1991/271/2014-01-01 (accessed on 4 May 2025).
- Guidelines for the Safe Use of Wastewater, Excreta and Greywater Volume 4 Excreta and Greywater Use in Agriculture. Available online: https://www.who.int/publications/i/item/9241546859 (accessed on 4 May 2025).
- EUR-Lex-52012DC0673-EN-EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52012DC0673 (accessed on 4 May 2025).
- Transforming our World: The 2030 Agenda for Sustainable Development|Department of Economic and Social Affairs. Available online: https://sdgs.un.org/publications/transforming-our-world-2030-agenda-sustainable-development-17981 (accessed on 4 May 2025).
- Costanza, R.; Fioramonti, L.; Kubiszewski, I. The UN Sustainable Development Goals and the dynamics of well-being. Front. Ecol. Environ. 2016, 14, 59. [Google Scholar] [CrossRef]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Fielding, K.S.; Dolnicar, S.; Schultz, T. Public acceptance of recycled water. Int. J. Water Resour. Dev. 2019, 35, 551–586. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Ewald, N.; Nicolet, P.; Oertli, B.; Della Bella, V.; Rhazi, L.; Reymond, A.-S.; Minssieux, E.; Saber, E.-r.; Rhazi, M.; Biggs, J.; et al. A Preliminary Assessment of Important Areas for Ponds (IAPs) in the Mediterranean Basin and Alpine Arc; European Pond Conservation Network: Geneva, Switzerland, 2010. [Google Scholar]
- Natura 2000 in the Mediterranean Region—Publications Office of the EU. Available online: https://op.europa.eu/en/publication-detail/-/publication/da3dddb4-a757-459b-8f33-477ff7c8cd3d/language-en (accessed on 4 May 2025).
- Green, T.R.; Taniguchi, M.; Kooi, H.; Gurdak, J.J.; Allen, D.M.; Hiscock, K.M.; Treidel, H.; Aureli, A. Beneath the surface of global change: Impacts of climate change on groundwater. J. Hydrol. 2011, 405, 532–560. [Google Scholar] [CrossRef]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground water and climate change. Nat. Clim. Change 2012, 3, 322–329. [Google Scholar] [CrossRef]
- Groundwater and Global Change: Trends, Opportunities and Challenges—UNESCO Digital Library. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000215496 (accessed on 4 May 2025).
- Kallioras, A.; Pliakas, F.; Diamantis, I.; Emmanouil, M. Application of Geographical Information Systems (GIS) for the Management of Coastal Aquifers Subjected to Seawater Intrusion. J. Environ. Sci. Health A 2006, 41, 2027–2044. [Google Scholar] [CrossRef] [PubMed]
- de Franco, R.; Biella, G.; Tosi, L.; Teatini, P.; Lozej, A.; Chiozzotto, B.; Giada, M.; Rizzetto, F.; Claude, C.; Mayer, A.; et al. Monitoring the saltwater intrusion by time lapse electrical resistivity tomography: The Chioggia test site (Venice Lagoon, Italy). J. Appl. Geophys. 2009, 69, 117–130. [Google Scholar] [CrossRef]
- Ben Hamouda, M.F.; Tarhouni, J.; Leduc, C.; Zouari, K. Understanding the origin of salinization of the Plio-quaternary eastern coastal aquifer of Cap Bon (Tunisia) using geochemical and isotope investigations. Environ. Earth Sci. 2011, 63, 889–901. [Google Scholar] [CrossRef]
- El Ayni, F.; Manoli, E.; Cherif, S.; Jrad, A.; Assimacopoulos, D.; Trabelsi-Ayadi, M. Deterioration of a Tunisian coastal aquifer due to agricultural activities and possible approaches for better water management. Water Environ. J. 2013, 27, 348–361. [Google Scholar] [CrossRef]
- Famiglietti, J.S. The global groundwater crisis. Nat. Clim. Change 2014, 4, 945–948. [Google Scholar] [CrossRef]
- Lall, U.; Josset, L.; Russo, T. A snapshot of the world’s groundwater challenges. Annu. Rev. Environ. Resour. 2020, 45, 171–194. [Google Scholar] [CrossRef]
- Sprenger, C.; Hartog, N.; Hernández, M.; Vilanova, E.; Grützmacher, G.; Scheibler, F.; Hannappel, S. Inventaire des sites de gestion des aquifères par recharge en Europe: Développement historique, situation actuelle et perspectives. Hydrogeol. J. 2017, 25, 1909–1922. [Google Scholar] [CrossRef]
- Dillon, P.; Stuyfzand, P.; Grischek, T.; Lluria, M.; Pyne, R.D.G.; Jain, R.C.; Bear, J.; Schwarz, J.; Wang, W.; Fernandez, E.; et al. Sixty years of global progress in managed aquifer recharge. Hydrogeol. J. 2019, 27, 1–30. [Google Scholar] [CrossRef]
- Bouwer, H. Artificial recharge of groundwater: Hydrogeology and engineering. Hydrogeol. J. 2002, 10, 121–142. [Google Scholar] [CrossRef]
- Bekele, E.; Toze, S.; Patterson, B.; Higginson, S. Managed aquifer recharge of treated wastewater: Water quality changes resulting from infiltration through the vadose zone. Water Res. 2011, 45, 5764–5772. [Google Scholar] [CrossRef]
- Missimer, T.M.; Drewes, J.E.; Amy, G.; Maliva, R.G.; Keller, S. Restoration of Wadi Aquifers by Artificial Recharge with Treated Waste Water. Groundwater 2012, 50, 514–527. [Google Scholar] [CrossRef] [PubMed]
- Shammas, M.I. The effectiveness of artificial recharge in combating seawater intrusion in Salalah coastal aquifer, Oman. Environ. Geol. 2008, 55, 191–204. [Google Scholar] [CrossRef]
- Kattan, Z.; Kadkoy, N.; Nasser, S.; Safadi, M.; Hamed, A. Isotopes and geochemistry in a managed aquifer recharge scheme: A case study of fresh water injection at the Damascus University Campus, Syria. Hydrol. Process. 2010, 24, 1791–1805. [Google Scholar] [CrossRef]
- Ortuño, F.; Molinero, J.; Garrido, T.; Custodio, E. Seawater injection barrier recharge with advanced reclaimed water at Llobregat delta aquifer (Spain). Water Sci. Technol. 2012, 66, 2083–2089. [Google Scholar] [CrossRef] [PubMed]
- Rupérez-Moreno, C.; Pérez-Sánchez, J.; Senent-Aparicio, J.; Flores-Asenjo, P.; Paz-Aparicio, C. Cost-Benefit Analysis of the Managed Aquifer Recharge System for Irrigation under Climate Change Conditions in Southern Spain. Water 2017, 9, 343. [Google Scholar] [CrossRef]
- Guyennon, N.; Salerno, F.; Portoghese, I.; Romano, E. Climate Change Adaptation in a Mediterranean Semi-Arid Catchment: Testing Managed Aquifer Recharge and Increased Surface Reservoir Capacity. Water 2017, 9, 689. [Google Scholar] [CrossRef]
- Wendt, D.E.; van Loon, A.F.; Scanlon, B.R.; Hannah, D.M. Managed aquifer recharge as a drought mitigation strategy in heavily-stressed aquifers. Environ. Res. Lett. 2021, 16, 14046. [Google Scholar] [CrossRef]
- Zhao, M.; Boll, J.; Adam, J.C.; King, A.B. Can Managed Aquifer Recharge Overcome Multiple Droughts? Water 2021, 13, 2278. [Google Scholar] [CrossRef]
- Megdal, S.B.; Dillon, P.; Seasholes, K. Water Banks: Using Managed Aquifer Recharge to Meet Water Policy Objectives. Water 2014, 6, 1500–1514. [Google Scholar] [CrossRef]
- Megdal, S.B.; Dillon, P. Policy and Economics of Managed Aquifer Recharge and Water Banking. Water 2015, 7, 592–598. [Google Scholar] [CrossRef]
- Angelakis, A.N.; Koutsoyiannis, D. Urban water resources management in Ancient Greek Times. In The Encyclopedia of Water Science; Stewart, B.A., Howell, T.A., Eds.; Marcel Dekker: New York, NY, USA, 2003; pp. 999–1008. [Google Scholar]
- Oweis, T.; Hachum, A.; Bruggeman, A. Indigenous Water Harvesting in West Asia and North Africa; ICARDA: Aleppo, Syria, 2004. [Google Scholar]
- Beckers, B.; Berking, J.; Schütt, B. Ancient water harvesting methods in the drylands of the Mediterranean and Western Asia. eTopoi J. Anc. Stud. 2013, 2, 145–164. [Google Scholar]
- Mays, L.; Antoniou, G.P.; Angelakis, A.N. History of Water Cisterns: Legacies and Lessons. Water 2013, 5, 1916–1940. [Google Scholar] [CrossRef]
- Angelakis, A.N. Evolution of rainwater harvesting and use in Crete, Hellas, through the millennia. Water Supply 2016, 16, 1624–1638. [Google Scholar] [CrossRef]
- Stavi, I.; Ragolsky, G.; Shem-Tov, R.; Shlomi, Y.; Ackermann, O.; Rueff, H.; Lekach, J. Ancient through mid-twentieth century runoff harvesting agriculture in the hyper-arid Arava Valley of Israel. CATENA 2018, 162, 80–87. [Google Scholar] [CrossRef]
- Coombes, P.J.; Kuczera, G.; Kalma, J.D.; Argue, J.R. An evaluation of the benefits of source control measures at the regional scale. Urban Water 2002, 4, 307–320. [Google Scholar] [CrossRef]
- Kim, R.H.; Lee, S.; Kim, Y.M.; Lee, J.H.; Kim, S.K.; Kim, S.G. Pollutants in Rainwater Runoff in Korea: Their Impacts on Rainwater Utilization. Environ. Technol. 2005, 26, 411–420. [Google Scholar] [CrossRef]
- Boers, T.M.; Ben-Asher, J. A review of rainwater harvesting. Agric. Water Manag. 1982, 5, 145–158. [Google Scholar] [CrossRef]
- Al-Seekh, S.H.; Mohammad, A.G. The effect of water harvesting techniques on runoff, sedimentation, and soil properties. Environ. Manag. 2009, 44, 37–45. [Google Scholar] [CrossRef]
- Castelli, G.; Oliveira, L.A.A.; Abdelli, F.; Dhaou, H.; Bresci, E.; Ouessar, M. Effect of traditional check dams (jessour) on soil and olive trees water status in Tunisia. Sci. Total Environ. 2019, 690, 226–236. [Google Scholar] [CrossRef]
- Mandal, S.; Vema, V.K.; Kurian, C.; Sudheer, K.P. Improving the crop productivity in rainfed areas with water harvesting structures and deficit irrigation strategies. J. Hydrol. 2020, 586, 124818. [Google Scholar] [CrossRef]
- Patrick, C.; Kechavarzi, C.; James, I.T.; O’Dogherty, M.; Godwin, R.J. Developing reservoir tillage technology for semi-arid environments. Soil Use Manag. 2007, 23, 185–191. [Google Scholar] [CrossRef]
- Woods-Ballard, B.; Kellagher, R.; Martin, P.; Jefferies, C.; Bray, R.; Shaffer, P. The SUDS Manual; CIRIA: London, UK, 2007. [Google Scholar]
- Mentens, J.; Raes, D.; Hermy, M. Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landsc. Urban Plan. 2006, 77, 217–226. [Google Scholar] [CrossRef]
- Ward, S.; Barr, S.; Memon, F.; Butler, D. Rainwater harvesting in the UK: Exploring water-user perceptions. Urban Water J. 2013, 10, 112–126. [Google Scholar] [CrossRef]
- Beecham, S.; Pezzaniti, D.; Kandasamy, J. Stormwater treatment using permeable pavements. Water Manag. 2015, 165, 161–170. [Google Scholar] [CrossRef]
- Campisano, A.; Butler, D.; Ward, S.; Burns, M.J.; Friedler, E.; DeBusk, K.; Fisher-Jeffes, L.N.; Ghisi, E.; Rahman, A.; Furumai, H.; et al. Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Res. 2017, 115, 195–209. [Google Scholar] [CrossRef]
- Makropoulos, C.; Butler, D.; Maksimoviċ, Ĉ. GIS supported evaluation of source control applicability in urban areas. Water Sci. Technol. 1999, 39, 243–252. [Google Scholar] [CrossRef]
- EPA 841-F-07-006; Reducing Stormwater Costs Through Low Impact Development (LID) Strategies and Practices. EPA: Washington, DC, USA, 2007.
- Steffen, J.; Jensen, M.; Pomeroy, C.A.; Burian, S.J. Water Supply and Stormwater Management Benefits of Residential Rainwater Harvesting in U.S. Cities. J. Am. Water Resour. Assoc. 2013, 49, 810–824. [Google Scholar] [CrossRef]
- Sample, D.J.; Liu, J. Optimizing rainwater harvesting systems for the dual purposes of water supply and runoff capture. J. Clean. Prod. 2014, 75, 174–194. [Google Scholar] [CrossRef]
- Freni, G.; Liuzzo, L. Effectiveness of Rainwater Harvesting Systems for Flood Reduction in Residential Urban Areas. Water 2019, 11, 1389. [Google Scholar] [CrossRef]
- Nachshon, U.; Netzer, L.; Livshitz, Y. Land cover properties and rain water harvesting in urban environments. Sustain. Cities Soc. 2016, 27, 398–406. [Google Scholar] [CrossRef]
- Zhu, K.; Zhang, L.; Hart, W.; Liu, M.; Chen, H. Quality issues in harvested rainwater in arid and semi-arid Loess Plateau of northern China. J. Arid Environ. 2004, 57, 487–505. [Google Scholar] [CrossRef]
- Farreny, R.; Morales-Pinzón, T.; Guisasola, A.; Tayà, C.; Rieradevall, J.; Gabarrell, X. Roof selection for rainwater harvesting: Quantity and quality assessments in Spain. Water Res. 2011, 45, 3245–3254. [Google Scholar] [CrossRef]
- Nolde, E. Possibilities of rainwater utilisation in densely populated areas including precipitation runoffs from traffic surfaces. Desalination 2007, 215, 1–11. [Google Scholar] [CrossRef]
- Chi-Nguyen Cam, W. Technologies for Climate Change Mitigation-Building Sector; UNEP: Roskilde, Denmark, 2012. [Google Scholar]
- Trenberth, K.E.; Jones, P.D.; Ambenje, P.; Bojariu, R.; Easterling, D.; Klein Tank, A.; Parker, D.; Rahimzadeh, F.; Renwick, J.A.; Rusticucci, M.; et al. Observations: Surface and atmospheric climate change. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Quin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; U.S. Department of Energy: Washington, DC, USA, 2007; p. 238. [Google Scholar]
- Clarke, L.; Eom, J.; Marten, E.H.; Horowitz, R.; Kyle, P.; Link, R.; Mignone, B.K.; Mundra, A.; Zhou, Y. Effects of long-term climate change on global building energy expenditures. Energy Econ. 2018, 72, 667–677. [Google Scholar] [CrossRef]
- Dallman, S.; Chaudhry, A.M.; Muleta, M.K.; Lee, J. Is Rainwater Harvesting Worthwhile? A Benefit–Cost Analysis. J. Water Resour. Plan. Manag. 2021, 147, 4021011. [Google Scholar] [CrossRef]
- Barbagallo, S.; Cirelli, G.L.; Consoli, S.; Licciardello, F.; Marzo, A.; Toscano, A. Analysis of treated wastewater reuse potential for irrigation in Sicily. Water Sci. Technol. 2012, 65, 2024–2033. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.; Pollice, A.; Lonigro, A.; Masi, S.; Palese, A.M.; Cirelli, G.L.; Toscano, A.; Passino, R. Agricultural wastewater reuse in southern Italy. Desalination 2006, 187, 323–334. [Google Scholar] [CrossRef]
- Mohammad Rusan, M.J.; Hinnawi, S.; Rousan, L. Long term effect of wastewater irrigation of forage crops on soil and plant quality parameters. Desalination 2007, 215, 143–152. [Google Scholar] [CrossRef]
- Kellis, M.; Kalavrouziotis, I.K.; Gikas, P. Review of wastewater reuse in the mediterranean countries, focusing on regulations and policies for municipal and industrial applications. Glob. Nest J. 2013, 15, 333–350. [Google Scholar] [CrossRef]
- Moretti, M.; Van Passel, S.; Camposeo, S.; Pedrero, F.; Dogot, T.; Lebailly, P.; Vivaldi, G.A. Modelling environmental impacts of treated municipal wastewater reuse for tree crops irrigation in the Mediterranean coastal region. Sci. Total Environ. 2019, 660, 1513–1521. [Google Scholar] [CrossRef] [PubMed]
- Kamizoulis, G.; Bahri, A.; Brissaud, F.; Angelakis, A.N. Wastewater Recycling and Reuse Practices in Mediterranean Region: Recommended Guidelines. Arab Water World Mag. 2003, 34, 1–25. [Google Scholar]
- Angelakis, A.N.; Snyder, S.A. Wastewater Treatment and Reuse: Past, Present, and Future. Water 2015, 7, 4887–4895. [Google Scholar] [CrossRef]
- Aiello, R.; Cirelli, G.L.; Consoli, S. Effects of reclaimed wastewater irrigation on soil and tomato fruits: A case study in Sicily (Italy). Agric. Water Manag. 2007, 93, 65–72. [Google Scholar] [CrossRef]
- Ofori, S.; Puškáčová, A.; Růžičková, I.; Wanner, J. Treated wastewater reuse for irrigation: Pros and cons. Sci. Total Environ. 2021, 760, 144026. [Google Scholar] [CrossRef]
- Lal, K.; Minhas, P.S.; Yadav, R.K. Long-term impact of wastewater irrigation and nutrient rates II. Nutrient balance, nitrate leaching and soil properties under peri-urban cropping systems. Agric. Water Manag. 2015, 156, 110–117. [Google Scholar] [CrossRef]
- Angelakis, A.N.; Marecos Do Monte, M.H.F.; Bontoux, L.; Asano, T. The status of wastewater reuse practice in the Mediterranean basin: Need for guidelines. Water Res. 1999, 33, 2201–2217. [Google Scholar] [CrossRef]
- Tzanakakis, V.A.; Angelakis, A.N.; Paranychianakis, N.V.; Dialynas, Y.G.; Tchobanoglous, G. Challenges and Opportunities for Sustainable Management of Water Resources in the Island of Crete, Greece. Water 2020, 12, 1538. [Google Scholar] [CrossRef]
- Ghaffour, N.; Missimer, T.M.; Amy, G.L. Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability. Desalination 2013, 309, 197–207. [Google Scholar] [CrossRef]
- Del-Pilar-Ruso, Y.; Martinez-Garcia, E.; Giménez-Casalduero, F.; Loya-Fernández, A.; Ferrero-Vicente, L.M.; Marco-Méndez, C.; de-la-Ossa-Carretero, J.A.; Sánchez-Lizaso, J.L. Benthic community recovery from brine impact after the implementation of mitigation measures. Water Res. 2015, 70, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Kartalidis, A.; Georgopoulou, M.; Arampatzis, G.; Assimacopoulos, D. Desalination in Greek Islands by Using Res. In Proceedings of the 12th International Conference on Environmental Science and Technology, Rhodes Island, Greece, 8–10 September 2011. [Google Scholar]
- Schallenberg-Rodríguez, J.; Veza, J.M.; Blanco-Marigorta, A. Energy efficiency and desalination in the Canary Islands. Renew. Sustain. Energy Rev. 2014, 40, 741–748. [Google Scholar] [CrossRef]
- Feitelson, E.; Rosenthal, G. Desalination, space and power: The ramifications of Israel’s changing water geography. Geoforum 2012, 43, 272–284. [Google Scholar] [CrossRef]
- Elimelech, M.; Phillip, W.A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Saurí, D.; Del Moral, L. Recent developments in Spanish water policy. Alternatives and conflicts at the end of the hydraulic age. Geoforum 2001, 32, 351–362. [Google Scholar] [CrossRef]
- Tal, A. Seeking Sustainability: Israel’s Evolving Water Management Strategy. Science 2006, 313, 1081–1084. [Google Scholar] [CrossRef]
- March, H.; Saurí, D.; Rico-Amorós, A.M. The end of scarcity? Water desalination as the new cornucopia for Mediterranean Spain. J. Hydrol. 2014, 519, 2642–2651. [Google Scholar] [CrossRef]
- Bates, B.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J. Climate Change and Water. In Technical Paper of the Intergovernmental Panel on Climate Change; WMO: Geneva, Switzerland, 2008. [Google Scholar]
- Swyngedouw, E. Into the Sea: Desalination as Hydro-Social Fix in Spain. Ann. Assoc. Am. Geogr. 2013, 103, 261–270. [Google Scholar] [CrossRef]
- Yermiyahu, U.; Tal, A.; Ben-Gal, A.; Bar-Tal, A.; Tarchitzky, J.; Lahav, O. Environmental science: Rethinking desalinated water quality and agriculture. Science 2007, 318, 920–921. [Google Scholar] [CrossRef]
- Zarzo, D.; Campos, E.; Terrero, P. Spanish experience in desalination for agriculture. Desalin. Water Treat. 2013, 51, 53–66. [Google Scholar] [CrossRef]
- Martínez-Alvarez, V.; Martin-Gorriz, B.; Soto-García, M. Seawater desalination for crop irrigation—A review of current experiences and revealed key issues. Desalination 2016, 381, 58–70. [Google Scholar] [CrossRef]
- Ghermandi, A.; Messalem, R. The advantages of NF desalination of brackish water for sustainable irrigation: The case of the Arava Valley in Israel. Desalin. Water Treat. 2009, 10, 101–107. [Google Scholar] [CrossRef]
- FAO—Committee on Agriculture. Available online: https://www.fao.org/4/j4238e/j4238e.htm (accessed on 4 May 2025).
- Eke, J.; Yusuf, A.; Giwa, A.; Sodiq, A. The global status of desalination: An assessment of current desalination technologies, plants and capacity. Desalination 2020, 495, 114633. [Google Scholar] [CrossRef]
- Jones, E.; Qadir, M.; van Vliet, M.T.H.; Smakhtin, V.; Kang, S.M. The state of desalination and brine production: A global outlook. Sci. Total Environ. 2019, 657, 1343–1356. [Google Scholar] [CrossRef]
- Bhojwani, S.; Topolski, K.; Mukherjee, R.; Sengupta, D.; El-Halwagi, M.M. Technology review and data analysis for cost assessment of water treatment systems. Sci. Total Environ. 2019, 651, 2749–2761. [Google Scholar] [CrossRef]
- Shenvi, S.S.; Isloor, A.M.; Ismail, A.F. A review on RO membrane technology: Developments and challenges. Desalination 2015, 368, 10–26. [Google Scholar] [CrossRef]
- Fritzmann, C.; Löwenberg, J.; Wintgens, T.; Melin, T. State-of-the-art of reverse osmosis desalination. Desalination 2007, 216, 1–76. [Google Scholar] [CrossRef]
- Shaffer, D.L.; Yip, N.Y.; Gilron, J.; Elimelech, M. Seawater desalination for agriculture by integrated forward and reverse osmosis: Improved product water quality for potentially less energy. J. Memb. Sci. 2012, 415–416, 1–8. [Google Scholar] [CrossRef]
- Greenlee, L.F.; Lawler, D.F.; Freeman, B.D.; Marrot, B.; Moulin, P. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res. 2009, 43, 2317–2348. [Google Scholar] [CrossRef]
- Lahav, O.; Kochva, M.; Tarchitzky, J. Potential drawbacks associated with agricultural irrigation with treated wastewaters from desalinated water origin and possible remedies. Water Sci. Technol. 2010, 61, 2451–2460. [Google Scholar] [CrossRef]
- Martín-Martín, A.; Orduna-Malea, E.; Thelwall, M.; Delgado López-Cózar, E. Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. J. Informetr. 2018, 12, 1160–1177. [Google Scholar] [CrossRef]
- Martín-Martín, A.; Thelwall, M.; Orduna-Malea, E.; Delgado López-Cózar, E. Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: A multidisciplinary comparison of coverage via citations. Scientometrics 2021, 126, 871–906. [Google Scholar] [CrossRef]
- Barnett, P.; Lascar, C. Comparing Unique Title Coverage of Web of Science and Scopus in Earth and Atmospheric Sciences. Issues Sci. Technol. Librariansh. 2012, 70, 1–20. [Google Scholar] [CrossRef]
- Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Zupic, I.; Čater, T. Bibliometric Methods in Management and Organization. Organ. Res. Methods 2015, 18, 429–472. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Hood, W.W.; Wilson, C.S. Informetric studies using databases: Opportunities and challenges. Scientometrics 2003, 58, 587–608. [Google Scholar] [CrossRef]
- Hochstrat, R.; Wintgens, T.; Melin, T. Development of integrated water reuse strategies. Desalination 2008, 218, 208–217. [Google Scholar] [CrossRef]
- Data.europa.eu. Available online: https://data.europa.eu/data/datasets/gngfvpqmfu5n6akvxqkpw?locale=en (accessed on 18 May 2025).
- UN World Water Development Report 2019|UN-Water. Available online: https://www.unwater.org/publications/un-world-water-development-report-2019 (accessed on 18 May 2025).
- García-Ruiz, J.M.; Beguería, S.; Nadal-Romero, E.; González-Hidalgo, J.C.; Lana-Renault, N.; Sanjuán, Y. A meta-analysis of soil erosion rates across the world. Geomorphology 2015, 239, 160–173. [Google Scholar] [CrossRef]
- UN World Water Development Report 2015|UN-Water. Available online: https://www.unwater.org/publications/un-world-water-development-report-2015 (accessed on 18 May 2025).
- Water Governance in Cities; OECD: Paris, France, 2016. [CrossRef]
- Iglesias, E.; Blanco, M. New directions in water resources management: The role of water pricing policies. Water Resour. Res. 2008, 44, W06417. [Google Scholar] [CrossRef]
- The Regional Initiative on Water Scarcity for the Near East and North Africa|FAO Regional Office for Near East and North Africa. Available online: https://www.fao.org/neareast/action-areas/wsi/en (accessed on 18 May 2025).
- Gain, A.K.; Rouillard, J.J.; Benson, D.; Gain, A.K.; Rouillard, J.J.; Benson, D. Can Integrated Water Resources Management Increase Adaptive Capacity to Climate Change Adaptation? A Critical Review. J. Water Resour. Prot. 2013, 5, 11–20. [Google Scholar] [CrossRef]
- Conraths, B.; Smidt, H. The Funding of University-Based Research and Innovation in Europe; European University Association: Brussels, Belgium, 2005. [Google Scholar]
- Heyard, R.; Hottenrott, H. The value of research funding for knowledge creation and dissemination: A study of SNSF Research Grants. Humanit. Soc. Sci. Commun. 2021, 8, 217. [Google Scholar] [CrossRef]
- European Commission: Directorate-General for Research and Innovation; Mazzucato, M. Mission-Oriented Research & Innovation in the European Union—A Problem-Solving Approach to Fuel Innovation-Led Growth, Publications Office. 2018. Available online: https://data.europa.eu/doi/10.2777/360325 (accessed on 5 May 2025).
- Reillon, V. EU Framework Programmes for Research and Innovation. Evolution and Key Data from FP1 to Horizon 2020 in View of FP9; In-Depth Analysis; European Parliament: Strasbourg, France, 2017. [Google Scholar]
- EUR-Lex-52021DC0301-EN-EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021DC0301 (accessed on 5 May 2025).
- EU Mission: A Soil Deal for Europe. Available online: https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe/eu-missions-horizon-europe/soil-deal-europe_en (accessed on 5 May 2025).
- Directive-2019/1024-EN-psi Directive-EUR-Lex. Available online: https://eur-lex.europa.eu/eli/dir/2019/1024/oj (accessed on 5 May 2025).
- EUR-Lex-52019DC0640-EN-EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52019DC0640 (accessed on 5 May 2025).
- COM/2021/0400-IPEX.eu. Available online: https://www.ipex.eu/IPEXL-WEB/document/COM-2021-0400 (accessed on 5 May 2025).
- Hamdy, A.; Ragab, R.; Scarascia-Mugnozza, E. Coping with water scarcity: Water saving and increasing water productivity. Irrig. Drain. 2003, 52, 3–20. [Google Scholar] [CrossRef]
- Grischek, T.; Bartak, R.; Haas, R. Managing aquifer recharge: A showcase for resilience and sustainability. Manag. Aquifer Recharg. A Showc. Resil. Sustain. 2021, 10, 149–159. [Google Scholar]
- Maliva, R.G. Economics of Managed Aquifer Recharge. Water 2014, 6, 1257–1279. [Google Scholar] [CrossRef]
- Studies on Water—Water Resources Allocation Sharing Risks and Opportunities; OECD: Paris, France, 2015. [CrossRef]
- Water and Climate Change|UN-Water. Available online: https://www.unwater.org/water-facts/water-and-climate-change (accessed on 17 May 2025).
- Buckler, C.; Creech, H. Shaping the Future We Want: UN Decade of Education for Sustainable Development; Final Report; UNESCO: Paris, France, 2014; p. 198. [Google Scholar]
- Hadjichambis, A.C.; Paraskeva-Hadjichambi, D. Education for Environmental Citizenship: The Pedagogical Approach. In Conceptualizing Environmental Citizenship for 21st Century Education; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Ragab, R.; Prudhomme, C. SW—Soil and Water: Climate Change and Water Resources Management in Arid and Semi-arid Regions: Prospective and Challenges for the 21st Century. Biosyst. Eng. 2002, 81, 3–34. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; López-Moreno, I.I.; Vicente-Serrano, S.M.; Lasanta-Martínez, T.; Beguería, S. Mediterranean water resources in a global change scenario. Earth-Science Rev. 2011, 105, 121–139. [Google Scholar] [CrossRef]
- Alcamo, J.; Döll, P.; Henrichs, T.; Kaspar, F.; Lehner, B.; Rösch, T.; Siebert, S. Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol. Sci. J. 2003, 48, 317–337. [Google Scholar] [CrossRef]
- Qadir, M.; Bahri, A.; Sato, T.; Al-Karadsheh, E. Wastewater production, treatment, and irrigation in Middle East and North Africa. Irrig. Drain. Syst. 2010, 24, 37–51. [Google Scholar] [CrossRef]
- Rozos, E.; Makropoulos, C. Assessing the combined benefits of water recycling technologies by modelling the total urban water cycle. Urban Water J. 2012, 9, 1–10. [Google Scholar] [CrossRef]
- Al Ali, Y.; Touma, J.; Zante, P.; Nasri, S.; Albergel, J. Water and sediment balances of a contour bench terracing system in a semi-arid cultivated zone (El Gouazine, central Tunisia). Hydrol. Sci. J. 2008, 53, 883–892. [Google Scholar] [CrossRef]
- Rygaard, M.; Binning, P.J.; Albrechtsen, H.J. Increasing urban water self-sufficiency: New era, new challenges. J. Environ. Manag. 2011, 92, 185–194. [Google Scholar] [CrossRef]
- Christou, A.; Maratheftis, G.; Eliadou, E.; Michael, C.; Hapeshi, E.; Fatta-Kassinos, D. Impact assessment of the reuse of two discrete treated wastewaters for the irrigation of tomato crop on the soil geochemical properties, fruit safety and crop productivity. Agric. Ecosyst. Environ. 2014, 192, 105–114. [Google Scholar] [CrossRef]
- Rahman, M.M.; Shahrivar, A.A.; Hagare, D.; Maheshwari, B. Impact of Recycled Water Irrigation on Soil Salinity and Its Remediation. Soil Syst. 2022, 6, 13. [Google Scholar] [CrossRef]
- Karagiannis, I.C.; Soldatos, P.G. Water desalination cost literature: Review and assessment. Desalination 2008, 223, 448–456. [Google Scholar] [CrossRef]
- Domènech, L.; March, H.; Saurí, D. Degrowth initiatives in the urban water sector? A social multi-criteria evaluation of non-conventional water alternatives in Metropolitan Barcelona. J. Clean. Prod. 2013, 38, 44–55. [Google Scholar] [CrossRef]
- Caldera, U.; Breyer, C. Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future. Water Resour. Res. 2017, 53, 10523–10538. [Google Scholar] [CrossRef]
- Martínez-Alvarez, V.; Gallego-Elvira, B.; Maestre-Valero, J.F.; Martin-Gorriz, B.; Soto-Garcia, M. Assessing concerns about fertigation costs with desalinated seawater in south-eastern Spain. Agric. Water Manag. 2020, 239, 106257. [Google Scholar] [CrossRef]
- Sadhwani, J.J.; Veza, J.M.; Santana, C. Case studies on environmental impact of seawater desalination. Desalination 2005, 185, 1–8. [Google Scholar] [CrossRef]
- Ghaffour, N.; Mujtaba, I.M. Desalination using renewable energy. Desalination 2018, 435, 1–2. [Google Scholar] [CrossRef]
- Sánchez-Lizaso, J.L.; Romero, J.; Ruiz, J.; Gacia, E.; Buceta, J.L.; Invers, O.; Fernández Torquemada, Y.; Mas, J.; Ruiz-Mateo, A.; Manzanera, M. Salinity tolerance of the Mediterranean seagrass Posidonia oceanica: Recommendations to minimize the impact of brine discharges from desalination plants. Desalination 2008, 221, 602–607. [Google Scholar] [CrossRef]
- Dawoud, M.A. Environmental Impacts of Seawater Desalination: Arabian Gulf Case Study. Int. J. Environ. Sustain. 2012, 1, 22–37. [Google Scholar] [CrossRef]
- Mandal, U.K.; Bhardwaj, A.K.; Warrington, D.N.; Goldstein, D.; Bar Tal, A.; Levy, G.J. Changes in soil hydraulic conductivity, runoff, and soil loss due to irrigation with different types of saline–sodic water. Geoderma 2008, 144, 509–516. [Google Scholar] [CrossRef]
- Ben-Gal, A.; Yermiyahu, U.; Cohen, S. Fertilization and Blending Alternatives for Irrigation with Desalinated Water. J. Environ. Qual. 2009, 38, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Hilal, N.; Kim, G.J.; Somerfield, C. Boron removal from saline water: A comprehensive review. Desalination 2011, 273, 23–35. [Google Scholar] [CrossRef]
- Tam, V.W.Y.; Tam, L.; Zeng, S.X. Cost effectiveness and tradeoff on the use of rainwater tank: An empirical study in Australian residential decision-making. Resour. Conserv. Recycl. 2010, 54, 178–186. [Google Scholar] [CrossRef]
- Gibson, F.L.; Tapsuwan, S.; Walker, I.; Randrema, E. Drivers of an urban community’s acceptance of a large desalination scheme for drinking water. J. Hydrol. 2015, 528, 38–44. [Google Scholar] [CrossRef]
- Heck, N.; Paytan, A.; Potts, D.C.; Haddad, B.; Lykkebo Petersen, K. Management preferences and attitudes regarding environmental impacts from seawater desalination: Insights from a small coastal community. Ocean Coast. Manag. 2018, 163, 22–29. [Google Scholar] [CrossRef]
- Ghermandi, A.; Minich, T. Analysis of farmers’ attitude toward irrigation with desalinated brackish water in Israel’s Arava Valley. Desalin. Water Treat. 2017, 76, 328–331. [Google Scholar] [CrossRef]
- PRIMA: Partnership for Research & Innovation in the Mediterranean Area. Available online: https://prima-med.org/ (accessed on 18 May 2025).
- UfM Water Agenda. Available online: https://ufmsecretariat.org/water-agenda/ (accessed on 18 May 2025).
- SWIM-H2020 SM—Sustainable Water Integrated Management and Horizon 2020 Support Mechanism—EU Neighbours. Available online: https://south.euneighbours.eu/project/swim-h2020-sm-sustainable-water-integrated-management-and-horizon-2020/ (accessed on 18 May 2025).
- MEDRC|Water, Environment, and Peace. Available online: https://www.medrc.org/ (accessed on 18 May 2025).
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMAScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
Query | Query (Verbal) | Retrieved | Included | Excluded | Not Found | Not in English |
---|---|---|---|---|---|---|
I 1 | non AND conventional AND water AND Mediterranean | 111 | 26 (23.4%) | 69 (62.2%) | 13 (11.7%) | 3 (2.7%) |
II 2 | runoff AND water AND harvesting AND Mediterranean | 49 | 27 (55.1%) | 18 (36.7%) | 4 (8.2%) | – |
III 3 | desalination AND Mediterranean | 292 | 45 (15.4%) | 185 (63.4%) | 48 (16.4%) | 14 (4.8%) |
IV 4 | managed AND aquifer AND recharge AND Mediterranean | 30 | 13 (43.3%) | 10 (33.5%) | 3 (10.0%) | 4 (13.3%) |
V 5 | wastewater AND reuse AND Mediterranean | 200 | 81 (40.5%) | 83 (41.5%) | 34 (17.0%) | 2 (1.0%) |
VI 6 | water AND harvesting AND Mediterranean | 296 | 56 (18.9%) | 204 (68.9%) | 34 (11.5%) | 2 (0.7%) |
Cluster | Entry | Data Type | Options | |
---|---|---|---|---|
I | Record Information | Query | Open (alphanumeric) | |
ID | Open (alphanumeric) | |||
General ID | Open (numeric) | |||
II | Bibliography | Year of publication | Open (numeric) | 2010–2023 |
List of authors | Open (alphanumeric) | |||
Publisher 1 | Open (alphanumeric) | |||
DOI 2 | Open (alphanumeric) | |||
Title | Open (alphanumeric) | |||
III | Bibliographic Review | No. of authors | Open (numeric) | |
No. of SCOPUS citations | Open (numeric) | |||
No. of SCOPUS citations (normalized) 3 | Open (numeric) | |||
Source Type | Multiple choice | Journal, Conference paper, Book chapter | ||
SCOPUS subject area | Multiple choice | SCOPUS nomenclature, NA 5 (for Conference papers, Book chapters) | ||
SCOPUS sub-subject area | Multiple choice | SCOPUS nomenclature | ||
Open Access | Multiple choice | Yes, No | ||
Journal Cite Score 2022 | Open (numeric) | |||
IV | Application | Measurable/non-measurable 4 | Multiple choice | Quantitative, Qualitative |
Domain | Multiple choice | Socioeconomic analysis, Irrigation method, Water management, Feasibility study, Climate change, Environmental Impact Assessment, Other (specify, e.g., methodology assessment, etc.), combinations | ||
Methodology | Multiple choice | Managed Aquifer Recharge, Wastewater reuse, Desalination, Rainwater harvesting, Other (specify, e.g., expert knowledge, groundwater extraction, etc.), combinations | ||
Target | Multiple choice | Agricultural use (crop irrigation, etc.), Urban use (potable use, non-potable use, runoff regulation, etc.), Other (specify, e.g., industrial, environmental, climate change), combinations | ||
Application period | Multiple choice | Past, Present, Future, combinations | ||
V | Field work | Field activity | Multiple choice | Yes, No |
Type of activity | Multiple choice | Measurements/Observations/Sampling, Modeling, Interviews, Review, Other (specify), combinations, NA | ||
VI | Study area | Continent | Multiple choice | Africa, Asia, Europe, Unspecified |
Country | Open (alphanumeric) | Country Name, Unspecified | ||
Name of the study area | Open (alphanumeric) | |||
Scale | Multiple choice | Experimental Site (WW treatment plant, greenhouse, building, etc.), Farmland (plot, field, orchard, olive grove, etc.), Landscape (hillslope, coast, plain, park, golf course, lake, aquifer, etc.), Basin, District, Country, Region, Other (specify), combinations, NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Efthimiou, N.; Giotis, T.; Ragkos, A. Applications for Non-Conventional Water Resources in the Mediterranean Basin: A Literature Review. Sustainability 2025, 17, 4964. https://doi.org/10.3390/su17114964
Efthimiou N, Giotis T, Ragkos A. Applications for Non-Conventional Water Resources in the Mediterranean Basin: A Literature Review. Sustainability. 2025; 17(11):4964. https://doi.org/10.3390/su17114964
Chicago/Turabian StyleEfthimiou, Nikolaos, Thomas Giotis, and Athanasios Ragkos. 2025. "Applications for Non-Conventional Water Resources in the Mediterranean Basin: A Literature Review" Sustainability 17, no. 11: 4964. https://doi.org/10.3390/su17114964
APA StyleEfthimiou, N., Giotis, T., & Ragkos, A. (2025). Applications for Non-Conventional Water Resources in the Mediterranean Basin: A Literature Review. Sustainability, 17(11), 4964. https://doi.org/10.3390/su17114964