Unconventional Ingredients from the Industrial Oilseed By-Products in Dairy Goat Feeding: Effects on the Nutritional Quality of Milk and on Human Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Design
2.3. Yogurt Varieties
2.4. Anthropometric Measurements and Body Composition
2.5. Blood Samples
2.6. Statistical Analysis
3. Results
3.1. Participants’ Characteristics
3.2. Body Weight and Body Composition
3.3. Biochemical Parameters
3.4. Inflammatory Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of Food and Agriculture 2020. Overcoming Water Challenges in Agriculture; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- European Commission. Directorate-General for Research and Innovation, European Green Deal: Research & Innovation Call; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar] [CrossRef]
- Van Zanten, H.H.E.; Van Ittersum, M.K.; De Boer, I.J.M. The Role of Farm Animals in a Circular Food System. Glob. Food Secur. 2019, 21, 18–22. [Google Scholar] [CrossRef]
- Nath, P.C.; Ojha, A.; Debnath, S.; Sharma, M.; Nayak, P.K.; Sridhar, K.; Inbaraj, B.S. Valorization of Food Waste as Animal Feed: A Step towards Sustainable Food Waste Management and Circular Bioeconomy. Animals 2023, 13, 1366. [Google Scholar] [CrossRef] [PubMed]
- Giromini, C.; Salama, A.A.K.; Bignardi Da Costa, L.; Baldi, A.; Omodei Zorini, F.; Sandrini, S.; Savoini, G.; Invernizzi, G. Metabolomic profile of goat milk associated with feed supplementation with Camelina sativa cake and Cynara cardunculus meal. J. Dairy Sci. 2021, 104, 197. [Google Scholar]
- Serrapica, F.; Masucci, F.; Raffrenato, E.; Sannino, M.; Vastolo, A.; Barone, C.M.A.; Di Francia, A. High Fiber Cakes from Mediterranean Multipurpose Oilseeds as Protein Sources for Ruminants. Animals 2019, 9, 918. [Google Scholar] [CrossRef] [PubMed]
- Lolli, S.; Grilli, G.; Ferrari, L.; Battelli, G.; Pozzo, S.; Galasso, I.; Russo, R.; Brasca, M.; Reggiani, R.; Ferrante, V. Effect of Different Percentage of Camelina sativa Cake in Laying Hens Diet: Performance, Welfare, and Eggshell Quality. Animals 2020, 10, 1396. [Google Scholar] [CrossRef]
- Zumbo, A.; Tardiolo, G.; Genovese, C.; Sutera, A.M.; Raccuia, S.A.; D’Alessandro, E. Cardoon (Cynara cardunculus L. var. altilis) seeds presscake: A natural by-product for pigs feeding. Nat. Prod. Res. 2022, 36, 4557–4562. [Google Scholar] [CrossRef]
- Mandim, F.; Petropoulos, S.A.; Pinela, J.; Dias, M.I.; Kostic, M.; Soković, M.; Ferreira, I.C.F.R.; Santos-Buelga, C.; Barros, L. Phenolic Composition and Antioxidant, Anti-Inflammatory, Cytotoxic, and Antimicrobial Activities of Cardoon Blades at Different Growth Stages. Biology 2022, 11, 699. [Google Scholar] [CrossRef]
- Silva, L.R.; Jacinto, T.A.; Coutinho, P. Bioactive Compounds from Cardoon as Health Promoters in Metabolic Disorders. Foods 2022, 11, 336. [Google Scholar] [CrossRef]
- Ben Amira, A.; Besbes, S.; Attia, H.; Blecker, C. Milk-Clotting Properties of Plant Rennets and Their Enzymatic, Rheological, and Sensory Role in Cheese Making: A Review. Int. J. Food Prop. 2017, 20, S76–S93. [Google Scholar] [CrossRef]
- Tavarini, S.; De Leo, M.; Matteo, R.; Lazzeri, L.; Braca, A.; Angelini, L.G. Flaxseed and Camelina Meals as Potential Sources of Health-Beneficial Compounds. Plants 2021, 10, 156. [Google Scholar] [CrossRef]
- Paula, E.M.; da Silva, L.G.; Brandao, V.L.N.; Dai, X.; Faciola, A.P. Feeding Canola, Camelina, and Carinata Meals to Ruminants. Animals 2019, 9, 704. [Google Scholar] [CrossRef] [PubMed]
- Lopez, C.; Sotin, H.; Rabesona, H.; Novales, B.; Le Quéré, J.-M.; Froissard, M.; Faure, J.-D.; Guyot, S.; Anton, M. Oil Bodies from Chia (Salvia hispanica L.) and Camelina (Camelina sativa L.) Seeds for Innovative Food Applications: Microstructure, Composition and Physical Stability. Foods 2023, 12, 211. [Google Scholar] [CrossRef]
- Christodoulou, C.; Mavrommatis, A.; Mitsiopoulou, C.; Symeon, G.; Dotas, V.; Sotirakoglou, K.; Kotsampasi, B.; Tsiplakou, E. Assessing the Optimum Level of Supplementation with Camelina Seeds in Ewes’ Diets to Improve Milk Quality. Foods 2021, 10, 2076. [Google Scholar] [CrossRef] [PubMed]
- Colonna, M.A.; Giannico, F.; Tufarelli, V.; Laudadio, V.; Selvaggi, M.; De Mastro, G.; Tedone, L. Dietary Supplementation with Camelina sativa (L. Crantz) Forage in Autochthonous Ionica Goats: Effects on Milk and Caciotta Cheese Chemical, Fatty Acid Composition and Sensory Properties. Animals 2021, 11, 1589. [Google Scholar] [CrossRef] [PubMed]
- Cais-Sokolińska, D.; Pikul, J.; Wójtowski, J.; Danków, R.; Teichert, J.; Czyzak-Runowska, G.; Bagnicka, E. Evaluation of quality of kefir from milk obtained from goats supplemented with a diet rich in bioactive compounds. J. Sci. Food Agric. 2015, 95, 1343–1349. [Google Scholar] [CrossRef] [PubMed]
- De Goede, J.; Geleijnse, J.M.; Ding, E.L.; Soedamah-Muthu, S.S. Effect of Cheese Consumption on Blood Lipids: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutr. Rev. 2015, 73, 259–275. [Google Scholar] [CrossRef]
- Miller, M.; Stone, N.J.; Ballantyne, C.; Bittner, V.; Criqui, M.H.; Ginsberg, H.N.; Goldberg, A.C.; Howard, W.J.; Jacobson, M.S.; Kris-Etherton, P.M.; et al. Triglycerides and Cardiovascular Disease. A Scientific Statement from the American Heart Association. Circulation 2011, 123, 2292–2333. [Google Scholar] [CrossRef]
- Collard, K.M.; McCormick, D.P. A Nutritional Comparison of Cow’s Milk and Alternative Milk Products. Acad. Pediatr. 2021, 21, 1067–1069. [Google Scholar] [CrossRef]
- Riaz, R.; Ahmed, I.; Sizmaz, O.; Ahsan, U. Use of Camelina sativa and By-Products in Diets for Dairy Cows: A Review. Animals 2022, 12, 1082. [Google Scholar] [CrossRef]
- Renkema, K.Y.; Alexander, R.T.; Bindels, R.J.; Hoenderop, J.G. Calcium and phosphate homeostasis: Concerted interplay of new regulators. Ann. Med. 2008, 40, 82–91. [Google Scholar] [CrossRef]
- Yamagata, K. Fatty Acids Act on Vascular Endothelial Cells and Influence the Development of Cardiovascular Disease. Prostaglandins Other Lipid Mediat. 2023, 165, 106704. [Google Scholar] [CrossRef] [PubMed]
- Mendes, L.F.; Gaspar, V.M.; Conde, T.A.; Mano, J.F.; Duarte, I.F. Flavonoid-mediated immunomodulation of human macrophages involves key metabolites and metabolic pathways. Sci. Rep. 2019, 9, 14906. [Google Scholar] [CrossRef] [PubMed]
- De Giuseppe, R.; Di Napoli, I.; Tomasinelli, C.E.; Vincenti, A.; Biino, G.; Sommella, E.; Ferron, L.; Campiglia, P.; Ferrara, F.; Casali, P.M.; et al. The Effect of Crackers Enriched with Camelina Sativa Oil on Omega-3 Serum Fatty Acid Composition in Older Adults: A Randomized Placebo-Controlled Pilot Trial. J. Nutr. Health Aging 2023, 27, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Nucera, S.; Scarano, F.; Macrì, R.; Mollace, R.; Gliozzi, M.; Carresi, C.; Ruga, S.; Serra, M.; Tavernese, A.; Caminiti, R.; et al. The Effect of an Innovative Combination of Bergamot Polyphenolic Fraction and Cynara cardunculus L. Extract on Weight Gain Reduction and Fat Browning in Obese Mice. Int. J. Mol. Sci. 2023, 25, 191. [Google Scholar] [CrossRef]
- Micallef, M.; Munro, I.; Phang, M.; Garg, M. Plasma n-3 Polyunsaturated Fatty Acids are negatively associated with obesity. Br. J. Nutr. 2009, 102, 1370–1374. [Google Scholar] [CrossRef]
Fatty Acid Composition of CCCS and Control Yogurts, g kg−1 Total Fatty Acids | ||
---|---|---|
Fatty Acid | CCCS Yogurt | Control Yogurt |
C4 | 2.90 | 2.83 |
C6 | 2.46 | 2.39 |
C8 | 2.01 | 2.08 |
C10-1 | 0.29 | 0.39 |
C11 | 0.14 | 0.21 |
C12 | 3.89 | 4.48 |
C12-1 | 0.06 | 0.07 |
C13 iso | 0.06 | 0.05 |
C13 ante | 0.11 | 0.06 |
C13 | 0.10 | 0.05 |
C14 iso | 9.16 | 0.08 |
C14 | 0.19 | 0.09 |
C15 iso | 0.12 | 9.08 |
C14-1 | 0.34 | 0.28 |
C15 anteiso | 0.34 | 0.15 |
C15 | 0.80 | 0.42 |
C16 iso | 0.36 | 0.81 |
C16 | 24.6 | 22.40 |
C16-1 | 0.61 | 0.36 |
C17 iso | 0.32 | 0.51 |
C17 anteiso | 0.49 | 0.36 |
C17 | 0.49 | 0.45 |
C17-1 | 0.24 | 0.26 |
C18 iso | 0.06 | 0.05 |
C18 | 9.09 | 11.36 |
C18:1 trans 5 | 0.23 | 0.18 |
C18:1 trans 6–8 | 0.33 | 0.37 |
C18-1 trans 9 | 0.79 | 0.61 |
C18:1 trans 10 | 1.91 | 1.78 |
C18-1 trans 11 | 0.57 | 0.40 |
C18-1 trans 12 | 0.30 | 0.29 |
C18-1C9 | 19.19 | 21.30 |
C18-1C7 | 0.82 | 0.91 |
C18-1 cis11 | 0.63 | 0.50 |
C18-1 C12 | 0.59 | 0.68 |
C18-1 C13 + T16 | 0.40 | 0.34 |
C18-1 C14+ C16 | 0.27 | 0.21 |
C18-1 C15 | 0.10 | 0.06 |
C18-2 C9 T12 | 0.10 | 0.06 |
C18-2 T9-C12 | 1.07 | 0.57 |
C18-3 N3 (T9-C12-C15) | 0.20 | 0.03 |
C18-3 N3 (C9-C12-C15) | 0.45 | 0.40 |
C20 | 1.16 | 1.09 |
C18:2 C9 T11 | 0.11 | 0.08 |
C20:4 n6 | 0.31 | 0.10 |
Characteristic | All (n = 20) | CCCS Yogurt (n = 10) | Control Yogurt (n = 10) | p-Value |
---|---|---|---|---|
Age, y, median (mean ± SD) | 37.7 ± 14.2 | 34.7 ± 15.1 | 40.6 ± 13.3 | 0.130 |
Female sex, n (%) | 14 (70) | 6 (60) | 8 (80) | 0.329 |
Body weight, kg (mean ± SD) | 62.0 ± 13.4 | 66.7 ± 12.9 | 57.3 ± 12.8 | 0.199 |
BMI, kg/m2 (mean ± SD) | 22.0 ± 3.7 | 22.9 ± 3.5 | 21.1 ± 3.8 | 0.290 |
Underweight (≥18.5 kg/m2), n (%) | 4 (20) | 1 (10) | 3 (30) | 0.264 |
Overweight (≥25 kg/m2), n (%) | 4 (20) | 2 (20) | 2 (20) | 1.000 |
Current smokers, n (%) | 2 (10) | 1 (10) | 1 (10) | 1.000 |
Absent of physical activity, n (%) | 5 (25) | 2 (20) | 3 (30) | 0.606 |
Variable | CCCS Pre | CCCS Post | p-Value | Control Pre | Control Post | p-Value | p (ΔCCCS versus ΔControl) |
---|---|---|---|---|---|---|---|
Weight, kg | 60.6 (56.4–65.2) | 60.6 (56.6–64.9) | 0.959 | 60.4 (56.5–65.0) | 60.5 (56.3–65.0) | 0.465 | 0.284 |
BMI, kg/m2 | 21.8 (20.3–23.3) | 21.7 (20.3–23.2) | 0.671 | 21.8 (20.3–23.2) | 21.7 (20.3–23.3) | 0.542 | 0.412 |
TBW, L | 36.6 (34.5–38.7) | 37.3 (35.1–39.8) | 0.019 | 36.8 (34.6–39.1) | 37.2 (35.4–39.1) | 0.369 | 0.551 |
TBW, % | 60.3 (57.1–63.6) | 61.7 (58.4–65.2) | 0.014 | 60.7 (57.5–64.0) | 61.4 (57.9–65.1) | 0.369 | 0.441 |
ECW, L | 15.8 (15.0–16.6) | 16.4 (15.4–16.5) | 0.023 | 16.1 (15.2–17.0) | 16.2 (15.3–17.1) | 0.440 | 0.021 |
ECW, % | 43.1 (41.5–44.8) | 44.3 (42.4–46.2) | 0.003 | 43.7 (42.0–45.6) | 43.6 (41.8–45.2) | 0.723 | 0.010 |
FFM, kg | 49.9 (47.3–52.5) | 50.8 (48.0–53.7) | 0.042 | 50.0 (47.3–52.8) | 50.5 (48.1–52.9) | 0.405 | 0.424 |
FFM, % | 82.2 (78.0–86.7) | 83.7 (79.4–88.1) | 0.047 | 82.4 (78.3–86.8) | 83.3 (78.7–88.1) | 0.391 | 0.516 |
FM, kg | 9.2 (6.4–13.0) | 8.1 (5.6–11.6) | 0.030 | 8.8 (6.3–12.4) | 8.1 (5.5–12.0) | 0.291 | 0.516 |
FM, % | 15.1 (11.2–20.4) | 13.3 (9.7–18.3) | 0.030 | 14.5 (10.9–19.5) | 13.4 (9.7–18.6) | 0.300 | 0.516 |
BCM, kg | 28.0 (26.0–30.2) | 27.8 (25.6–30.2) | 0.528 | 27.7 (25.6–30.1) | 28.1 (26.1–30.2) | 0.518 | 0.433 |
BCM, % | 56.2 (54.3–58.1) | 54.8 (52.6–57.1) | 0.002 | 55.5 (53.4–57.7) | 55.7 (53.6–57.9) | 0.780 | 0.465 |
Variable | CCCS Pre | CCCS Post | p-Value | Control Pre | Control Post | p-Value | p (ΔCCCS versus ΔControl) |
---|---|---|---|---|---|---|---|
WBC, ×109/L | 6.2 (5.7–6.7) | 6.2 (5.6–6.8) | 0.824 | 6.2 (5.4–7.0) | 6.3 (5.8–6.8) | 0.783 | 0.569 |
RBC, ×1012/L | 4.59 (4.40–4.78) | 4.52 (4.36–4.68) | 0.251 | 4.58 (4.42–4.74) | 4.56 (4.41–4.72) | 0.723 | 0.405 |
Hb, g/dL | 13.50 (13.1–13.94) | 13.4 (12.9–13.85) | 0.407 | 13.52 (13.12–13.93) | 13.45 (13.02–13.9) | 0.509 | 0.953 |
Ht, % | 40.7 (39.3–42.2) | 39.9 (38.4–41.3) | 0.132 | 40.7 (39.6–41.7) | 40.5 (39.4–41.6) | 0.684 | 0.255 |
Folate, ng/mL | 6.7 (5.5–8.2) | 7.3 (5.8–9.2) | 0.202 | 7.1 (5.8–8.8) | 6.8 (5.8–9.3) | 0.617 | 0.323 |
Vitamin B12, pg/mL | 399.0 (338.3–471.1) | 394.3 (334.0–465.5) | 0.672 | 401.8 (339.0–475.8) | 391.9 (330.6–465.0) | 0.203 | 0.285 |
Glucose, mg/dL | 83.3 (80.2–86.5) | 79.4 (75.7–83.3) | 0.153 | 81.5 (77.3–86.1) | 81.2 (77.9–84.8) | 0.876 | 0.364 |
Urea, g/L | 0.29 (0.26–0.33) | 0.28 (0.24–0.31) | 0.218 | 0.29 (0.26–0.32) | 0.30 (0.27–0.33) | 0.447 | 0.170 |
Creatine, mg/dL | 0.77 (0.70–0.84) | 0.79 (0.72–0.86) | 0.297 | 0.78 (0.72–0.84) | 0.78 (0.73–0.85) | 0.713 | 0.533 |
Sodium, mEq/L | 141.7 (141.2–142.3) | 140.2 (139.5–140.9) | 0.002 | 141.2 (140.5–141.7) | 141.3 (140.3–142.3) | 0.573 | 0.045 |
Potassium, mEq/L | 4.5 (4.3–4.8) | 4.3 (4.2–4.4) | 0.058 | 4.5 (4.4–4.6) | 4.5 (4.3–4.6) | 0.854 | 0.243 |
Calcium, mg/dL | 9.4 (9.1–9.7) | 9.2 (9.0–9.4) | 0.035 | 9.4 (9.2–9.6) | 9.4 (9.2–9.6) | 0.840 | 0.143 |
Magnesium, mg/dL | 2.05 (2.00–2.11) | 2.03 (1.95–2.11) | 0.323 | 2.01 (1.93–2.10) | 2.04 (1.97–2.11) | 0.203 | 0.126 |
AST, U/L | 18.6 (16.9–20.5) | 19.0 (16.6–21.6) | 0.621 | 18.4 (16.7–20.3) | 18.9 (17.0–21.0) | 0.486 | 0.703 |
ALT, U/L | 16.0 (13.2–19.5) | 17.0 (15.8–19.5) | 0.342 | 17.2 (14.7–20.1) | 16.7 (14.2–19.5) | 0.579 | 0.321 |
GammaGT, mg/dL | 15.1 (12.5–18.2) | 14.5 (11.9–17.8) | 0.053 | 15.1 (12.2–18.7) | 15.3 (12.5–18.8) | 0.757 | 0.420 |
Triglycerides, mg/dL | 71.2 (61.3–82.5) | 69.7 (60.3–80.6) | 0.724 | 74.0 (61.5–89.0) | 73.3 (64.3–83.5) | 0.906 | 0.818 |
Total cholesterol, mg/dL | 185.5 (170.9–191.7) | 180.9 (170.9–191.7) | 0.148 | 186.0 (176.4–196.4) | 184.0 (176.4–194.6) | 0.544 | 0.499 |
LDL cholesterol, mg/dL | 97.9 (91.6–104.7) | 96.0 (88.2–104.4) | 0.391 | 98.5 (90.5–107.3) | 97.9 (89.8–106.8) | 0.827 | 0.635 |
HDL cholesterol, mg/dL | 69.6 (64.7–74.7) | 67.2 (62.9–71.7) | 0.232 | 69.1 (63.9–74.7) | 67.6 (63.2–72.4) | 0.424 | 0.725 |
Iron, microg/dL | 92.6 (82.8–103.4) | 86.0 (72.2–102.3) | 0.436 | 94.8 (79.6–113.0) | 86.3 (72.8–102.3) | 0.451 | 0.705 |
Uric acid, mg/dL | 3.8 (3.5–4.1) | 3.9 (3.6–4.3) | 0.548 | 4.0 (3.6–4.3) | 3.9 (3.5–4.3) | 0.725 | 0.532 |
Variable | CCCS Pre | CCCS Post | p-Value | Control Pre | Control Post | p-Value | p (ΔCCCS versus ΔControl) |
---|---|---|---|---|---|---|---|
IFN alpha, pg/mL | 0.14 (0.05–0.38) | 0.16 (0.05–0.50) | 0.566 | 0.19 (0.08–0.50) | 0.12 (0.04–0.37) | 0.259 | 0.967 |
IL1-alpha, pg/mL | 1.8 (1.4–2.2) | 1.8 (1.5–2.1) | 0.756 | 1.7 (1.4–2.1) | 1.5 (1.0–2.2) | 0.455 | 0.684 |
IL-1ra, pg/mL | 180.6 (101.3–321.8) | 237.5 (149.8–376.2) | 0.211 | 241.8 (143.2–408.7) | 260.9 (196.6–346.2) | 0.730 | 0.651 |
IL-2, pg/mL | 0.06 (0.02–0.22) | 0.04 (0.01–0.10) | 0.241 | 0.05 (0.02–0.14) | 0.03 (0.01–0.09) | 0.247 | 0.862 |
IL-6, pg/mL | 0.23 (0.11–0.48) | 0.30 (0.13–0.73) | 0.368 | 0.32 (0.13–0.74) | 0.17 (0.09–0.32) | 0.201 | 0.357 |
IL-7, pg/mL | 4.8 (3.5–6.5) | 4.6 (3.2–6.6) | 0.826 | 4.9 (3.7–6.5) | 4.6 (3.4–6.2) | 0.612 | 0.607 |
IL-10, pg/mL | 16.5 (13.8–19.9) | 16.1 (10.7–24.1) | 0.868 | 18.1 (11.7–28.0) | 15.3 (12.0–19.5) | 0.225 | 0.871 |
IL-15, pg/mL | 1.2 (0.9–1.6) | 1.3 (1.0–1.6) | 0.691 | 1.3 (1.0–1.7) | 1.2 (1.0–1.5) | 0.531 | 0.871 |
VEGF, pg/mL | 111.4 (78.1–158.9) | 122.5 (91.7–163.5) | 0.040 | 121.4 (91.1–161.7) | 125.0 (106.9–145.9) | 0.772 | 0.088 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tristan Asensi, M.; Pagliai, G.; Napoletano, A.; Lotti, S.; Dinu, M.; Mannelli, F.; Invernizzi, G.; Sofi, F.; Colombini, B.; Buccioni, A. Unconventional Ingredients from the Industrial Oilseed By-Products in Dairy Goat Feeding: Effects on the Nutritional Quality of Milk and on Human Health. Sustainability 2024, 16, 8604. https://doi.org/10.3390/su16198604
Tristan Asensi M, Pagliai G, Napoletano A, Lotti S, Dinu M, Mannelli F, Invernizzi G, Sofi F, Colombini B, Buccioni A. Unconventional Ingredients from the Industrial Oilseed By-Products in Dairy Goat Feeding: Effects on the Nutritional Quality of Milk and on Human Health. Sustainability. 2024; 16(19):8604. https://doi.org/10.3390/su16198604
Chicago/Turabian StyleTristan Asensi, Marta, Giuditta Pagliai, Antonia Napoletano, Sofia Lotti, Monica Dinu, Federica Mannelli, Guido Invernizzi, Francesco Sofi, Barbara Colombini, and Arianna Buccioni. 2024. "Unconventional Ingredients from the Industrial Oilseed By-Products in Dairy Goat Feeding: Effects on the Nutritional Quality of Milk and on Human Health" Sustainability 16, no. 19: 8604. https://doi.org/10.3390/su16198604
APA StyleTristan Asensi, M., Pagliai, G., Napoletano, A., Lotti, S., Dinu, M., Mannelli, F., Invernizzi, G., Sofi, F., Colombini, B., & Buccioni, A. (2024). Unconventional Ingredients from the Industrial Oilseed By-Products in Dairy Goat Feeding: Effects on the Nutritional Quality of Milk and on Human Health. Sustainability, 16(19), 8604. https://doi.org/10.3390/su16198604