An Assessment of Sustainability of Dual-Purpose, Dairy and Beef Cattle Production Systems in the Cundinamarca Department (Colombia) Using the MESMIS Framework
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area Study and Sample Selection
2.2. MESMIS Framework for Assessing Sustainability
2.3. Data Collected and Information Treatment
3. Results
3.1. SWOT Analysis
3.2. Analysis of Sustainability by Attributes, Pillars and Indicators
4. Discussion
4.1. General Approach to the Sustainability of Livestock Systems
4.2. Sustainability Evaluation of Different Types of Cattle Systems in the Department of Cundinamarca by Attributes and Indicators
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FEDEGAN. Cifras de Referencia del Sector Ganadero Colombiano. Informe Técnico Fedegan, 2017. 55p. Available online: www.fedegan.org.co (accessed on 19 April 2022).
- DANE. Encuesta Nacional Agropecuaria. Departamento Nacional de Estadística, Bogotá. 2019. Available online: https://microdatos.dane.gov.co/index.php/catalog/749#metadata-data_access (accessed on 15 June 2024).
- Cundimamarca. Mapas y Estadísticas. Gobernación de Cundinamarca. 2022 Cifras. Available online: https://mapas.cundinamarca.gov.co/ (accessed on 28 November 2022).
- Cruz, F.; Horcada, A.; Castel, J.M.; Mena, Y. Characterization of the Cattle Production Systems in the Department of Cundinamarca (Colombia), Proposals for Sustainability. Sustainability 2023, 15, 16093. [Google Scholar] [CrossRef]
- Antonson, H. Bridging the gap between research and planning practice concerning landscape in Swedish infrastructural planning. Land Use Policy 2009, 26, 169–177. [Google Scholar] [CrossRef]
- Van Cauwenbergh, N.; Biala, K.; Bielders, C.; Brouckaert, V.; Franchois, L.; Cidad, V.; Hermy, M.; Mathijs, E.; Muys, B.; Reijnders, J.; et al. SAFE—A hierarchical framework for assessing the sustainability of agricultural systems. Agric. Ecosyst. Environ. 2007, 120, 229–242. [Google Scholar] [CrossRef]
- Zandstra, H. Sustainability and productivity growth: Issues, objectives and knowledge needs—Guidelines for working groups. In Reconciling Sustainability with Productivity Growth; Report of a workshop; University of Florida and Cornell University: Gainesville, FL, USA, 1994. [Google Scholar]
- Stinner, B.; House, G. Role of ecology in lower-input, sustainable agriculture: An introduction. Am. J. Altern. Agric. 1987, 2, 146–147. [Google Scholar] [CrossRef]
- Francis, C.; Youngberg, G. Sustainable agriculture—An overview. In Sustainable Agriculture in Temperate Zones; Francis, C.A., Flora, C.B., King, L.D., Eds.; John Wiley & Sons: New York, NY, USA, 1990; pp. 1–23. [Google Scholar]
- De Olde, E.; Oudshoorn, F.; Sørensen, C.; Bokkers, E.; de Boer, I.J.M. Assessing sustainability at farm-level: Lessons learned from a comparison of tools in practice. Ecol. Indic. 2016, 66, 391–404. [Google Scholar] [CrossRef]
- Schader, C.; Grenz, J.; Meier, M.; Stolze, M. Scope and precision of sustainability assessment approaches to food systems. Ecol. Soc. 2014, 19, 42. [Google Scholar] [CrossRef]
- López-Ridaura, S.; Masera, O.; Astier, M. Evaluating the sustainability of complex socio-environmental systems. the MESMIS framework. Ecol. Indic. 2002, 2, 135–148. [Google Scholar] [CrossRef]
- Pannell, D.; Glenn, N. A framework for the economic evaluation and selection of sustainability indicators in agriculture. Ecol. Econ. 2000, 33, 135–149. [Google Scholar] [CrossRef]
- Gómez-Limón, J.; Sanchez-Fernandez, G. Empirical evaluation of agricultural sustainability using composite indicators. Ecol. Econ. 2010, 69, 1062–1075. [Google Scholar] [CrossRef]
- Rigby, D.; Woodhouse, P.; Young, T.; Burton, M. Constructing a farm level indicator of sustainable agricultural practice. Ecol. Econ. 2001, 39, 463–478. [Google Scholar] [CrossRef]
- Häni, F.; Braga, F.; Stämpfli, A.; Keller, T.; Fischer, M.; Porsche, H. RISE, a tool for holistic sustainability assessment at the farm level. Int. Food Agribus. Manag. Rev. 2003, 6, 78–90. [Google Scholar]
- Vilain, L. La Méthode IDEA, Indicateurs de Durabilité des Exploitations Agricoles, Guide d’Utilisation, 3rd ed.; Educagri Éditions: Dijon, France, 2008; ISBN 978-2-84444-669-5. [Google Scholar]
- Masera, O.; López-Ridaura, S. (Eds.) Sustentabilidad y Sistemas Campesinos: Cinco Experiencias de Evaluación en el México Rural; Grupo Interdisciplinario de Tecnología Rural Apropiada (GIRA A. C.), Programa de las Naciones Unidas para el Medio Ambiente (PNUMA), and Instituto de Ecología (IE-UNAM); MundiPrensa: Mexico City, Mexico, 2000. [Google Scholar]
- Speelman, E.; López-Ridaura, S.; Colomer, N.; Astier, M.; Masera, O. Ten years of sustainability evaluation using the MESMIS framework: Lessons learned from its application in 28 Latin American case studies. Int. J. Sustain. Dev. World Ecol. 2007, 14, 345–361. [Google Scholar] [CrossRef]
- Ripoll-Bosch, R.; Díez-Unquera, B.; Ruiz, R.; Villalba, D.; Molina, E.; Joy, M.; Olaizola, A.; Bernués, A. An integrated sustainability assessment of mediterranean sheep farms with different degrees of intensification. Agric. Syst. 2012, 105, 46–56. [Google Scholar] [CrossRef]
- Benitez-Capistros, F.; Huge, J.; Koedam, N. Environmental impacts on the Galapagos Islands: Identification of interactions, perceptions and steps ahead. Ecol. Indic. 2014, 38, 113–123. [Google Scholar] [CrossRef]
- Duarte, A.; Espinosa, J.; Bolívar, J.; Yanes, A. Livestock Sustainability: A Perception Analysis and SWOT Application in Colombian Municipalities. J. Posit. Sch. Psychol. 2022, 6, 8455–8466. [Google Scholar]
- Bezlepkina, I.; Reidsma, P.; Sieber, S.; Helming, K. Integrated assessment of sustainability of agricultural systems and land use: Methods, tools and applications. Agric. Syst. 2011, 104, 105–109. [Google Scholar] [CrossRef]
- Darnhofer, I.; Fairweather, J.; Moller, H. Assessing a farm’s sustainability: Insights from resilience thinking. Int. J. Agric. Sustain. 2010, 8, 186–198. [Google Scholar] [CrossRef]
- Fonderflick, J.; Caplat, P.; Lovaty, F.; Thévenot, M.; Prodon, R. Avifauna trends following changes in a Mediterranean upland pastoral system. Agric. Ecosyst. Environ. 2010, 137, 337–347. [Google Scholar] [CrossRef]
- Fernandes, L.A.D.; Woodhouse, P.J. Family farm sustainability in southern Brazil: An application of agri-environmental indicators. Ecol. Econ. 2008, 66, 243–257. [Google Scholar] [CrossRef]
- Binder, C.R.; Feola, G.; Steinberger, J.K. Considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture. Environ. Impact Assess. Rev. 2010, 30, 71–81. [Google Scholar] [CrossRef]
- URPA. Estadisticas de Cundinamarca 2011–2013; Gobernación de Cundinamarca: Bogotá, Colombia, 2014.
- Carulla, J.; Ortega, E. Sistemas de producción lechera en Colombia: Retos y Oportunidades. Arch. Latinoam. Prod. Anim. 2016, 24, 83–87. [Google Scholar]
- González-Quintero, R.; Sánchez-Pinzón, M.S.; Bolívar-Vergara, D.M.; Chirinda, N.; Arango, J.; Pantévez, H.A.; Correa-Londoño, G.; Barahona-Rosales, R. Caracterización técnica y ambiental de fincas de cría pertenecientes a muy pequeños, pequeños, medianos y grandes productores. Rev. Mex. Cienc. Pecu. 2020, 11, 183–204. [Google Scholar] [CrossRef]
- CEGA. Actividad económica general de la ganadería en Colombia. Rev. Coyunt. Colomb. 2000, 65, 95–111. [Google Scholar]
- Mahecha, L.; Gallego, L.; Peláez, F. Situación actual de la ganadería de carne en Colombia y alternativas para impulsar su competitividad y sostenibilidad. Future Food J. Food Agric. Soc. 2002, 15, 213–225. [Google Scholar] [CrossRef]
- Gutiérrez-Malaxechebarría, A.M. Informal Irrigation in the Colombian Andes: Local Practices, National Agendas, and Options for Innovation. Mt. Res. Dev. 2013, 333, 260–268. [Google Scholar] [CrossRef]
- Múnera-Bedoya, O.D.; Cassoli, L.D.; Olivera-Ángel, M.; Cerón-Muñoz, M. Caracterización de sistemas de producción lechera de Antioquia con sistemas de ordeño mecánico. Livest. Res. Rural Dev. 2018, 30, 86. [Google Scholar]
- Villegas, S.; Rocha-Meneses, L.; Luna-delRisco, M.; Arroyave, C.; Arrieta, C.; Arredondo, C. Bioenergy transition as a strategic mechanism to diversify energy sources in rural areas in Colombia. Agron. Res. 2023, 21, 1398–1418. [Google Scholar] [CrossRef]
- IICA—Instituto Interamericano de Cooperación para la Agricultura. Diagnóstico Sobre la Utilización de las Energías Renovables en las Cadenas Productivas Agropecuarias en Colombia. Published by: IICA, Fondo de Acceso Sostenible a Energías Renovables Térmicas (Fasert) y Programa Energising Development (EnDev). 2019. 76p. Available online: https://repositorio.iica.int/handle/11324/20918 (accessed on 24 November 2023).
- Beltrán, D.; Téllez, G. Estudio de percepción del clima organizacional de las empresas tecnificadas de ganadería de leche de la provincia del Tundama, Boyacá (Colombia). Rev. Med. Vet. Zoot. 2018, 65, 48–74. [Google Scholar] [CrossRef]
- Secretaría de Salud de Cundinamarca. Indicadores de agua y saneamiento básico en los 116 Municipios de Cundinamarca: 2015–2016; Estadísticas; Report; Gobernación de Cundinamarca: Bogotá, Colombia, 2020; 48p.
- Superintendencia de Servicios Públicos Domiciliarios (SSPD) y Sistema Único de Información (SUI). Indicadores Política Pública, Cundinamarca: Indicadores agua y saneamiento básico. 2016. Dirección Sistemas de Información Geográfico, Análisis y Estadística. Gobernación Departamento de Cundinamarca—Colombia. Base de datos del SISBEN y SIVICAP. Available online: https://mapasyestadisticas-cundinamarca-map.opendata.arcgis.com/pages/datos-abiertos (accessed on 29 March 2024).
- DANE-ENA. Encuesta Nacional Agropecuaria (ENA). 2017. [Base de datos]. Available online: https://microdatos.dane.gov.co/index.php/catalog/670 (accessed on 14 June 2024).
- Arora, D.; Arango, J.; Burkart, S.; Chirinda, N.; Twyman, J. Gender [Im]Balance in Productive and Reproductive Labor among Livestock Producers in Colombia: Implications for Climate Change Responses. In CCAFS Info Note; Climate Change, Agriculture and Food Security (CCAFS) and CGIAR: Copenhagen, Denmark, 2017; p. 4. Available online: https://www.ilri.org/knowledge/publications/gender-imbalance-productive-and-reproductive-labor-among-livestock-producers (accessed on 10 May 2023).
- Gumucio, T.; Mora, M.A.; Twyman, J.; Hernán-dez, M.C. Género en la Ganadería. Consideraciones Iniciales para la Incorporación de una Perspectiva de Género en la Investigación de la Ganadería en Colombia y Costa Rica. 2016. Documentos de Trabajo CCAFS No. 159. Programa de Investigación de CGIAR en Cambio Climático, Agricultura y Seguridad Alimentaria (CCAFS). Conpenhague, Dinamarca. Available online: https://cgspace.cgiar.org/handle/10568/73258 (accessed on 3 August 2023).
- Bermúdez, C.E.; Arenas, N.E.; Moreno Melo, V. Caracterización socio-económica y ambiental en pequeños y medianos predios ganaderos en la región del Sumapáz, Colombia. Rev. U.D.C.A Actual. Divulg. Científica 2017, 20, 199–208. [Google Scholar]
- Fonseca-Carreño, N.E.; Narvaez-Benavidez, C.A. Aplicación de la metodología MESMIS para la evaluación de sustentabilidad en sistemas de producción campesina en Sumapaz, Cundinamarca. Rev. Cienc. Agropecu. 2020, 6, 31–47. [Google Scholar] [CrossRef]
- USP-Minagricultura. Unidad de Seguimiento de Precios de Leche. 2020. [Base de Datos]. Available online: http://uspleche.minagricultura.gov.co/ (accessed on 18 March 2024).
- Víctor, N.; Ramírez, N. Cadena Productiva de Carnes y Productos Cárnicos. Estructura, Comercio Internacional y Protección; Archivos de Economía; Departamento Nacional de Planeación (DNP): Bogotá, Colombia, 2018; Volume 471, pp. 1–40.
- González-Quintero, R.; Barahona-Rosales, R.; Bolívar-Vergara, D.M.; Chirinda, N.; Arango, J.; Pantévez, H.A.; Correa-Londoño, G.; Sánchez-Pinzón, M.S. Technical and environmental characterization of dual-purpose cattle farms and ways of improving production: A case study in Colombia. Pastoralism 2020, 10, 19. [Google Scholar] [CrossRef]
- González-Quintero, R.; Sánchez-Pinzón, M.; Bolívar-Vergara, D.; Chirinda, N.; Arango, J.; Pantévez, H.; Correa-Londoño, G.; Barahona-Rosales, R. Technical and environmental characterization of Colombian beef cattle-fattening farms, with a focus on farm size and ways of improving production. Outlook Agric. 2020, 49, 153–162. [Google Scholar] [CrossRef]
- Ley, No. 1876 de 2017. República de Colombia. Congreso de Colombia, Bogotá, Colombia. Diario oficial 29 de diciembre de 2017.
- Gobernación de Antioquia. Informe de Seguimiento y Evaluación al Servicio de Asistencia Técnica Directa Rural, año 2013, en el Departamento de Antioquia; Secretaria de Agricultura y Desarrollo Rural de Antioquia; Universidad de Antioquia: Medellín, Colombia, 2014.
- FAO. World Agriculture: Towards 2015/2030. 2003. Available online: https://www.fao.org/publications/card/es/c/b092211c-ddc9-53e3-ab89-fb1e9a3db8d4/ (accessed on 27 June 2023).
- Morett-Sánchez, J.C.; Cosío Ruiz, C. Pérdida de soberanía alimentaria: Una faceta actual de los países subdesarrollados. Agric. Soc. Desarro. 2023, 20, 178–205. [Google Scholar] [CrossRef]
- UPRA—Unidad de Planificación Rural Agropecuaria. Informe de Gestión: Plan de Acción 2015 Segundo Semestre. Colombia. 2015. Available online: https://www.upra.gov.co/documents/10184/40597/Informe+de+Gesti%C3%B3n+2015+versi%C3%B3n+publicaci%C3%B3n.pdf/c204814a-a98c-4eb9-81af-20ceef307a46 (accessed on 3 April 2024).
- Braun, A.; Dijk, S.V.; Grulke, M. Upscaling Silvopastoral Systems in South America. Inter-American Development Bank (IDB)—Interamerican Investment Corporation (ICC) Publication. 2016. 42p. Available online: https://publications.iadb.org/en/publications/english/viewer/Upscaling-Silvopastoral-Systems-in-South-America.pdf (accessed on 13 November 2023).
- Seonhwa, L.; Bonatti, M.; Löhr, K.; Palacios, V.; Lana, M.; Sieber, S. Adoption potentials and barriers of silvopastoral system in Colombia: Case of Cundinamarca region. Cogent Environ. Sci. 2020, 6, 1. [Google Scholar] [CrossRef]
- IDEAM—Minambiente. Estrategia Integral de Control a la Deforestación y Gestión de los Bosques. Bosques-Territorios de Vida; IDEAM—Minambiente: Bogotá, Colombia, 2018; 174p.
- Morales, L. Peace and Environmental Protection in Colombia; Proposals for Sustainable Rural Development; Inter-American Dialogue: Washington, DC, USA, 2017; 32p. [Google Scholar]
- López-Vigoa, O.; Sánchez-Santana, T.; Iglesias-Gómez, J.M.; Lamela-López, L.; Soca-Pérez, M.; Arece-García, J.; Milera-Rodríguez, M.d.l.C. Los sistemas silvopastoriles como alternativa para la producción animal sostenible en el contexto actual de la ganadería tropical. Pastos Forrajes 2017, 40, 83–95. [Google Scholar]
- DNP. Departamento Nacional de Planeación. Misión para la Transformación del Campo: Diagnóstico de las Condiciones Sociales del Campo Colombiano; DNP: Bogotá, Colombia, 2015; 53p.
- Ramirez-Villegas, J.; Salazar, M.; Jarvis, A.; Navarro-Racines, C.E. A way forward on adaptation to climate change in Colombian agriculture: Perspectives towards 2050. Clim. Chang. 2012, 115, 611–628. [Google Scholar] [CrossRef]
- Eitzinger, A.; Läderach, P.; Bunn, C.; Quiroga, A.; Benedikter, A.; Pantoja, A.; Gordon, J.; Bruni, M. Implications of a changing climate on food security and smallholders’ livelihoods in Bogotá, Colombia. Mitig. Adapt. Strat. Glob. Change 2012, 19, 161–176. [Google Scholar] [CrossRef]
- Bustamante-Zamudio, C.; Rojas-Salazar, L. Reflexiones sobre transiciones ganaderas bovinas en Colombia, desafíos y oportunidades. Biodivers. Práct. 2018, 3, 1–29. [Google Scholar]
Description | Dual-Purpose | Dairy | Beef |
---|---|---|---|
Number of farms | 12 | 13 | 10 |
Average land area (ha) * | 30.23 | 19.9 | 51.83 |
Carrying capacity (LSU/ha/year) * | 1.35 | 1.91 | 1.57 |
Altitude (m.a.s.l) * | 1050 | 2680 | 520 |
Main species | Crossed B. indicus–B. taurus | B. taurus | B. indicus |
Main products | Raw milk Males for rearing and fattening | Raw milk | Fattening males |
Cattle Production System | Strengths | Weaknesses |
---|---|---|
Dual-purpose |
|
|
Dairy |
|
|
Beef |
|
|
Opportunities | Threats | |
Dual-purpose |
|
|
Dairy |
|
|
Beef |
|
|
Attribute | Indicator | SP | Unit | Weight | Optimal | Dual-Purpose | Dairy | Beef | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Productivity (n = 8) | Meat produced per animal/year | Ec | Kg/year | 5% | ≥182 | 217.5 | (100.0%) | 141.5 | (77.7%) | 216.8 | (100.0%) |
Meat produced per hectare/year | Ec | Kg/ha/year | 5% | ≥273 | 293.8 | (100.0%) | 271.2 | (99.3%) | 332.4 | (100.0%) | |
Milk produced per animal/year | Ec | kg average/year | 5% | ≥3000 | 1418 | (47.3%) | 5986 | (100.0%) | - | (-%) | |
Milk produced per hectare/year | Ec | Kg/ha/year | 5% | ≥4500 | 1158 | (25.7%) | 6866 | (100.0%) | - | (-%) | |
Average Carrying capacity | Ec | LSU/ha/year | 20% | ≥1.5 | 1.35 | (90.0%) | 1.91 | (100.0%) | 1.57 | (100.0%) | |
Net margin per kg milk produced/year | Ec | €/kg/year | 15% | ≥0.16 | 0.09 | (56.3%) | 0.09 | (56.3%) | - | (-%) | |
Net margin per kg meat produced/year | Ec | €/kg/year | 15% | ≥0.72 | 0.53 | (73.6%) | 0,38 | (52.8%) | 0.77 | (100.0%) | |
Net margin per hectare/year | Ec | €/ha/year | 30% | ≥1500 | 267.0 | (17.8%) | 736.5 | (49.1%) | 255.5 | (17.0%) | |
Adaptability (n = 9) | Use information management systems | S | % Farmers using management systems | 5% | 100% | 38.4 | (38.4%) | 50.0 | (50.0%) | 58.3 | (58.3%) |
Education level of farmers | S | Scale a | 10% | 2 | 1 | (50.0%) | 1.1 | (55.0%) | 1 | (50.0%) | |
Time taken to travel to markets <1 h (cities with over 10,000 inhabitants) | S | % farms with time taken to travel to markets < 1 h | 15% | 100% | 100 | (100.0%) | 100 | (100.0%) | 91.6 | (91.6%) | |
Time taken to travel to slaughterhouses | S | % farms with time taken to travel to markets <1 h | 5% | 100% | 53.8 | (53.8%) | 100 | (100.0%) | 66.6 | (66.6%) | |
Diversification of production | En | Scale b | 15% | ≥3 | 2.7 | (90.0%) | 1.8 | (60.0%) | 1.9 | (63.3%) | |
Use of creole breeds | Ec | Farms using local breeds | 10% | >15% | 7.7 | (51.3%) | 0 | (0.0%) | 0 | (0.0%) | |
Renewable energy sources | En | Farms using Renewable energy sources | 10% | >25% | 7.7 | (30.8%) | 30.0 | (100.0%) | 16.6 | (66.4%) | |
Availability of agricultural machinery | Ec | % farmers | 15% | 100% | 30.7 | (30.7%) | 100.0 | (100.0%) | 25.0 | (25.0%) | |
Use of irrigation systems | En | % Farms with irrigation | 15% | 100% | 15.4 | (15.4%) | 100.0 | (100.0%) | 0.0 | (0.0%) |
Attribute | Indicator | SP | Unit | Weight | Optimal | Dual-Purpose | Dairy | Beef | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Equity (n = 7) | Satisfaction with labor | S | Scale a | 15% | >4 | 3.8 | (95.0%) | 4.0 | (100.0%) | 4.6 | (100.0%) |
Public basic services | S | Scale b | 15% | 3 | 2.9 | (96.7%) | 3.0 | (100.0%) | 2.9 | (96.7%) | |
Rest day per year | S | Days/year | 15% | ≥20 | 4.8 | (24.0%) | 9.8 | (49.0%) | 5.8 | (29.0%) | |
Female workers | S | % female workers | 13% | ≥50% | 44.2 | (88.4%) | 40.8 | (81.6%) | 34.2 | (68.4%) | |
Women’s participation in technical decisions | S | % Farms with women as decision-makers | 12% | ≥50% | 84.6 | (100.0%) | 70.0 | (100.0%) | 91.6 | (100.0%) | |
Marketing process | Ec | Scale c | 15% | 2 | 1 | (50.0%) | 1.4 | (70.0%) | 1 | (50.0%) | |
Labor profitability | S | Net margin/WUY | 15% | ≥3600 € | 5355 | (100.0%) | 3674 | (100.0%) | 4871 | (100.0%) | |
Self-management (n = 5) | Family labor | S | % WUY familiar | 17% | ≥25% | 75.1 | (100.0%) | 17.5 | (70.0%) | 64.2 | (100.0%) |
Fodder self-sufficiency | En | % fodder produced | 17% | 100% | 95.4 | (95.4%) | 85.5 | (85.5%) | 97.1 | (97.1%) | |
Autonomy in decisions on production and marketing | S | % producers with autonomy | 16% | 100% | 84.6 | (84.6%) | 70.0 | (70.0%) | 91.6 | (91.6%) | |
Own farm area | S | % own farm | 16% | 100% | 96.1 | (96.1%) | 81.5 | (81.5%) | 93.3 | (93.3%) | |
Added value | Ec | % farms with product transformation | 17% | 100% | 15.4 | (15.4%) | 20.0 | (20.0%) | 0.0 | (0.0%) | |
Stability, resilience (n = 10) | Farm continuity in the next 15 years | S | % producers continuing for next 15 years | 15% | 100% | 84.6 | (84.6%) | 30.0 | (30.0%) | 75.0 | (75.0%) |
Technical assistance | S | % producers with technical assistance | 10% | 100% | 100.0 | (100.0%) | 90.0 | (90.0%) | 83.3 | (83.3%) | |
Facilities | Ec | Nominal d | 10% | 3 | 1 | (33.3%) | 1.7 | (56.7%) | 1 | (33.3%) | |
Self-supplying crops | S | % farms with self-supplied crops | 10% | 100% | 84.6 | (84.6%) | 20.0 | (20.0%) | 16.6 | (16.6%) | |
Animal species produced | En | Scale e | 10% | 3 | 1.9 | (63.3%) | 1.2 | (40.0%) | 1.7 | (56.7%) | |
Use of silvopastoral systems | En | Nominal f | 10% | 3 | 1 | (33.3%) | 1 | (33.3%) | 1 | (33.3%) | |
Forage species produced | En | Scale e | 10% | 3 | 3 | (100.0%) | 2.8 | (93.3%) | 3 | (100.0%) | |
Complementary finances | S | % Non-agricultural incomes | 5% | ≤15% | 20.0 | (75.0%) | 24.5 | (61.2%) | 27.1 | (55.4%) | |
Water availability for agricultural use | Ec | Scale g | 10% | ≥1 | 2.2 | (100.0%) | 2 | (100.0%) | 1.7 | (100.0%) | |
Bio-conservation | En | % area in forest conservation | 10% | ≥10% | 13.8 | (100.0%) | 4.9 | (49.0%) | 15.1 | (100.0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz, F.; Pardo, D.; Horcada, A.; Mena, Y. An Assessment of Sustainability of Dual-Purpose, Dairy and Beef Cattle Production Systems in the Cundinamarca Department (Colombia) Using the MESMIS Framework. Sustainability 2024, 16, 7054. https://doi.org/10.3390/su16167054
Cruz F, Pardo D, Horcada A, Mena Y. An Assessment of Sustainability of Dual-Purpose, Dairy and Beef Cattle Production Systems in the Cundinamarca Department (Colombia) Using the MESMIS Framework. Sustainability. 2024; 16(16):7054. https://doi.org/10.3390/su16167054
Chicago/Turabian StyleCruz, Fabián, Dolly Pardo, Alberto Horcada, and Yolanda Mena. 2024. "An Assessment of Sustainability of Dual-Purpose, Dairy and Beef Cattle Production Systems in the Cundinamarca Department (Colombia) Using the MESMIS Framework" Sustainability 16, no. 16: 7054. https://doi.org/10.3390/su16167054
APA StyleCruz, F., Pardo, D., Horcada, A., & Mena, Y. (2024). An Assessment of Sustainability of Dual-Purpose, Dairy and Beef Cattle Production Systems in the Cundinamarca Department (Colombia) Using the MESMIS Framework. Sustainability, 16(16), 7054. https://doi.org/10.3390/su16167054