Potential Use of Jarosite Industrial Waste in Developing Hybrid Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Hybrid Composites
- Polyester resin (UP) + non-woven fiberglass mat;
- Polyester resin (UP) + non-woven fiberglass mat + 5 wt.% of jarosite particles;
- Polyester resin (UP) + non-woven fiberglass mat + 10 wt.% of jarosite particles;
- Polyester resin (UP) + non-woven fiberglass mat + 15 wt.% of jarosite particles.
2.2. Mechanical Properties of Hybrid Composites
2.2.1. Three-Point Flexural Test
2.2.2. Short-Beam Shear Test
2.2.3. Charpy Impact Test
2.2.4. Determination of Hardness
3. Results and Discussion
3.1. Flexural Test
3.2. Results of Charpy Impact Strength
3.3. The Ball Indentation Hardness Test
4. Conclusions
- The composite with 10 wt.% of jarosite exhibited the highest flexural strength, which was 30% higher than that of the base composite without jarosite. In comparison, the composites with 5 wt.% and 15 wt.% of jarosite showed a lower flexural strength, with values closer to the base composite.
- Samples with 10 wt.% of jarosite had the highest apparent interlaminar shear strength, while the samples with 5 and 15 wt.% of jarosite had a lower apparent interlaminar shear strength than that of the base composite without jarosite.
- All of the samples with jarosite had a lower impact strength than that of the base composite without jarosite. However, the impact strength of the composite with 10 wt.% was the highest and remained nearly the same as the base composite.
- The hardness values were higher for all of the composites with jarosite particles in comparison to the composites without jarosite particles. The composites with 10 wt.% of jarosite particles had the lowest hardness values.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elwood Madden, M.E.; Madden, A.S.; Rimstid, J.D.; Zahrai, S.; Kendall, M.R.; Miller, M.A. Jarosite dissolution rates and nanoscale mineralogy. Geochim. Cosmochim. Acta 2012, 91, 306–321. [Google Scholar] [CrossRef]
- Welch, S.A.; Kirste, D.; Christy, A.G.; Beavis, F.R.; Beavis, S.G. Jarosite dissolution II-Reaction kinetics, stoichiometry and acid flux. Chem. Geol. 2008, 254, 73–86. [Google Scholar] [CrossRef]
- Kerolli Mustafa, M.; Ćurković, L.; Ujević Bošnjak, M.; Rezić, T. Environmental Hazard Assessment of Jarosite Waste Using Batch Leaching Tests. Chem. Biochem. Eng. Q. 2017, 31, 403–415. [Google Scholar] [CrossRef]
- Kerolli Mustafa, M.; Fajković, H.; Rončević, S.; Ćurković, L. Assessment of metal risks from different depths of jarosite tailing waste of Trepça Zinc Industry, Kosovo based on BCR procedure. J. Geochem. Explor. 2015, 148, 161–168. [Google Scholar] [CrossRef]
- Wang, R.; Yan, Q.; Su, P.; Shu, J.; Chen, M. Metal mobility and toxicity of zinc hydrometallurgical residues. Process Saf. Environ. Prot. 2020, 144, 366–371. [Google Scholar] [CrossRef]
- Laatikainen, K.; Lahtinen, M.; Laatikainen, M.; Paatero, E. Copper removal by chelating adsorption in solution purification of hydrometallurgical zinc production. Hydrometallurgy 2010, 104, 14–19. [Google Scholar] [CrossRef]
- Maihatchi Ahamed, A.; Pons, M.N.; Ricoux, Q.; Issa, S.; Goettmann, F.; Lapicque, F. New pathway for utilization of jarosite, an industrial waste of zinc hydrometallurgy. Miner. Eng. 2021, 170, 107030. [Google Scholar] [CrossRef]
- Asokan, P.; Saxena, M.; Asolekar, S.R. Hazardous jarosite use in developing non-hazardous product for engineering application. J. Hazard. Mater. 2006, 137, 1589–1599. [Google Scholar] [CrossRef]
- Pappu, A.; Kumar Thakur, V.; Patidar, R.; Asolekar, R.S.; Saxena, M. Recycling marble wastes and Jarosite wastes into sustainable hybrid composite materials and validation through Response Surface Methodology. J. Clean. Prod. 2019, 240, 118249. [Google Scholar] [CrossRef]
- Pappu, A.; Saxena, M.; Asolekar, S.R. Jarosite characteristics and its utilisation potentials. Sci. Total Environ. 2006, 359, 232–243. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, H.; Zhang, G.; Kang, J.; Wang, C. Comprehensive recovery and recycle of jarosite residues from zinc hydrometallurgy. Chem. Eng. J. Adv. 2020, 3, 100023. [Google Scholar] [CrossRef]
- Ryu, J.G.; Kim, Y. Mineral transformation and dissolution of jarosite coprecipitated with hazardous oxyanions and their mobility changes. J. Hazard. Mater. 2022, 427, 128283. [Google Scholar] [CrossRef] [PubMed]
- Vigneshwaran, S.; Uthayakumar, M.; Arumugaprabu, V. Development and sustainability of industrial waste-based red mud hybrid composites. J. Clean. Prod. 2019, 230, 862–868. [Google Scholar] [CrossRef]
- Aramuga Prabu, V.; Deepak Joel Johnson, R.; Amuthakkannan, P.; Manikandan, V. Usage of industrial wastes as particulate composite for environment management: Hardness, tensile and imapact studies. J. Environ. Chem. Eng. 2017, 5, 1289–1301. [Google Scholar] [CrossRef]
- Biswas, S.; Satapathy, A. Tribo-performance analysis of red mud filled glass-epoxy composites using Taguchi experimental design. Mater. Des. 2009, 30, 2841–2853. [Google Scholar] [CrossRef]
- Biswas, S.; Satapathy, A. A comparative study on erosion characteristics of red mud filled bamboo–epoxy and glass–epoxy composites. Mater. Des. 2010, 31, 1752–1767. [Google Scholar] [CrossRef]
- Singla, M.; Chawla, V. Mechanical properties of epoxy resin—Fly ash composite. J. Miner. Mater. Charact. Eng. 2010, 9, 199–210. [Google Scholar] [CrossRef]
- Gummadi, J.; Kumar, G.; Rajesh, G. Evaluation of flexural properties of fly ash filled polypropylene composites. Int. J. Mod. Eng. Res. 2012, 2, 2584–2590. [Google Scholar]
- Padhi, P.K.; Satapathy, A.; Nakka, A.M. Processing, characterization, and wear analysis of short glass fiber-reinforced polypropylene composites filled with blast furnace slag. J. Thermoplast. Compos. Mater. 2013, 28, 656–671. [Google Scholar] [CrossRef]
- Zhang, J.; Soltani, A.; Deng, A.; Jaksa, M.B. Mechanical performance of jute fiber-reinforced micaceous clay composites treated with ground-granulated blast-furnace slag. Materials 2019, 12, 576. [Google Scholar] [CrossRef]
- Purohit, A.; Swain, P.T.R.; Patnaik, P.K. Mechanical and sliding wear characterization of LD sludge filled hybrid composites. Mater. Today Proc. 2020, 26, 1654–1659. [Google Scholar] [CrossRef]
- Teodorescu, G.-M.; Vuluga, Z.; Oancea, F.; Ionita, A.; Paceagiu, J.; Ghiurea, M.; Nicolae, C.-A.; Gabor, A.R.; Raditoiu, V. Properties of composites based on recycled polypropylene and silico-aluminous industrial waste. Polymers 2023, 15, 2545. [Google Scholar] [CrossRef] [PubMed]
- Sarki, J.; Hassan, S.B.; Aigbodion, V.S.; Oghenevweta, J.E. Potential of using coconut shell particle fillers in eco-composite materials. J. Alloys Compd. 2011, 509, 2381–2385. [Google Scholar] [CrossRef]
- Ojha, S.; Raghavendra, G.; Acharya, S.K. A comparative investigation of bio waste filler (wood apple-coconut) reinforced polymer composites. Polym. Compos. 2014, 35, 180–185. [Google Scholar] [CrossRef]
- Essabir, H.; Bensalah, M.O.; Rodrigue, D.; Bouhfid, R.; Qaiss, A. Structural, mechanical and thermal properties of bio-based hybrid composites from waste coir residues: Fibers and shell particles. Mech. Mater. 2016, 93, 134–144. [Google Scholar] [CrossRef]
- Dubey, S.; Mishra, V.; Sharma, A. A review on polymer composite with waste material as reinforcement. Mater. Today Proc. 2021, 47, 2846–2851. [Google Scholar] [CrossRef]
- Nguyen, H.; Zatar, W.; Mutsuyoshi, H. Mechanical properties of hybrid polymer composite. In Hybrid Polymer Composite Materials; Thakur, V.K., Thakur, M.K., Pappu, A., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 83–113. [Google Scholar]
- Girge, A.; Goel, V.; Gupta, G.; Fuloria, D.; Pati, P.R.; Sharma, A.; Mishra, V. Industrial waste filled polymer composites—A review. Mater. Today Proc. 2021, 9, 2852–2863. [Google Scholar] [CrossRef]
- Das, O.; Babu, K.; Shanmugam, V.; Sykam, K.; Tebeyetekerwa, M.; Neisiany, R.E.; Forsth, M.; Sas, G.; Gonzalez-Libreros, J.; Capezza, A.J.; et al. Natural and industrial wastes for sustainable and renewable polymer composites. Renew. Sustain. Energy Rev. 2022, 158, 112054. [Google Scholar] [CrossRef]
- Kerolli Mustafa, M.; Djokic, J.; Ćurković, L. Modeling of Atmospheric Dispersion of Jarosite Particles from Tailing Waste in Mitrovica, Kosovo. Atmosphere 2022, 13, 1690. [Google Scholar] [CrossRef]
- Meenakshi, C.M.; Krishnamoorthy, A. Preparation and mechanical characterization of flax and glass fiber reinforced polyester hybrid composite laminate by hand lay-up method. Mater. Today Proc. 2018, 5, 26934–26940. [Google Scholar] [CrossRef]
- Abdullah, S.R.; Wahit, M.U.; Hassan, S.A.; Othman, N.; Mohd Yusof, N.I.S. Ramie reinforced ABS solution impregnation composites using hand lay-up and vacuum infusion techniques. Mater. Today Proc. 2024, 110, 1–4. [Google Scholar] [CrossRef]
- ISO 14125:1998/Cor 1:2001; Fibre-Reinforced Plastic Composites—Determination of Flexural Properties. Technical Corrigendum 1; ISO: Geneva, Switzerland, 2001.
- ISO 14130:1997; Fibre-Reinforced Plastic Composites—Determination of Apparent Interlaminar Shear Strength by short-Beam Method. ISO: Geneva, Switzerland, 1997.
- EN ISO 179-1:2023; Plastics—Determination of Charpy Impact Properties, Part 1: Non-Instrumented Impact Test. ISO: Geneva, Switzerland, 2023.
- ISO 2039-1:2001; Plastics—Determination of Hardness, Part 1: Ball Indentation Method. ISO: Geneva, Switzerland, 2001.
- Açıkbaş, G.; Özcan, S.; Çalış Açıkbaş, N. Production and characterization of a hybrid polymer matrix composite. Polym. Compos. 2018, 39, 4080–4093. [Google Scholar] [CrossRef]
- Boey, J.Y.; Lee, C.K.; Tay, G.S. Factors Affecting Mechanical Properties of Reinforced Bioplastics: A Review. Polymers 2022, 14, 3737. [Google Scholar] [CrossRef] [PubMed]
- Aydemir, D.; Gardner, D.J. Biopolymer Blends of Polyhydroxybutyrate and Polylactic Acid Reinforced with Cellulose Nanofibrils. Carbohydr. Polym. 2020, 250, 1168. [Google Scholar] [CrossRef] [PubMed]
- Abdulkader, N.J.; Abdula, A.M.; Ahmed, S.S. Mechanical Properties of Polyester Matrix Composites Reinforced with Waste Marble Particles. Mater. Sci. Eng. 2020, 978, 012034. [Google Scholar] [CrossRef]
- Karataş, M.; Aydoğmuş, E. Use of inorganic wastes as fillers in production of polyester composites and evaluation of properties of obtained composite. Int. J. Adv. Nat. Sci. Eng. Res. 2023, 7, 20–24. [Google Scholar] [CrossRef]
Matrix | Reinforcement | Filler | Mechanical Properties | Ref. |
---|---|---|---|---|
Polyester resin | Sisal fiber | Red mud | Hardness Tensile strength Charpy impact strength | [13] |
Polyester resin | / | Saw dust Rice husk Fly ash Red mud | Hardness Tensile strength Charpy impact strength | [14] |
Epoxy resin | Glass fiber | Red mud | Microhardness Tensile strength Flexural strength Charpy impact strength | [15] |
Epoxy resin | Bamboo fiber | Red mud | Tensile strength Tensile modulus Flexural strength Interlaminar shear strength Impact strength | [16] |
Epoxy resin | Glass fiber | Fly ash | Impact strength Compressive strength | [17] |
Polypropilene | / | Fly ash | Flexural strength Flexural modulus | [18] |
Polypropilene | / | Blast furnace slag (BFS) | Microhardness Tensile strength Flexural strength Impact strength | [19] |
Micaceous clay | Jute fiber | Blast furnace slag | Compressive strength | [20] |
Epoxy resin | Aerial root of Banyan tree | Linz–Donawitz slag (LDS) | Microhardness Tensile strength Compressive strength Flexural strength | [21] |
Polypropilene | / | Silico-aluminous ash | Tensile strength Impact strength | [22] |
Epoxy resin | Coconut shell powder | / | Tensile strength Tensile modulus Impact strength Hardness | [23] |
Epoxy resin | / | Coconut shell Wood apple shell | Tensile strength Flexural strength | [24] |
Polypropilene | Waste coconut fiber | Waste coconut shell particles | Tensile strength Tensile modulus | [25] |
Component | Al2O3 | Fe2O3 | SiO2 | Zn | Pb | Cu | Ag | Ba | Co | Cd | Cr | Mn | Ni | Sr | As |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
amount | wt.% | mg × kg−1 | |||||||||||||
1.42 | 44.9 | 6.3 | 10.9 | 7.5 | 0.97 | 134 | 579 | 30 | 2309 | 417 | 6392 | 94 | 156 | 5076 |
Sample | Ef, MPa | σf, MPa |
---|---|---|
UP/fiberglass mat | 7261.0 ± 199.3 | 199.3 ± 13.4 |
UP/fiberglass mat/5 wt.% of jarosite | 5860.2 ± 132.0 | 132.0 ± 9.3 |
UP/fiberglass mat/10 wt.% of jarosite | 8307.6 ± 207.0 | 207.0 ± 12.8 |
UP/fiberglass mat/15 wt.% of jarosite | 7706.1 ± 184.4 | 184.4 ±12.1 |
Sample | τ, N × mm−2 |
---|---|
UP/fiberglass mat | 31.12 ± 0.82 |
UP/fiberglass mat/5 wt.% of jarosite | 22.69 ± 2.82 |
UP/fiberglass mat/10 wt.% of jarosite | 32.19 ± 1.52 |
UP/fiberglass mat/15 wt.% of jarosite | 27.02 ± 1.83 |
Sample | Charpy Impact Strength, kJ × m−2 |
---|---|
UP/fiberglass mat | 82.50 ± 4.88 |
UP/fiberglass mat/5 wt.% of jarosite | 60.32 ± 11.24 |
UP/fiberglass mat/10 wt.% of jarosite | 80.11 ± 5.47 |
UP/fiberglass mat/15 wt.% of jarosite | 61.65 ± 4.99 |
Sample | Hardness, N × mm−2 (10 s) | Hardness, N × mm−2 (30 s) | Hardness, N × mm−2 (60 s) |
---|---|---|---|
UP/fiberglass mat | 185.22 ± 11.33 | 180.98 ± 11.15 | 179.48 ± 11.42 |
UP/fiberglass mat/5 wt.% of jarosite | 216.47 ± 13.76 | 210.04 ± 14.01 | 207.08 ± 11.98 |
UP/fiberglass mat/10 wt.% of jarosite | 191.83 ± 18.67 | 186.80 ± 18.66 | 185.13 ± 18.25 |
UP/fiberglass mat/15 wt.% of jarosite | 209.57 ± 19.34 | 203.34 ± 17.76 | 200.86 ± 17.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pugar, D.; Ćurković, L.; Gabelica, I.; Kerolli Mustafa, M. Potential Use of Jarosite Industrial Waste in Developing Hybrid Composites. Sustainability 2024, 16, 11155. https://doi.org/10.3390/su162411155
Pugar D, Ćurković L, Gabelica I, Kerolli Mustafa M. Potential Use of Jarosite Industrial Waste in Developing Hybrid Composites. Sustainability. 2024; 16(24):11155. https://doi.org/10.3390/su162411155
Chicago/Turabian StylePugar, Daniel, Lidija Ćurković, Ivana Gabelica, and Mihone Kerolli Mustafa. 2024. "Potential Use of Jarosite Industrial Waste in Developing Hybrid Composites" Sustainability 16, no. 24: 11155. https://doi.org/10.3390/su162411155
APA StylePugar, D., Ćurković, L., Gabelica, I., & Kerolli Mustafa, M. (2024). Potential Use of Jarosite Industrial Waste in Developing Hybrid Composites. Sustainability, 16(24), 11155. https://doi.org/10.3390/su162411155