Blue in Food and Beverages—A Review of Socio-Cultural, Economic, and Environmental Implications
Abstract
:1. Introduction
- -
- food colourants with a limited permissible daily intake, the maximum levels of which are contained in the relevant legislation (mainly synthetic colourants),
- -
- colourants used in line with the quantum satis rule (comprising mainly colourants of natural origin), which have no defined maximum level of use and should be used at the lowest dose necessary to achieve the intended technological effect, applying the principles of good manufacturing practice.
2. Origin of Blue Pigments—Food Colourants
2.1. Synthetic Blue Pigments
2.2. Natural Blue Pigments
2.2.1. Animals
2.2.2. Plants
Compound | Plant | λmax | ε | References |
---|---|---|---|---|
azulene | Artemisia sp. (oil) | 576 | 362 | [10] |
diosindigo A | Diospyros sp. (tree; heartwood) | 697 | 28,180 | [10,81] |
2,12′-bis(hamazulenyl) | Ajania fruticulosa (oil) | 657 | 132 | [10] |
indigotin | Indigofera tinctoria (Indigo plant) | 610 | 22,140 | [10] |
genipocyanin G1 | Gardenia jasminoides, Genipa americana | 595 | 43,700 | [10] |
guaiazulene | Matricaria chamomilla (oil) | 648 | 407 | [10] |
lactarazulene | Artemisia sp. (oil) | 604 | 871 | [10] |
oenin | Vitis vinifera skin, aged wine | 538 | 16,000 | [10] |
portisin A | Vitis vinifera; aged wine | 587 | 82,900 | [10] |
shikonin | Lithospermum erythrorhizon (roots) | n/a | n/a | [66] |
ternatin | butterfly pea (Clitoria ternatea L.) | 548 | n/a | [82] |
trichotomine | Clerodendron trichotomum (fruit callus) | 658 | 70,000 | [10] |
ventilein A | Ventilago calyculata (root bark) Ventilago goughii | 645 | n/a | [10] |
2.2.3. Protists
2.2.4. Fungi
Compound | Organism | λmax | ε | References |
---|---|---|---|---|
albatrellin | Alabtrellus flettii (Basidiomycete) | 535 | 3162 | [10] |
candidine | Candida lipolytica | 573 | 12,880 | [10] |
corticin A | Corticium caeruleum | 565 | 6900 | [10] |
guaiazulene | Lactarius sp. | 648 | 407 | [10] |
lactarazulene | Lactarius sp. | 604 | 871 | [10] |
sanguinone A | Mycena sanguinolenta | 578 | 437 | [10] |
scleroderris blue | Gremmeniella abietina | 612 | 50,000 | [10] |
variegatic acid anion | Basidiomycete fungi | 605 | n/a | [10] |
Blue pigments (unnamed) | some fungi such as Penicillin sp. and Hypocrea sp. | n/a | n/a | [10,89] |
2.2.5. Prokaryotes
Compound | Organism | λmax | ε | References |
---|---|---|---|---|
actinorhodin | Streptomyces coelicolor | 640 | 25,300 | [10] |
akashin A | Streptomyces sp. GW 48/1497 (marine) | 619 | 16,232 | [10] |
ammosamide A | Streptomyces CNR-698 (marine) | 584 | 5200 | [10] |
anthracyclinone-blue B | Streptomyces galilaeus mutant | 608 | 28,890 | [10,106] |
bactobilin | Clostridium tetanomorphum | 633 | n/a | [10] |
benthocyanin A | Streptomyces prunicolor | 638 | 16,200 | [10] |
blue pigment (unnamed) | Arthrobacter sp., Nocardia sp. | 648 | 17,380 | [10] |
daunorubicin | Streptomyces peucetius | 530 | 6000 | [10] |
glaukothalin | Rheinheimera sp. HP1 (marine γ-Proteobacteria) | 636 | 32,360 | [10,107] |
granaticin B | Streptomyces violaceoruber | 630 | 8910 | [10] |
indigoidine | Corynebacterium insidiosum | 602 | 23,400 | [10,108] |
indochrome A | Arthrobacter polychromogenes | 570 | 38,100 | [10] |
kyanomycin | Nonomuria sp | 600 | 11,480 | [109] |
lavanducyanin | Streptomyces aeriouvifer | 705 | 1700 | [10] |
lemonnierin | Pseudomonas lemonnieri | 625 | 56,230 | [10] |
marennine | Haslea ostrearia (marine diatom) | 672 | 7200 | [10,101] |
N,N-dodecylindigoidine | Shewanella violacea DSS12 (marine) | 636 | n/a | [10] |
phenazinomycin | Streptomyces sp. WK-2057 mycelia | 745 | 6600 | [10] |
phycocyanobilin | Spirulina sp., common among cyanobacteria | 604 | 17,100 | [10] |
prodeoxyviolacein | Chromobacterium violaceum | 609 | 25,000 | [10] |
prodigiosin tetrapyrrole | Serratia marcescens, Hahella sp. (marine) | 588 | n/a | [10] |
pyocyanin | Pseudomonas aeruginosa | 745 | 5800 | [10] |
spirulina | Spirulina platensis (Arthrospira platensis) | 604 | 17,100 | [3] |
2.2.6. Minerals
3. Health
3.1. Positive Health Benefits
3.2. Negative Health Effects
4. Quality Control—Food Safety Markers
5. Ecological Aspects
6. Economical Aspects
7. Socio-Cultural Aspects
7.1. Food Colour
7.2. Background—Packing, Dishware, and Light
7.3. Thermal Perception and Feeling Thirsty
8. Politics and Governance—Regulations
9. Perspectives
10. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spence, C. On the Psychological Impact of Food Colour. Flavour 2015, 4, 21. [Google Scholar] [CrossRef]
- FDA. 21 CFR Part 70-Color Additives; Food Drug Administration: Jersey City, NJ, USA, 2023. [Google Scholar]
- Downham, A.; Collins, P. Colouring Our Foods in the Last and next Millennium. Int. J. Food Sci. Technol. 2000, 35, 5–22. [Google Scholar] [CrossRef]
- Meggos, H. Food Colors-An International Perspective. Manuf. Confect. 1995, 75, 59. [Google Scholar]
- Neves, M.I.L.; Silva, E.K.; Meireles, M.A.A. Natural Blue Food Colorants: Consumer Acceptance, Current Alternatives, Trends, Challenges, and Future Strategies. Trends Food Sci. Technol. 2021, 112, 163–173. [Google Scholar] [CrossRef]
- Buchweitz, M. 17—Natural Solutions for Blue Colors in Food. In Handbook on Natural Pigments in Food and Beverages; Carle, R., Schweiggert, R.M., Eds.; Woodhead Publishing: Sawston, UK, 2016; pp. 355–384. ISBN 978-0-08-100371-8. [Google Scholar]
- Spence, C. What Is so Unappealing about Blue Food and Drink? Int. J. Gastron. Food Sci. 2018, 14, 1–8. [Google Scholar] [CrossRef]
- Lee, S.-M.; Lee, K.-T.; Lee, S.-H.; Song, J.-K. Origin of Human Colour Preference for Food. J. Food Eng. 2013, 119, 508–515. [Google Scholar] [CrossRef]
- Mota, I.G.C.; Neves, R.A.M.D.; Nascimento, S.S.D.C.; Maciel, B.L.L.; Morais, A.H.D.A.; Passos, T.S. Artificial Dyes: Health Risks and the Need for Revision of International Regulations. Food Rev. Int. 2023, 39, 1578–1593. [Google Scholar] [CrossRef]
- Newsome, A.G.; Culver, C.A.; van Breemen, R.B. Nature’s Palette: The Search for Natural Blue Colorants. J. Agric. Food Chem. 2014, 62, 6498–6511. [Google Scholar] [CrossRef]
- Pina, F.; Basílio, N.; Parola, A.J.; Melo, M.J.; Oliveira, J.; de Freitas, V. The Triumph of the Blue in Nature and in Anthropocene. Dye. Pigment. 2023, 210, 110925. [Google Scholar] [CrossRef]
- Newsome, A.G.; Murphy, B.T.; van Breemen, R.B. Isolation and Characterization of Natural Blue Pigments from Underexplored Sources. In Physical Methods in Food Analysis; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2013; Volume 1138, pp. 105–125. ISBN 978-0-8412-2884-9. [Google Scholar]
- Liu, B.; Xu, H.; Zhao, H.; Liu, W.; Zhao, L.; Li, Y. Preparation and Characterization of Intelligent Starch/PVA Films for Simultaneous Colorimetric Indication and Antimicrobial Activity for Food Packaging Applications. Carbohydr. Polym. 2017, 157, 842–849. [Google Scholar] [CrossRef]
- Manzoor, M.; Singh, J.; Gani, A.; Noor, N. Valorization of Natural Colors as Health-Promoting Bioactive Compounds: Phytochemical Profile, Extraction Techniques, and Pharmacological Perspectives. Food Chem. 2021, 362, 130141. [Google Scholar] [CrossRef] [PubMed]
- Paik, Y.-S.; Lee, C.-M.; Cho, M.-H.; Hahn, T.-R. Physical Stability of the Blue Pigments Formed from Geniposide of Gardenia Fruits: Effects of PH, Temperature, and Light. J. Agric. Food Chem. 2001, 49, 430–432. [Google Scholar] [CrossRef] [PubMed]
- Neri-Numa, I.A.; Angolini, C.F.F.; Bicas, J.L.; Ruiz, A.L.T.G.; Pastore, G.M. Iridoid Blue-Based Pigments of Genipa americana L.(Rubiaceae) Extract: Influence of PH and Temperature on Color Stability and Antioxidant Capacity during In Vitro Simulated Digestion. Food Chem. 2018, 263, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.C.d.; Bicas, J.L. Natural Blue Pigments and Bikaverin. Microbiol. Res. 2021, 244, 126653. [Google Scholar] [CrossRef] [PubMed]
- Kobylewski, S.; Jacobson, M.F. Toxicology of Food Dyes. Int. J. Occup. Environ. Health 2012, 18, 220–246. [Google Scholar] [CrossRef]
- Devi, M.; Ramakrishnan, E.; Deka, S.; Parasar, D.P. Bacteria as a Source of Biopigments and Their Potential Applications. J. Microbiol. Methods 2024, 219, 106907. [Google Scholar] [CrossRef]
- Manikprabhu, D.; Lingappa, K. γ Actinorhodin a Natural and Attorney Source for Synthetic Dye to Detect Acid Production of Fungi. Saudi J. Biol. Sci. 2013, 20, 163–168. [Google Scholar] [CrossRef]
- Martins, N.; Barros, L.; Ferreira, I.C.F.R. In Vivo Antioxidant Activity of Phenolic Compounds: Facts and Gaps. Trends Food Sci. Technol. 2016, 48, 1–12. [Google Scholar] [CrossRef]
- König, J. 2—Food Colour Additives of Synthetic Origin. In Colour Additives for Foods and Beverages; Scotter, M.J., Ed.; Woodhead Publishing: Oxford, UK, 2015; pp. 35–60. ISBN 978-1-78242-011-8. [Google Scholar]
- Silva, M.M.; Reboredo, F.H.; Lidon, F.C. Food Colour Additives: A Synoptical Overview on Their Chemical Properties, Applications in Food Products, and Health Side Effects. Foods 2022, 11, 379. [Google Scholar] [CrossRef]
- Bevziuk, K.; Chebotarev, A.; Fizer, M.; Klochkova, A.; Pliuta, K.; Snigur, D. Protonation of Patented Blue V in Aqueous Solutions: Theoretical and Experimental Studies. J. Chem. Sci. 2018, 130, 12. [Google Scholar] [CrossRef]
- EU. Commission Regulation (EU) No 1129/2011 of 11 November 2011 Amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by Establishing a Union List of Food Additives. Off. J. Eur. Union L 2011, L295, 1–177. [Google Scholar]
- Cleere, M.M.; Novodvorska, M.; Geib, E.; Whittaker, J.; Dalton, H.; Salih, N.; Hewitt, S.; Kokolski, M.; Brock, M.; Dyer, P.S. New Colours for Old in the Blue-Cheese Fungus Penicillium roqueforti. NPJ Sci. Food 2024, 8, 3. [Google Scholar] [CrossRef] [PubMed]
- López-Díaz, T.M.; Alegría, Á.; Rodríguez-Calleja, J.M.; Combarros-Fuertes, P.; Fresno, J.M.; Santos, J.A.; Flórez, A.B.; Mayo, B. Blue Cheeses: Microbiology and Its Role in the Sensory Characteristics. Dairy 2023, 4, 410–422. [Google Scholar] [CrossRef]
- Hernández-Santos, B.; Lerdo-Reyes, A.A.; Téllez-Morales, J.A.; Rodríguez-Miranda, J. Chemical Composition, Techno-Functional Properties, and Bioactive Components of Blends of Blue Corn/Purple Sweet Potato for Its Possible Application in the Food Industry. J. Food Meas. Charact. 2023, 17, 1909–1920. [Google Scholar] [CrossRef]
- Spence, C. What’s the Story with Blue Steak? On the Unexpected Popularity of Blue Foods. Front. Psychol. 2021, 12, 638703. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.N.; Rodrigues, R.M.; Genisheva, Z.; Oliveira, H.; de Freitas, V.; Teixeira, J.A.; Vicente, A.A. Effects of Ohmic Heating on Extraction of Food-Grade Phytochemicals from Colored Potato. LWT 2016, 74, 493–503. [Google Scholar] [CrossRef]
- Tensiska, T.; Marta, H.; Cahyana, Y.; Amirah, N.S. Application of Encapsulated Anthocyanin Pigments from Purple Sweet Potato (Ipomoea Batatas L.) in Jelly Drink. KnE Life Sci. 2017, 2, 482–493. [Google Scholar] [CrossRef]
- Paakki, M.; Sandell, M.; Hopia, A. Consumer’s Reactions to Natural, Atypically Colored Foods: An Investigation Using Blue Potatoes. J. Sens. Stud. 2016, 31, 78–89. [Google Scholar] [CrossRef]
- Luzardo-Ocampo, I.; Ramírez-Jiménez, A.K.; Yañez, J.; Mojica, L.; Luna-Vital, D.A. Technological Applications of Natural Colorants in Food Systems: A Review. Foods 2021, 10, 634. [Google Scholar] [CrossRef]
- Pailliè-Jiménez, M.E.; Stincone, P.; Brandelli, A. Natural Pigments of Microbial Origin. Front. Sustain. Food Syst. 2020, 4, 590439. [Google Scholar] [CrossRef]
- Xu, F.; Gage, D.; Zhan, J. Efficient Production of Indigoidine in Escherichia Coli. J. Ind. Microbiol. Biotechnol. 2015, 42, 1149–1155. [Google Scholar] [CrossRef] [PubMed]
- Jehlička, J.; Edwards, H.G.M.; Oren, A. Analysis of Brown, Violet and Blue Pigments of Microorganisms by Raman Spectroscopy. TrAC Trends Anal. Chem. 2022, 146, 116501. [Google Scholar] [CrossRef]
- Dufossé, L. Chapter 19—Current and Potential Natural Pigments from Microorganisms (Bacteria, Yeasts, Fungi, and Microalgae). In Handbook on Natural Pigments in Food and Beverages, 2nd ed.; Schweiggert, R., Ed.; Woodhead Publishing: Sawston, UK, 2024; pp. 419–436. ISBN 978-0-323-99608-2. [Google Scholar]
- Gürses, A.; Açıkyıldız, M.; Güneş, K.; Şahin, E. Chapter 4—Natural Dyes and Pigments in Food and Beverages. In Renewable Dyes and Pigments; Ul Islam, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 49–76. ISBN 978-0-443-15213-9. [Google Scholar]
- Singh, T.; Pandey, V.K.; Dash, K.K.; Zanwar, S.; Singh, R. Natural Bio-Colorant and Pigments: Sources and Applications in Food Processing. J. Agric. Food Res. 2023, 12, 100628. [Google Scholar] [CrossRef]
- de Campos Vidal, B. Butterfly Scale Form Birefringence Related to Photonics. Micron 2011, 42, 801–807. [Google Scholar] [CrossRef]
- Sztatecsny, M.; Preininger, D.; Freudmann, A.; Loretto, M.-C.; Maier, F.; Hödl, W. Don’t Get the Blues: Conspicuous Nuptial Colouration of Male Moor Frogs (Rana arvalis) Supports Visual Mate Recognition during Scramble Competition in Large Breeding Aggregations. Behav. Ecol. Sociobiol. 2012, 66, 1587–1593. [Google Scholar] [CrossRef]
- Magnus, K.A.; Ton-That, H.; Carpenter, J.E. Recent Structural Work on the Oxygen Transport Protein Hemocyanin. Chem. Rev. 1994, 94, 727–735. [Google Scholar] [CrossRef]
- Quarmby, R.; Nordens, D.A.; Zagalsky, P.F.; Ceccaldi, H.J.; Daumas, R. Studies on the Quaternary Structure of the Lobster Exoskeleton Carotenoprotein, Crustacyanin. Comp. Biochem. Physiol. Part B Comp. Biochem. 1977, 56, 55–61. [Google Scholar] [CrossRef]
- Nishida, Y.; Berg, P.C.; Shakersain, B.; Hecht, K.; Takikawa, A.; Tao, R.; Kakuta, Y.; Uragami, C.; Hashimoto, H.; Misawa, N. Astaxanthin: Past, Present, and Future. Mar. Drugs 2023, 21, 514. [Google Scholar] [CrossRef]
- Jurić, S.; Jurić, M.; Król-Kilińska, Ż.; Vlahoviček-Kahlina, K.; Vinceković, M.; Dragović-Uzelac, V.; Donsì, F. Sources, Stability, Encapsulation and Application of Natural Pigments in Foods. Food Rev. Int. 2022, 38, 1735–1790. [Google Scholar] [CrossRef]
- Karapanagiotis, I.; De Villemereuil, V.; Magiatis, P.; Polychronopoulos, P.; Vougogiannopoulou, K.; Skaltsounis, A. Identification of the Coloring Constituents of Four Natural Indigoid Dyes. J. Liq. Chromatogr. Relat. Technol. 2006, 29, 1491–1502. [Google Scholar] [CrossRef]
- Imre, S.; Thomson, R.; Yalhi, B. Linderazulene, a New Naturally Occurring Pigment from the Gorgonian Paramuricea Chamaeleon. Experientia 1981, 37, 442–443. [Google Scholar] [CrossRef]
- Bandaranayake, W.M. The Nature and Role of Pigments of Marine Invertebrates. Nat. Prod. Rep. 2006, 23, 223–255. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Yu, S.; van Ofwegen, L.; Proksch, P.; Lin, W. Anthogorgienes A–O, New Guaiazulene-Derived Terpenoids from a Chinese Gorgonian Anthogorgia Species, and Their Antifouling and Antibiotic Activities. J. Agric. Food Chem. 2012, 60, 112–123. [Google Scholar] [CrossRef]
- Dyer, A.G.; Jentsch, A.; Burd, M.; Garcia, J.E.; Giejsztowt, J.; Camargo, M.G.G.; Tjørve, E.; Tjørve, K.M.C.; White, P.; Shrestha, M. Fragmentary Blue: Resolving the Rarity Paradox in Flower Colors. Front. Plant Sci. 2021, 11, 618203. [Google Scholar] [CrossRef] [PubMed]
- Kattge, J.; Bönisch, G.; Díaz, S.; Lavorel, S.; Prentice, I.C.; Leadley, P. TRY Plant Trait Database—Enhanced Coverage and Open Acces. Glob. Change Biol. 2020, 26, 119–188. [Google Scholar] [CrossRef] [PubMed]
- Lee, D. Nature’s Palette: The Science of Plant Color; University of Chicago Press: Chicago, IL, USA, 2010; ISBN 978-0-226-47105-1. [Google Scholar]
- Gottsberger, G.; Gottlieb, O.R. Blue Flower Pigmentation and Evolutionary Advancement. Biochem. Syst. Ecol. 1981, 9, 13–18. [Google Scholar] [CrossRef]
- Ghosh, S.; Sarkar, T.; Das, A.; Chakraborty, R. Natural Colorants from Plant Pigments and Their Encapsulation: An Emerging Window for the Food Industry. LWT 2022, 153, 112527. [Google Scholar] [CrossRef]
- Chalker-Scott, L. Environmental Significance of Anthocyanins in Plant Stress Responses. Photochem. Photobiol. 1999, 70, 1–9. [Google Scholar] [CrossRef]
- Takahashi, A.; Takeda, K.; Ohnishi, T. Light-Induced Anthocyanin Reduces the Extent of Damage to DNA in UV-Irradiated Centaurea cyanus Cells in Culture. Plant Cell Physiol. 1991, 32, 541–547. [Google Scholar] [CrossRef]
- Renita, A.A.; Gajaria, T.K.; Sathish, S.; Kumar, J.A.; Lakshmi, D.S.; Kujawa, J.; Kujawski, W. Progress and Prospective of the Industrial Development and Applications of Eco-Friendly Colorants: An Insight into Environmental Impact and Sustainability Issues. Foods 2023, 12, 1521. [Google Scholar] [CrossRef]
- Sigurdson, G.T.; Tang, P.; Giusti, M.M. Natural Colorants: Food Colorants from Natural Sources. Annu. Rev. Food Sci. Technol. 2017, 8, 261–280. [Google Scholar] [CrossRef] [PubMed]
- Oancea, A.-M.; Onofrei, C.; Turturică, M.; Bahrim, G.; Râpeanu, G.; Stănciuc, N. The Kinetics of Thermal Degradation of Polyphenolic Compounds from Elderberry (Sambucus nigra L.) Extract. Food Sci. Technol. Int. 2018, 24, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Sezgin, A.; Ayyıldız, S. Food Additives: Colorants. In Science within Food: Up-to-Date Advances on Research and Educational Ideas; Food Science Series N°1; Formatex Research Center: Badajoz, Spain, 2017; pp. 87–94. ISBN 978-84-947512-1-9. [Google Scholar]
- Netravati Gomez, S.; Pathrose, B.; Mini, R.N.; Meagle, J.P.; Kuruvila, B. Comparative Evaluation of Anthocyanin Pigment Yield and Its Attributes from Butterfly Pea (Clitorea ternatea L.) Flowers as Prospective Food Colorant Using Different Extraction Methods. Future Foods 2022, 6, 100199. [Google Scholar] [CrossRef]
- Nikijuluw, C.; Andarwulan, N. Color Characteristic of Butterfly Pea (Clitoria ternatea L.) Anthocyanin Extracts and Brilliant Blue. Sci. Repos. 2013. [Google Scholar]
- Ab Rashid, S.; Tong, W.Y.; Leong, C.R.; Abdul Ghazali, N.M.; Taher, M.A.; Ahmad, N.; Tan, W.-N.; Teo, S.H. Anthocyanin Microcapsule from Clitoria ternatea: Potential Bio-Preservative and Blue Colorant for Baked Food Products. Arab. J. Sci. Eng. 2021, 46, 65–72. [Google Scholar] [CrossRef]
- Lakshan, S.A.T.; Jayanath, N.Y.; Abeysekera, W.P.K.M.; Abeysekera, W.K.S.M. A Commercial Potential Blue Pea (Clitoria ternatea L.) Flower Extract Incorporated Beverage Having Functional Properties. Evid.-Based Complement. Altern. Med. 2019, 2019, e2916914. [Google Scholar] [CrossRef]
- Marpaung, A.M.; Lee, M.; Kartawiria, I.S. The Development of Butterfly Pea (Clitoria ternatea) Flower Powder Drink by Co-Crystallization. Indones. Food Sci. Technol. J. 2020, 3, 34–37. [Google Scholar] [CrossRef]
- Roy, S.; Kim, H.-J.; Rhim, J.-W. Effect of Blended Colorants of Anthocyanin and Shikonin on Carboxymethyl Cellulose/Agar-Based Smart Packaging Film. Int. J. Biol. Macromol. 2021, 183, 305–315. [Google Scholar] [CrossRef]
- Ahmadiani, N. Anthocyanin Based Blue Colorants. Master’s Thesis, The Ohio State University, Columbus, OH, USA, 2012. [Google Scholar]
- Yoshida, K.; Mori, M.; Kondo, T. Blue Flower Color Development by Anthocyanins: From Chemical Structure to Cell Physiology. Nat. Prod. Rep. 2009, 26, 884–915. [Google Scholar] [CrossRef]
- Sigurdson, G.T.; Giusti, M.M. Bathochromic and Hyperchromic Effects of Aluminum Salt Complexation by Anthocyanins from Edible Sources for Blue Color Development. J. Agric. Food Chem. 2014, 62, 6955–6965. [Google Scholar] [CrossRef]
- Pires, T.C.; Dias, M.I.; Barros, L.; Barreira, J.C.; Santos-Buelga, C.; Ferreira, I.C. Incorporation of Natural Colorants Obtained from Edible Flowers in Yogurts. LWT 2018, 97, 668–675. [Google Scholar] [CrossRef]
- Koda, T.; Ichi, T.; Odake, K.; Furuta, H.; Sekiya, J. Blue Pigment Formation by Clerodendron trichotomum Callus. Biosci. Biotechnol. Biochem. 1992, 56, 2020–2022. [Google Scholar] [CrossRef]
- Náthia-Neves, G.; Vardanega, R.; Meireles, M.A.A. Extraction of Natural Blue Colorant from Genipa americana L. Using Green Technologies: Techno-Economic Evaluation. Food Bioprod. Process. 2019, 114, 132–143. [Google Scholar] [CrossRef]
- Fan, M.; Li, T.; Li, Y.; Qian, H.; Zhang, H.; Rao, Z.; Wang, L. Vaccinium bracteatum Thunb. as a Promising Resource of Bioactive Compounds with Health Benefits: An Updated Review. Food Chem. 2021, 356, 129738. [Google Scholar] [CrossRef] [PubMed]
- Hanumaiah, T.; Marshall, D.S.; Rao, B.; Rao, J.; Rao, K.; Thomson, R.H. Naphthoquinone-Lactones and Extended Quinones from Ventilago Calyculata. Phytochemistry 1985, 24, 2669–2672. [Google Scholar] [CrossRef]
- Jammula, S.; Pepalla, S.; Rao, K.; Rao, P. Chemical Components from Ventilago goughii, Gamble. Acta Cienc. Indica Chem. 1993, 19, 36. [Google Scholar]
- Nersissian, A.; Immoos, C.; Hill, M.; Hart, P.; Williams, G.; Herrmann, R.; Valentine, J. Uclacyanins, Stellacyanins, and Plantacyanins Are Distinct Subfamilies of Phytocyanins: Plant-Specific Mononuclear Blue Copper Proteins. Protein Sci. A Publ. Protein Soc. 1998, 7, 1915–1929. [Google Scholar] [CrossRef]
- Hart, P.J.; Eisenberg, D.; Nersissian, A.M.; Valentine, J.S.; Herrmann, R.G.; Nalbandyan, R.M. A Missing Link in Cupredoxins: Crystal Structure of Cucumber Stellacyanin at 1.6 Å Resolution. Protein Sci. 1996, 5, 2175–2183. [Google Scholar] [CrossRef]
- Guss, J.M.; Freeman, H.C. Structure of Oxidized Poplar Plastocyanin at 1·6 Å Resolution. J. Mol. Biol. 1983, 169, 521–563. [Google Scholar] [CrossRef]
- Guss, J.M.; Merritt, E.; Phizackerley, R.P.; Freeman, H. The Structure of a Phytocyanin, the Basic Blue Protein from Cucumber, Refined at 1.8 Å Resolution. J. Mol. Biol. 1996, 262, 686–705. [Google Scholar] [CrossRef]
- Paul, K.; Stigbrand, T. Umecyanin, a Novel Intensely Blue Copper Protein from Horseradish Root. Biochim. Biophys. Acta 1970, 221, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Sankaram, A.V.; Reddy, V.V.N.; Sidhu, G.S. A Pentacyclic Quinone Diosindigo B from the Heartwood of Diospyros Melanoxylon. Phytochemistry 1981, 20, 1093–1096. [Google Scholar] [CrossRef]
- Fu, L.; Xu, B.-T.; Xu, X.-R.; Gan, R.-Y.; Zhang, Y.; Xia, E.-Q.; Li, H.-B. Antioxidant Capacities and Total Phenolic Contents of 62 Fruits. Food Chem. 2011, 129, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Spitzner, D.; Höfle, G.; Klein, I.; Pohlan, S.; Ammermann, D.; Jaenicke, L. On the Structure of Oxyblepharismin and Its Formation from Blepharismin. Tetrahedron Lett. 1998, 39, 4003–4006. [Google Scholar] [CrossRef]
- Caro, Y.; Venkatachalam, M.; Lebeau, J.; Fouillaud, M.; Dufossé, L. Pigments and Colorants from Filamentous Fungi. In Fungal Metabolites; Springer: Berlin/Heidelberg, Germany, 2017; pp. 499–568. [Google Scholar] [CrossRef]
- Lagashetti, A.C.; Dufossé, L.; Singh, S.K.; Singh, P.N. Fungal Pigments and Their Prospects in Different Industries. Microorganisms 2019, 7, 604. [Google Scholar] [CrossRef]
- Molelekoa, T.B.J.; da Silva, L.S.; Regnier, T.; Augustyn, W. Application and Stability of Fungal Pigments Using Jelly Sweets as a Food Model System. Int. J. Food Sci. Technol. 2023, 58, 6761–6774. [Google Scholar] [CrossRef]
- Dufossé, L.; Fouillaud, M.; Caro, Y.; Mapari, S.A.; Sutthiwong, N. Filamentous Fungi Are Large-Scale Producers of Pigments and Colorants for the Food Industry. Curr. Opin. Biotechnol. 2014, 26, 56–61. [Google Scholar] [CrossRef]
- Sajjad, W.; Din, G.; Rafiq, M.; Iqbal, A.; Khan, S.; Zada, S.; Ali, B.; Kang, S. Pigment Production by Cold-Adapted Bacteria and Fungi: Colorful Tale of Cryosphere with Wide Range Applications. Extremophiles 2020, 24, 447–473. [Google Scholar] [CrossRef]
- Jaklitsch, W.M.; Stadler, M.; Voglmayr, H. Blue Pigment in Hypocrea caerulescens Sp. Nov. and Two Additional New Species in Sect. Trichoderma. Mycologia 2012, 104, 925–941. [Google Scholar] [CrossRef]
- Carvalho, J.C.d.; Oishi, B.O.; Pandey, A.; Soccol, C.R. Biopigments from Monascus: Strains Selection, Citrinin Production and Color Stability. Braz. Arch. Biol. Technol. 2005, 48, 885–894. [Google Scholar] [CrossRef]
- Meruvu, H.; Dos Santos, J.C. Colors of Life: A Review on Fungal Pigments. Crit. Rev. Biotechnol. 2021, 41, 1153–1177. [Google Scholar] [CrossRef] [PubMed]
- Narsing Rao, M.P.; Xiao, M.; Li, W.-J. Fungal and Bacterial Pigments: Secondary Metabolites with Wide Applications. Front. Microbiol. 2017, 8, 1113. [Google Scholar] [CrossRef] [PubMed]
- Sadok, I.; Szmagara, A.; Krzyszczak, A. Validated QuEChERS-Based UHPLC-ESI-MS/MS Method for the Postharvest Control of Patulin (Mycotoxin) Contamination in Red-Pigmented Fruits. Food Chem. 2023, 400, 134066. [Google Scholar] [CrossRef]
- Tuli, H.S.; Chaudhary, P.; Beniwal, V.; Sharma, A.K. Microbial Pigments as Natural Color Sources: Current Trends and Future Perspectives. J. Food Sci. Technol. 2015, 52, 4669–4678. [Google Scholar] [CrossRef]
- Oren, A. Characterization of Pigments of Prokaryotes and Their Use in Taxonomy and Classification. In Methods in Microbiology; Elsevier: Amsterdam, The Netherlands, 2011; Volume 38, pp. 261–282. ISBN 0580-9517. [Google Scholar]
- Schwieterman, E.W.; Cockell, C.S.; Meadows, V.S. Nonphotosynthetic Pigments as Potential Biosignatures. Astrobiology 2015, 15, 341–361. [Google Scholar] [CrossRef]
- Bernhard, K.; Englert, G.; Meister, W.; Vecchi, M.; Renstrøm, B.; Liaaen-Jensen, S. Carotenoids of the Carotenoprotein Asteriarubin. Optical Purity of Asterinic Acid. Helv. Chim. Acta 1982, 65, 2224–2229. [Google Scholar] [CrossRef]
- Britton, G.; Weesie, R.J.; Askin, D.; Warburton, J.D.; Gallardo-Guerrero, L.; Jansen, F.J.; de Groot, H.J.M.; Lugtenburg, J.; Cornard, J.-P.; Merlin, J.-C. Carotenoid Blues: Structural Studies on Carotenoproteins. Pure Appl. Chem. 1997, 69, 2075–2084. [Google Scholar] [CrossRef]
- Gabed, N.; Verret, F.; Peticca, A.; Kryvoruchko, I.; Gastineau, R.; Bosson, O.; Séveno, J.; Davidovich, O.; Davidovich, N.; Witkowski, A.; et al. What Was Old Is New Again: The Pennate Diatom Haslea ostrearia (Gaillon) Simonsen in the Multi-Omic Age. Mar. Drugs 2022, 20, 234. [Google Scholar] [CrossRef]
- Gastineau, R.; Davidovich, N.A.; Bardeau, J.-F.; Caruso, A.; Leignel, V.; Hardivillier, Y.; Jacquette, B.; Davidovich, O.I.; Rincé, Y.; Gaudin, P.; et al. Haslea Karadagensis (Bacillariophyta): A Second Blue Diatom, Recorded from the Black Sea and Producing a Novel Blue Pigment. Eur. J. Phycol. 2012, 47, 469–479. [Google Scholar] [CrossRef]
- Pouvreau, J.-B.; Morancais, M.; Taran, F.; Rosa, P.; Dufossé, L.; Guérard, F.; Pin, S.; Fleurence, J.; Pondaven, P. Antioxidant and Free Radical Scavenging Properties of Marennine, a Blue-Green Polyphenolic Pigment from the Diatom Haslea Ostrearia (Gaillon/Bory) Simonsen Responsible for the Natural Greening of Cultured Oysters. J. Agric. Food Chem. 2008, 56, 6278–6286. [Google Scholar] [CrossRef] [PubMed]
- Gastineau, R.; Hansen, G.; Davidovich, N.A.; Davidovich, O.; Bardeau, J.-F.; Kaczmarska, I.; Ehrman, J.M.; Leignel, V.; Hardivillier, Y.; Jacquette, B. A New Blue-Pigmented Hasleoid Diatom, Haslea provincialis, from the Mediterranean Sea. Eur. J. Phycol. 2016, 51, 156–170. [Google Scholar] [CrossRef]
- Prasetiya, F.S.; Sunarto, S.; Bachtiar, E.; Agung, M.U.K.; Nathanael, B.; Pambudi, A.C.; Lestari, A.D.; Astuty, S.; Mouget, J.-L. Effect of the Blue Pigment Produced by the Tropical Diatom Haslea nusantara on Marine Organisms from Different Trophic Levels and Its Bioactivity. Aquac. Rep. 2020, 17, 100389. [Google Scholar] [CrossRef]
- Gastineau, R.; Hansen, G.; Poulin, M.; Lemieux, C.; Turmel, M.; Bardeau, J.-F.; Leignel, V.; Hardivillier, Y.; Morançais, M.; Fleurence, J.; et al. Haslea silbo, A Novel Cosmopolitan Species of Blue Diatoms. Biology 2021, 10, 328. [Google Scholar] [CrossRef]
- Ashaolu, T.J.; Samborska, K.; Lee, C.C.; Tomas, M.; Capanoglu, E.; Tarhan, Ö.; Taze, B.; Jafari, S.M. Phycocyanin, a Super Functional Ingredient from Algae; Properties, Purification Characterization, and Applications. Int. J. Biol. Macromol. 2021, 193 Pt B, 2320–2331. [Google Scholar] [CrossRef]
- Eckardt, K.; Tresselt, D.; Ihn, W.; Schumann, G.; Eritt, I.; Sedmera, P.; Novak, J. Anthracyclinone-blue A and B, New Natural Anthracyclinones Containing Nitrogen in the Molecules: Isolation, Chemical Structures and Biosynthesis. J. Basic Microbiol. 1991, 31, 371–376. [Google Scholar] [CrossRef]
- Grossart, H.-P.; Thorwest, M.; Plitzko, I.; Brinkhoff, T.; Simon, M.; Zeeck, A. Production of a Blue Pigment (Glaukothalin) by Marine Rheinheimera spp. Int. J. Microbiol. 2009, 2009, 701735. [Google Scholar] [CrossRef]
- Venil, C.K.; Dufossé, L.; Renuka Devi, P. Bacterial Pigments: Sustainable Compounds With Market Potential for Pharma and Food Industry. Front. Sustain. Food Syst. 2020, 4, 100. [Google Scholar] [CrossRef]
- Pfefferle, C.-M.; Breinholt, J.; Olsen, C.E.; Kroppenstedt, R.M.; Wellington, E.M.; Gürtler, H.; Fiedler, H.-P. Kyanomycin, a Complex of Unusual Anthracycline-Phospholipid Hybrids from Nonomuria Species. J. Nat. Prod. 2000, 63, 295–298. [Google Scholar] [CrossRef]
- Orlandi, V.T.; Martegani, E.; Giaroni, C.; Baj, A.; Bolognese, F. Bacterial Pigments: A Colorful Palette Reservoir for Biotechnological Applications. Biotechnol. Appl. Biochem. 2022, 69, 981–1001. [Google Scholar] [CrossRef]
- Rahman, D.Y.; Sarian, F.D.; van Wijk, A.; Martinez-Garcia, M.; van der Maarel, M.J.E.C. Thermostable Phycocyanin from the Red Microalga Cyanidioschyzon merolae, a New Natural Blue Food Colorant. J. Appl. Phycol. 2017, 29, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Venil, C.K.; Lakshmanaperumalsamy, P. An Insightful Overview on Microbial Pigment, Prodigiosin. Electron. J. Biol. 2009, 5, 49–61. [Google Scholar]
- Zhu, H.; Guo, J.; Yao, Q.; Yang, S.; Deng, M.; Phuong, L.T.B.; Hanh, V.T.; Ryan, M.J. Streptomyces vietnamensis Sp. Nov., a Streptomycete with Violet-Blue Diffusible Pigment Isolated from Soil in Vietnam. Int. J. Syst. Evol. Microbiol. 2007, 57, 1770–1774. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.B.; Wang, X.Y.; Fang, H.; Ma, Y.N.; Tang, J.; Tang, M.; Wei, G.H. Streptomyces shaanxiensis Sp. Nov., a Blue Pigment-Producing Streptomycete from Sewage Irrigation Soil. Int. J. Syst. Evol. Microbiol. 2012, 62, 1725–1730. [Google Scholar] [CrossRef]
- Zhu, H.; Guo, J.; Yao, Q.; Yang, S.; Deng, M.; Li, T. Streptomyces caeruleatus Sp. Nov., with Dark Blue Diffusible Pigment. Int. J. Syst. Evol. 2011, 61, 507–511. [Google Scholar] [CrossRef]
- Zhu, Y.; Shang, X.; Yang, L.; Zheng, S.; Liu, K.; Li, X. Purification, Identification and Properties of a New Blue Pigment Produced from Streptomyces Sp. A1013Y. Food Chem. 2020, 308, 125600. [Google Scholar] [CrossRef]
- Gray, P. The Formation of Indigotin from Indol by Soil Bacteria. In Proceedings of the Royal Society of London, Series B, Containing Papers of a Biological Character; Royal Society: London, UK, 1928; Volume 102, pp. 263–280. [Google Scholar] [CrossRef]
- Andreani, N.A.; Carraro, L.; Martino, M.E.; Fondi, M.; Fasolato, L.; Miotto, G.; Magro, M.; Vianello, F.; Cardazzo, B. A Genomic and Transcriptomic Approach to Investigate the Blue Pigment Phenotype in Pseudomonas Fluorescens. Int. J. Food Microbiol. 2015, 213, 88–98. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Fan, J.; Zhang, Z.; Ma, Q.; Peng, X. Indigoids Biosynthesis from Indole by Two Phenol-Degrading Strains, Pseudomonas Sp. PI1 and Acinetobacter Sp. PI2. Appl. Biochem. Biotechnol. 2015, 176, 1263–1276. [Google Scholar] [CrossRef]
- Nawaz, A.; Chaudhary, R.; Shah, Z.; Dufossé, L.; Fouillaud, M.; Mukhtar, H.; ul Haq, I. An Overview on Industrial and Medical Applications of Bio-Pigments Synthesized by Marine Bacteria. Microorganisms 2020, 9, 11. [Google Scholar] [CrossRef]
- Abel, G.; Amobonye, A.; Bhagwat, P.; Pillai, S. Diversity, Stability and Applications of Mycopigments. Process Biochem. 2023, 133, 270–284. [Google Scholar] [CrossRef]
- Reverchon, S.; Rouanet, C.; Expert, D.; Nasser, W. Characterization of Indigoidine Biosynthetic Genes in Erwinia chrysanthemi and Role of This Blue Pigment in Pathogenicity. J. Bacteriol. 2002, 184, 654–665. [Google Scholar] [CrossRef] [PubMed]
- Cude, W.N.; Mooney, J.; Tavanaei, A.A.; Hadden, M.K.; Frank, A.M.; Gulvik, C.A.; May, A.L.; Buchan, A. Production of the Antimicrobial Secondary Metabolite Indigoidine Contributes to Competitive Surface Colonization by the Marine Roseobacter Phaeobacter Sp. Strain Y4I. Appl. Environ. Microbiol. 2012, 78, 4771–4780. [Google Scholar] [CrossRef] [PubMed]
- Soliev, A.B.; Hosokawa, K.; Enomoto, K. Bioactive Pigments from Marine Bacteria: Applications and Physiological Roles. Evid.-Based Complement. Altern. Med. 2011, 2011, 670349. [Google Scholar] [CrossRef] [PubMed]
- Wehrs, M.; Gladden, J.M.; Liu, Y.; Platz, L.; Prahl, J.-P.; Moon, J.; Papa, G.; Sundstrom, E.; Geiselman, G.M.; Tanjore, D.; et al. Sustainable Bioproduction of the Blue Pigment Indigoidine: Expanding the Range of Heterologous Products in R. toruloides to Include Non-Ribosomal Peptides. Green Chem. 2019, 21, 3394–3406. [Google Scholar] [CrossRef]
- Yu, D.; Xu, F.; Valiente, J.; Wang, S.; Zhan, J. An Indigoidine Biosynthetic Gene Cluster from Streptomyces Chromofuscus ATCC 49982 Contains an Unusual IndB Homologue. J. Ind. Microbiol. Biotechnol. 2013, 40, 159–168. [Google Scholar] [CrossRef]
- Day, P.A.; Villalba, M.S.; Herrero, O.M.; Arancibia, L.A.; Alvarez, H.M. Formation of Indigoidine Derived-Pigments Contributes to the Adaptation of Vogesella Sp. Strain EB to Cold Aquatic Iron-Oxidizing Environments. Antonie Leeuwenhoek 2017, 110, 415–428. [Google Scholar] [CrossRef]
- Dufossé, L.; Galaup, P.; Yaron, A.; Arad, S.M.; Blanc, P.; Chidambara Murthy, K.N.; Ravishankar, G.A. Microorganisms and Microalgae as Sources of Pigments for Food Use: A Scientific Oddity or an Industrial Reality? Trends Food Sci. Technol. 2005, 16, 389–406. [Google Scholar] [CrossRef]
- Francezon, N.; Herbaut, M.; Bardeau, J.-F.; Cougnon, C.; Bélanger, W.; Tremblay, R.; Jacquette, B.; Dittmer, J.; Pouvreau, J.-B.; Mouget, J.-L.; et al. Electrochromic Properties and Electrochemical Behavior of Marennine, a Bioactive Blue-Green Pigment Produced by the Marine Diatom Haslea Ostrearia. Mar. Drugs 2021, 19, 231. [Google Scholar] [CrossRef]
- Di Salvo, E.; Lo Vecchio, G.; De Pasquale, R.; De Maria, L.; Tardugno, R.; Vadalà, R.; Cicero, N. Natural Pigments Production and Their Application in Food, Health and Other Industries. Nutrients 2023, 15, 1923. [Google Scholar] [CrossRef]
- Ngamwonglumlert, L.; Devahastin, S.; Chiewchan, N. Natural Colorants: Pigment Stability and Extraction Yield Enhancement via Utilization of Appropriate Pretreatment and Extraction Methods. Crit. Rev. Food Sci. Nutr. 2017, 57, 3243–3259. [Google Scholar] [CrossRef]
- Zhu, Y.; Sun, H.; He, S.; Lou, Q.; Yu, M.; Tang, M.; Tu, L. Metabolism and Prebiotics Activity of Anthocyanins from Black Rice (Oryza sativa L.) In Vitro. PLoS ONE 2018, 13, e0195754. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhang, P.; Zhu, Y.; Lou, Q.; He, S. Antioxidant and Prebiotic Activity of Five Peonidin-Based Anthocyanins Extracted from Purple Sweet Potato (Ipomoea batatas (L.) Lam.). Sci. Rep. 2018, 8, 5018. [Google Scholar] [CrossRef] [PubMed]
- Eker, M.E.; Aaby, K.; Budic-Leto, I.; Rimac Brnčić, S.; El, S.N.; Karakaya, S.; Simsek, S.; Manach, C.; Wiczkowski, W.; de Pascual-Teresa, S. A Review of Factors Affecting Anthocyanin Bioavailability: Possible Implications for the Inter-Individual Variability. Foods 2020, 9, 2. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Han, Y.; Tao, Y.; Li, D.; Xie, G.; Show, P.L.; Lee, S.Y. In Vitro Gastrointestinal Digestion and Fecal Fermentation Reveal the Effect of Different Encapsulation Materials on the Release, Degradation and Modulation of Gut Microbiota of Blueberry Anthocyanin Extract. Food Res. Int. 2020, 132, 109098. [Google Scholar] [CrossRef]
- Flores, G.; Ruiz del Castillo, M.L.; Costabile, A.; Klee, A.; Bigetti Guergoletto, K.; Gibson, G.R. In Vitro Fermentation of Anthocyanins Encapsulated with Cyclodextrins: Release, Metabolism and Influence on Gut Microbiota Growth. J. Funct. Foods 2015, 16, 50–57. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, T.; Xie, Y.; Li, N.; Liu, Y.; Wen, J.; Zhang, M.; Feng, W.; Huang, J.; Guo, Y.; et al. Clitoria Ternatea Blue Petal Extract Protects against Obesity, Oxidative Stress, and Inflammation Induced by a High-Fat, High-Fructose Diet in C57BL/6 Mice. Food Res. Int. 2022, 162, 112008. [Google Scholar] [CrossRef]
- Náthia-Neves, G.; Tarone, A.G.; Tosi, M.M.; Maróstica Júnior, M.R.; Meireles, M.A.A. Extraction of Bioactive Compounds from Genipap (Genipa americana L.) by Pressurized Ethanol: Iridoids, Phenolic Content and Antioxidant Activity. Food Res. Int. 2017, 102, 595–604. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, L.; Liu, Y.; Shi, L.; Wan, S.; Wang, L. Evaluation of Antimicrobial Activity of Water-Soluble Flavonoids Extract from Vaccinium bracteatum Thunb. Leaves. Food Sci. Biotechnol. 2019, 28, 1853–1859. [Google Scholar] [CrossRef]
- Jayaseelan, S.; Ramaswamy, D.; Dharmaraj, S. Pyocyanin: Production, Applications, Challenges and New Insights. World J. Microbiol. Biotechnol. 2014, 30, 1159–1168. [Google Scholar] [CrossRef]
- Chen, H.-W.; Yang, T.-S.; Chen, M.-J.; Chang, Y.-C.; Wang, E.I.-C.; Ho, C.-L.; Lai, Y.-J.; Yu, C.-C.; Chou, J.-C.; Chao, L.K.-P.; et al. Purification and Immunomodulating Activity of C-Phycocyanin from Spirulina platensis Cultured Using Power Plant Flue Gas. Process Biochem. 2014, 49, 1337–1344. [Google Scholar] [CrossRef]
- Hamdan, N.T.; Jwad, B.A.A.A.A.; Jasim, S.A. Synergistic Anticancer Effects of Phycocyanin and Citrullus Colocynthis Extract against WiDr, HCT-15 and HCT-116 Colon Cancer Cell Lines. Gene Rep. 2021, 22, 100972. [Google Scholar] [CrossRef]
- Wen, Y.; Wen, P.; Hu, T.-G.; Linhardt, R.J.; Zong, M.-H.; Wu, H.; Chen, Z.-Y. Encapsulation of Phycocyanin by Prebiotics and Polysaccharides-Based Electrospun Fibers and Improved Colon Cancer Prevention Effects. Int. J. Biol. Macromol. 2020, 149, 672–681. [Google Scholar] [CrossRef] [PubMed]
- Prabakaran, G.; Sampathkumar, P.; Kavisri, M.; Moovendhan, M. Extraction and Characterization of Phycocyanin from Spirulina platensis and Evaluation of Its Anticancer, Antidiabetic and Antiinflammatory Effect. Int. J. Biol. Macromol. 2020, 153, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Min, S.K.; Park, J.S.; Luo, L.; Kwon, Y.S.; Lee, H.C.; Jung Shim, H.; Kim, I.-D.; Lee, J.-K.; Shin, H.S. Assessment of C-Phycocyanin Effect on Astrocytes-Mediated Neuroprotection against Oxidative Brain Injury Using 2D and 3D Astrocyte Tissue Model. Sci. Rep. 2015, 5, 14418. [Google Scholar] [CrossRef]
- Gammoudi, S.; Athmouni, K.; Nasri, A.; Diwani, N.; Grati, I.; Belhaj, D.; Bouaziz-Ketata, H.; Fki, L.; El Feki, A.; Ayadi, H. Optimization, Isolation, Characterization and Hepatoprotective Effect of a Novel Pigment-Protein Complex (Phycocyanin) Producing Microalga: Phormidium VersicolorNCC-466 Using Response Surface Methodology. Int. J. Biol. Macromol. 2019, 137, 647–656. [Google Scholar] [CrossRef]
- Fratelli, C.; Burck, M.; Amarante, M.C.A.; Braga, A.R.C. Antioxidant Potential of Nature’s “Something Blue”: Something New in the Marriage of Biological Activity and Extraction Methods Applied to C-Phycocyanin. Trends Food Sci. Technol. 2021, 107, 309–323. [Google Scholar] [CrossRef]
- Singh, J.; Meehnian, H.; Gupta, P.; Verma, M. Food Colours: The Potential Sources of Food Adulterants and Their Food Safety Concerns. In Biotechnological Approaches in Food Adulterants; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2020; pp. 79–101. ISBN 978-0-367-36986-6. [Google Scholar]
- Carbonnelle, D.; Pondaven, P.; Morançais, M.; Massé, G.; Bosch, S.; Jacquot, C.; Briand, G.; Robert, J.; Roussakis, C. Antitumor and Antiproliferative Effects of an Aqueous Extract from the Marine Diatom Haslea ostrearia (Simonsen) against Solid Tumors: Lung Carcinoma (NSCLC-N6), Kidney Carcinoma (E39) and Melanoma (M96) Cell Lines. Anticancer Res. 1999, 19, 621–624. [Google Scholar]
- Gastineau, R.; Pouvreau, J.-B.; Hellio, C.; Morançais, M.; Fleurence, J.; Gaudin, P.; Bourgougnon, N.; Mouget, J.-L. Biological Activities of Purified Marennine, the Blue Pigment Responsible for the Greening of Oysters. J. Agric. Food Chem. 2012, 60, 3599–3605. [Google Scholar] [CrossRef]
- Bergé, J.-P.; Bourgougnon, N.; Alban, S.; Pojer, F.; Billaudel, S.; Chermann, J.-C.; Robert, J.; Franz, G. Antiviral and Anticoagulant Activities of a Water-Soluble Fraction of the Marine Diatom Haslea Ostrearia. Planta Medica 1999, 65, 604–609. [Google Scholar] [CrossRef]
- Feketea, G.; Tsabouri, S. Common Food Colorants and Allergic Reactions in Children: Myth or Reality? Food Chem. 2017, 230, 578–588. [Google Scholar] [CrossRef]
- Yousefi, M.; Ghanbari, F.; Zazouli, M.; Madihi Bidgoli, S. Brilliant Blue FCF Degradation by Persulfate/Zero Valent Iron: The Effects of Influencing Parameters and Anions. Desalination Water Treat. 2017, 70, 364–371. [Google Scholar] [CrossRef]
- Chadwick, B.L.; Hunter, M.L.; Evans, M.T.; Hunter, B. Allergic Reaction to the Food Dye Patent Blue. Br. Dent. J. 1990, 168, 386–387. [Google Scholar] [CrossRef] [PubMed]
- Stevens, L.J.; Burgess, J.R.; Stochelski, M.A.; Kuczek, T. Amounts of Artificial Food Dyes and Added Sugars in Foods and Sweets Commonly Consumed by Children. Clin. Pediatr. 2015, 54, 309–321. [Google Scholar] [CrossRef] [PubMed]
- McCann, D.; Barrett, A.; Cooper, A.; Crumpler, D.; Dalen, L.; Grimshaw, K.; Kitchin, E.; Lok, K.; Porteous, L.; Prince, E.; et al. Food Additives and Hyperactive Behaviour in 3-Year-Old and 8/9-Year-Old Children in the Community: A Randomised, Double-Blinded, Placebo-Controlled Trial. Lancet 2007, 370, 1560–1567. [Google Scholar] [CrossRef]
- Amchova, P.; Kotolova, H.; Ruda-Kucerova, J. Health Safety Issues of Synthetic Food Colorants. Regul. Toxicol. Pharmacol. 2015, 73, 914–922. [Google Scholar] [CrossRef]
- Lucová, M.; Hojerová, J.; Pažoureková, S.; Klimová, Z. Absorption of Triphenylmethane Dyes Brilliant Blue and Patent Blue through Intact Skin, Shaven Skin and Lingual Mucosa from Daily Life Products. Food Chem. Toxicol. 2013, 52, 19–27. [Google Scholar] [CrossRef]
- EFSA. Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific Opinion on the Re-evaluation of Brilliant Blue FCF (E 133) as a Food Additive. EFSA J. 2010, 8, 1853. [Google Scholar] [CrossRef]
- Kus, E.; Eroğlu, H. Genotoxic and Cytotoxic Effects of Sunset Yellow and Brilliant Blue, Colorant Food Additives, on Human Blood Lymphocytes. Pak. J. Pharm. Sci. 2015, 28, 227–230. [Google Scholar]
- Mahmoud, N. Toxic Effects of the Synthetic Food Dye Brilliant Blue on Liver, Kidney and Testes Functions in Rats. J. Egypt. Soc. Toxicol. 2006, 34, 77–84. [Google Scholar]
- Jindal, A.; Pathengay, A.; Mithal, K.; Chhablani, J.; Pappuru, R.K.; Flynn, H. Macular Toxicity Following Brilliant Blue G-Assisted Macular Hole Surgery-a Report of Three Cases. Nepal. J. Ophthalmol. A Biannu. Peer-Rev. Acad. J. Nepal Ophthalmic Soc. Nepjoph 2014, 6, 98–101. [Google Scholar] [CrossRef]
- Kuswandi, B.; Wicaksono, Y.; Jayus; Abdullah, A.; Heng, L.Y.; Ahmad, M. Smart Packaging: Sensors for Monitoring of Food Quality and Safety. Sens. Instrum. Food Qual. Saf. 2011, 5, 137–146. [Google Scholar] [CrossRef]
- Blakeney, M. Food Loss and Food Waste: Causes and Solutions; Edward Elgar Publishing: Cheltenham, UK, 2019; ISBN 978-1-78897-539-1. [Google Scholar]
- Müller, P.; Schmid, M. Intelligent Packaging in the Food Sector: A Brief Overview. Foods 2019, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Rukchon, C.; Nopwinyuwong, A.; Trevanich, S.; Jinkarn, T.; Suppakul, P. Development of a Food Spoilage Indicator for Monitoring Freshness of Skinless Chicken Breast. Talanta 2014, 130, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lee, S.; Lee, K.; Baek, S.; Seo, J. Development of a PH Indicator Composed of High Moisture-Absorbing Materials for Real-Time Monitoring of Chicken Breast Freshness. Food Sci. Biotechnol. 2017, 26, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Karaca, I.M.; Haskaraca, G.; Ayhan, Z.; Gültekin, E. Development of Real Time-PH Sensitive Intelligent Indicators for Monitoring Chicken Breast Freshness/Spoilage Using Real Packaging Practices. Food Res. Int. 2023, 173, 113261. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Liu, Q.; Zeng, X.; Chen, X.; Li, M.; Wu, X.; Liu, Y.; Zheng, Y.; Xiang, J.; Wang, C.; et al. Novel PH-Responsive Indicator Films Based on Bromothymol Blue-Anchored Chitin for Shrimp Freshness Monitoring. Int. J. Biol. Macromol. 2023, 253, 127052. [Google Scholar] [CrossRef]
- Parsafar, B.; Ahmadi, M.; Jahed Khaniki, G.R.; Shariatifar, N.; Rahimi Foroushani, A. The Impact of Fruit and Vegetable Waste on Economic Loss Estimation. Glob. J. Environ. Sci. Manag. 2023, 9, 871–884. [Google Scholar] [CrossRef]
- Zhang, W.; An, H.; Sun, X.; Du, H.; Li, Y.; Yang, M.; Zhu, Z.; Wen, Y. Dual-Functional Smart Indicator for Direct Monitoring Fruit Freshness. Food Packag. Shelf Life 2023, 40, 101192. [Google Scholar] [CrossRef]
- Luo, X.; Zaitoon, A.; Lim, L.-T. A Review on Colorimetric Indicators for Monitoring Product Freshness in Intelligent Food Packaging: Indicator Dyes, Preparation Methods, and Applications. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2489–2519. [Google Scholar] [CrossRef]
- Obaidi, A.A.; Karaca, I.M.; Ayhan, Z.; Haskaraca, G.; Gultekin, E. Fabrication and Validation of CO2-Sensitive Indicator to Monitor the Freshness of Poultry Meat. Food Packag. Shelf Life 2022, 34, 100930. [Google Scholar] [CrossRef]
- Shaik, M.I.; Azhari, M.F.; Sarbon, N.M. Gelatin-Based Film as a Color Indicator in Food-Spoilage Observation: A Review. Foods 2022, 11, 3797. [Google Scholar] [CrossRef] [PubMed]
- Ezati, P.; Tajik, H.; Moradi, M. Fabrication and Characterization of Alizarin Colorimetric Indicator Based on Cellulose-Chitosan to Monitor the Freshness of Minced Beef. Sens. Actuators B Chem. 2019, 285, 519–528. [Google Scholar] [CrossRef]
- Smolander, M.; Hurme, E.; Latva-Kala, K.; Luoma, T.; Alakomi, H.-L.; Ahvenainen, R. Myoglobin-Based Indicators for the Evaluation of Freshness of Unmarinated Broiler Cuts. Innov. Food Sci. Emerg. Technol. 2002, 3, 279–288. [Google Scholar] [CrossRef]
- Bhargava, N.; Sharanagat, V.S.; Mor, R.S.; Kumar, K. Active and Intelligent Biodegradable Packaging Films Using Food and Food Waste-Derived Bioactive Compounds: A Review. Trends Food Sci. Technol. 2020, 105, 385–401. [Google Scholar] [CrossRef]
- Chi, W.; Cao, L.; Sun, G.; Meng, F.; Zhang, C.; Li, J.; Wang, L. Developing a Highly PH-Sensitive ĸ-Carrageenan-Based Intelligent Film Incorporating Grape Skin Powder via a Cleaner Process. J. Clean. Prod. 2020, 244, 118862. [Google Scholar] [CrossRef]
- Talukder, S.; Mendiratta, S.K.; Kumar, R.R.; Agrawal, R.K.; Soni, A.; Luke, A.; Chand, S. Jamun Fruit (Syzgium cumini) Skin Extract Based Indicator for Monitoring Chicken Patties Quality during Storage. J. Food Sci. Technol. 2020, 57, 537–548. [Google Scholar] [CrossRef]
- Kurek, M.; Garofulić, I.E.; Bakić, M.T.; Ščetar, M.; Uzelac, V.D.; Galić, K. Development and Evaluation of a Novel Antioxidant and PH Indicator Film Based on Chitosan and Food Waste Sources of Antioxidants. Food Hydrocoll. 2018, 84, 238–246. [Google Scholar] [CrossRef]
- Shahid, M.; Shahid-ul-Islam; Mohammad, F. Recent Advancements in Natural Dye Applications: A Review. J. Clean. Prod. 2013, 53, 310–331. [Google Scholar] [CrossRef]
- Choi, I.; Lee, J.Y.; Lacroix, M.; Han, J. Intelligent PH Indicator Film Composed of Agar/Potato Starch and Anthocyanin Extracts from Purple Sweet Potato. Food Chem. 2017, 218, 122–128. [Google Scholar] [CrossRef]
- Zhang, J.; Zou, X.; Zhai, X.; Huang, X.; Jiang, C.; Holmes, M. Preparation of an Intelligent PH Film Based on Biodegradable Polymers and Roselle Anthocyanins for Monitoring Pork Freshness. Food Chem. 2019, 272, 306–312. [Google Scholar] [CrossRef]
- Fujikawa, H.; Akimoto, R. New Blue Pigment Produced by Pantoea agglomerans and Its Production Characteristics at Various Temperatures. Appl. Environ. Microbiol. 2011, 77, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, H.; Su, H.-M.; Imani, S.M.; Alkhaldi, K.M.; Filipe, C.D.; Didar, T.F. Intelligent Food Packaging: A Review of Smart Sensing Technologies for Monitoring Food Quality. ACS Sens. 2019, 4, 808–821. [Google Scholar] [CrossRef] [PubMed]
- Chayavanich, K.; Thiraphibundet, P.; Imyim, A. Biocompatible Film Sensors Containing Red Radish Extract for Meat Spoilage Observation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 226, 117601. [Google Scholar] [CrossRef] [PubMed]
- Golasz, L.B.; Silva, J.d.; Silva, S.B.d. Film with Anthocyanins as an Indicator of Chilled Pork Deterioration. Food Sci. Technol. 2013, 33, 155–162. [Google Scholar] [CrossRef]
- Luchese, C.L.; Abdalla, V.F.; Spada, J.C.; Tessaro, I.C. Evaluation of Blueberry Residue Incorporated Cassava Starch Film as PH Indicator in Different Simulants and Foodstuffs. Food Hydrocoll. 2018, 82, 209–218. [Google Scholar] [CrossRef]
- Vo, T.-V.; Dang, T.-H.; Chen, B.-H. Synthesis of Intelligent PH Indicative Films from Chitosan/Poly(Vinyl Alcohol)/Anthocyanin Extracted from Red Cabbage. Polymers 2019, 11, 1088. [Google Scholar] [CrossRef]
- Wardana, A.A.; Widyaningsih, T.D. Development of Edible Films from Tapioca Starch and Agar, Enriched with Red Cabbage (Brassica oleracea) as a Sausage Deterioration Bio-Indicator; IOP Publishing: Bristol, UK, 2017; Volume 109, p. 012031. [Google Scholar]
- Silva-Pereira, M.C.; Teixeira, J.A.; Pereira-Júnior, V.A.; Stefani, R. Chitosan/Corn Starch Blend Films with Extract from Brassica oleraceae (Red Cabbage) as a Visual Indicator of Fish Deterioration. LWT-Food Sci. Technol. 2015, 61, 258–262. [Google Scholar] [CrossRef]
- Anugrah, D.S.B.; Darmalim, L.V.; Sinanu, J.D.; Pramitasari, R.; Subali, D.; Prasetyanto, E.A.; Cao, X.T. Development of Alginate-Based Film Incorporated with Anthocyanins of Red Cabbage and Zinc Oxide Nanoparticles as Freshness Indicator for Prawns. Int. J. Biol. Macromol. 2023, 251, 126203. [Google Scholar] [CrossRef]
- Narayanan, G.P.; Radhakrishnan, P.; Baiju, P. Fabrication Of Butterfly Pea Flower Anthocyanin-Incorporated Colorimetric Indicator Film Based On Gelatin/Pectin For Monitoring Fish Freshness. Food Hydrocoll. Health 2023, 4, 100159. [Google Scholar] [CrossRef]
- Wu, C.; Sun, J.; Zheng, P.; Kang, X.; Chen, M.; Li, Y.; Ge, Y.; Hu, Y.; Pang, J. Preparation of an Intelligent Film Based on Chitosan/Oxidized Chitin Nanocrystals Incorporating Black Rice Bran Anthocyanins for Seafood Spoilage Monitoring. Carbohydr. Polym. 2019, 222, 115006. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Saha, N.; Zandraa, O.; Pummerová, M.; Sáha, P. Essential Oil Based PVP-CMC-BC-GG Functional Hydrogel Sachet for ‘Cheese’: Its Shelf Life Confirmed with Anthocyanin (Isolated from Red Cabbage) Bio Stickers. Foods 2020, 9, 307. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Wang, L. Preparation of a Visual PH-Sensing Film Based on Tara Gum Incorporating Cellulose and Extracts from Grape Skins. Sens. Actuators B Chem. 2016, 235, 401–407. [Google Scholar] [CrossRef]
- Pereira, V.A.; de Arruda, I.N.Q.; Stefani, R. Active Chitosan/PVA Films with Anthocyanins from Brassica Oleraceae (Red Cabbage) as Time-Temperature Indicators for Application in Intelligent Food Packaging. Food Hydrocoll. 2015, 43, 180–188. [Google Scholar] [CrossRef]
- Wang, S.; Li, R.; Han, M.; Zhuang, D.; Zhu, J. Intelligent Active Films of Sodium Alginate and Konjac Glucomannan Mixed by Lycium Ruthenicum Anthocyanins and Tea Polyphenols for Milk Preservation and Freshness Monitoring. Int. J. Biol. Macromol. 2023, 253, 126674. [Google Scholar] [CrossRef]
- Drhimer, F.; Rahmani, M.; Regraguy, B.; El Hajjaji, S.; Mabrouki, J.; Amrane, A.; Fourcade, F.; Assadi, A.A. Treatment of a Food Industry Dye, Brilliant Blue, at Low Concentration Using a New Photocatalytic Configuration. Sustainability 2023, 15, 5788. [Google Scholar] [CrossRef]
- David, L.; Moldovan, B. Green Synthesis of Biogenic Silver Nanoparticles for Efficient Catalytic Removal of Harmful Organic Dyes. Nanomaterials 2020, 10, 202. [Google Scholar] [CrossRef]
- da Fonseca Machado, A.P.; Rezende, C.A.; Rodrigues, R.A.; Barbero, G.F.; e Rosa, P.d.T.V.; Martínez, J. Encapsulation of Anthocyanin-Rich Extract from Blackberry Residues by Spray-Drying, Freeze-Drying and Supercritical Antisolvent. Powder Technol. 2018, 340, 553–562. [Google Scholar] [CrossRef]
- Block, E. Garlic and Other Alliums: The Lore and the Science; RSC Publishing: Cambridge, UK, 2010; ISBN 978-0-85404-190-9. [Google Scholar]
- Khoironi, A.; Anggoro, S.; Sudarno, S. Evaluation of the Interaction among Microalgae Spirulina Sp, Plastics Polyethylene Terephthalate and Polypropylene in Freshwater Environment. J. Ecol. Eng. 2019, 20, 161–173. [Google Scholar] [CrossRef]
- Correa, D.F.; Beyer, H.L.; Possingham, H.P.; García-Ulloa, J.; Ghazoul, J.; Schenk, P.M. Freeing Land from Biofuel Production through Microalgal Cultivation in the Neotropical Region. Environ. Res. Lett. 2020, 15, 094094. [Google Scholar] [CrossRef]
- De Man, R.; German, L. Certifying the Sustainability of Biofuels: Promise and Reality. Energy Policy 2017, 109, 871–883. [Google Scholar] [CrossRef]
- Mathimani, T.; Pugazhendhi, A. Utilization of Algae for Biofuel, Bio-Products and Bio-Remediation. Biocatal. Agric. Biotechnol. 2019, 17, 326–330. [Google Scholar] [CrossRef]
- Chia, S.R.; Chew, K.W.; Show, P.L.; Yap, Y.J.; Ong, H.C.; Ling, T.C.; Chang, J. Analysis of Economic and Environmental Aspects of Microalgae Biorefinery for Biofuels Production: A Review. Biotechnol. J. 2018, 13, 1700618. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Garcia, L.; Adjallé, K.; Barnabé, S.; Raghavan, G. Microalgae Biomass Production for a Biorefinery System: Recent Advances and the Way towards Sustainability. Renew. Sustain. Energy Rev. 2017, 76, 493–506. [Google Scholar] [CrossRef]
- González-González, L.M.; Correa, D.F.; Ryan, S.; Jensen, P.D.; Pratt, S.; Schenk, P.M. Integrated Biodiesel and Biogas Production from Microalgae: Towards a Sustainable Closed Loop through Nutrient Recycling. Renew. Sustain. Energy Rev. 2018, 82, 1137–1148. [Google Scholar] [CrossRef]
- Gu, J.-D.; Cheung, K. Phenotypic Expression of Vogesella indigofera upon Exposure to Hexavalent Chromium, Cr6+. World J. Microbiol. Biotechnol. 2001, 17, 475–480. [Google Scholar] [CrossRef]
- Calogero, G.; Bartolotta, A.; Di Marco, G.; Di Carlo, A.; Bonaccorso, F. Vegetable-Based Dye-Sensitized Solar Cells. Chem. Soc. Rev. 2015, 44, 3244–3294. [Google Scholar] [CrossRef]
- Lucioli, S.; Di Bari, C.; Forni, C.; Di Carlo, A.; Barrajón-Catalán, E.; Micol, V.; Nota, P.; Teoli, F.; Matteocci, F.; Frattarelli, A.; et al. Anthocyanic Pigments from Elicited in Vitro Grown Shoot Cultures of Vaccinium corymbosum L., Cv. Brigitta Blue, as Photosensitizer in Natural Dye-Sensitized Solar Cells (NDSSC). J. Photochem. Photobiol. B Biol. 2018, 188, 69–76. [Google Scholar] [CrossRef]
- Grätzel, M. Dye-Sensitized Solar Cells. J. Photochem. Photobiol. C Photochem. Rev. 2003, 4, 145–153. [Google Scholar] [CrossRef]
- Amiri, O.; Salavati-Niasari, M.; Mir, N.; Beshkar, F.; Saadat, M.; Ansari, F. Plasmonic Enhancement of Dye-Sensitized Solar Cells by Using Au-Decorated Ag Dendrites as a Morphology-Engineered. Renew. Energy 2018, 125, 590–598. [Google Scholar] [CrossRef]
- Amiri, O.; Salavati-Niasari, M.; Farangi, M.; Mazaheri, M.; Bagheri, S. Stable Plasmonic-Improved Dye Sensitized Solar Cells by Silver Nanoparticles Between Titanium Dioxide Layers. Electrochim. Acta 2015, 152, 101–107. [Google Scholar] [CrossRef]
- Wu, W.; Xu, X.; Yang, H.; Hua, J.; Zhang, X.; Zhang, L.; Long, Y.; Tian, H. D–π–M–π–A Structured Platinum Acetylide Sensitizer for Dye-Sensitized Solar Cells. J. Mater. Chem. 2011, 21, 10666–10671. [Google Scholar] [CrossRef]
- Sharma, V.; McKone, H.T.; Markow, P.G. A Global Perspective on the History, Use, and Identification of Synthetic Food Dyes. J. Chem. Educ. 2011, 88, 24–28. [Google Scholar] [CrossRef]
- Christiansen, C.; Heyde, A.; Schiffelbein, O. Protein-Rich Spirulina Extracts. PCT Patent 2012104091, 9 August 2012. [Google Scholar]
- Sarada, R.; Pillai, M.G.; Ravishankar, G.A. Phycocyanin from Spirulina Sp: Influence of Processing of Biomass on Phycocyanin Yield, Analysis of Efficacy of Extraction Methods and Stability Studies on Phycocyanin. Process Biochem. 1999, 34, 795–801. [Google Scholar] [CrossRef]
- Eriksen, N.T. Production of Phycocyanin—A Pigment with Applications in Biology, Biotechnology, Foods and Medicine. Appl. Microbiol. Biotechnol. 2008, 80, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Patil, G.; Chethana, S.; Madhusudhan, M.C.; Raghavarao, K.S.M.S. Fractionation and Purification of the Phycobiliproteins from Spirulina Platensis. Bioresour. Technol. 2008, 99, 7393–7396. [Google Scholar] [CrossRef] [PubMed]
- Rito-Palomares, M.; Nuñez, L.; Amador, D. Practical Application of Aqueous Two-Phase Systems for the Development of a Prototype Process for c-Phycocyanin Recovery from Spirulina maxima. J. Chem. Technol. Biotechnol. 2001, 76, 1273–1280. [Google Scholar] [CrossRef]
- Singh, G.; Patidar, S. Microalgae Harvesting Techniques: A Review. J. Environ. Manag. 2018, 217, 499–508. [Google Scholar] [CrossRef]
- Judd, S.J.; Al Momani, F.; Znad, H.; Al Ketife, A. The Cost Benefit of Algal Technology for Combined CO2 Mitigation and Nutrient Abatement. Renew. Sustain. Energy Rev. 2017, 71, 379–387. [Google Scholar] [CrossRef]
- Zielinski, A.A.F.; del Pilar Sanchez-Camargo, A.; Benvenutti, L.; Ferro, D.M.; Dias, J.L.; Ferreira, S.R.S. High-Pressure Fluid Technologies: Recent Approaches to the Production of Natural Pigments for Food and Pharmaceutical Applications. Trends Food Sci. Technol. 2021, 118, 850–869. [Google Scholar] [CrossRef]
- Wijesekara, T.; Xu, B. A Critical Review on the Stability of Natural Food Pigments and Stabilization Techniques. Food Res. Int. 2024, 179, 114011. [Google Scholar] [CrossRef]
- Azman, E.M.; Charalampopoulos, D.; Chatzifragkou, A. Acetic Acid Buffer as Extraction Medium for Free and Bound Phenolics from Dried Blackcurrant (Ribes nigrum L.) Skins. J. Food Sci. 2020, 85, 3745–3755. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Han, Y.; Han, B.; Qi, X.; Cai, X.; Ge, S.; Xue, H. Extraction and Purification of Anthocyanins: A Review. J. Agric. Food Res. 2022, 8, 100306. [Google Scholar] [CrossRef]
- Zhang, L.; Fan, G.; Khan, M.A.; Yan, Z.; Beta, T. Ultrasonic-Assisted Enzymatic Extraction and Identification of Anthocyanin Components from Mulberry Wine Residues. Food Chem. 2020, 323, 126714. [Google Scholar] [CrossRef] [PubMed]
- Cai, D.; Li, X.; Chen, J.; Jiang, X.; Ma, X.; Sun, J.; Tian, L.; Vidyarthi, S.K.; Xu, J.; Pan, Z. A Comprehensive Review on Innovative and Advanced Stabilization Approaches of Anthocyanin by Modifying Structure and Controlling Environmental Factors. Food Chem. 2022, 366, 130611. [Google Scholar] [CrossRef]
- Pieczykolan, E.; Kurek, M.A. Use of Guar Gum, Gum Arabic, Pectin, Beta-Glucan and Inulin for Microencapsulation of Anthocyanins from Chokeberry. Int. J. Biol. Macromol. 2019, 129, 665–671. [Google Scholar] [CrossRef]
- Ji, Y. Synthesis of Porous Starch Microgels for the Encapsulation, Delivery and Stabilization of Anthocyanins. J. Food Eng. 2021, 302, 110552. [Google Scholar] [CrossRef]
- Weiss, V.; Okun, Z.; Shpigelman, A. Utilization of Hydrocolloids for the Stabilization of Pigments from Natural Sources. Curr. Opin. Colloid Interface Sci. 2023, 68, 101756. [Google Scholar] [CrossRef]
- Malik, K.; Tokas, J.; Goyal, S. Microbial Pigments: A Review. Int. J. Microb. Res. Technol. 2012, 1, 361–365. [Google Scholar]
- Brauch, J.; Zapata, S.; Buchweitz, M.; Aschoff, J.; Carle, R. Jagua Blue Derived from Genipa Americana L. Fruit: A Natural Alternative to Commonly Used Blue Food Colorants? Food Res. Int. 2016, 89, 391–398. [Google Scholar] [CrossRef]
- Gukowsky, J.C.; Xie, T.; Gao, S.; Qu, Y.; He, L. Rapid Identification of Artificial and Natural Food Colorants with Surface Enhanced Raman Spectroscopy. Food Control 2018, 92, 267–275. [Google Scholar] [CrossRef]
- Johnson, R. Food Fraud and Economically Motivated Adulteration of Food and Food Ingredients; Library of Congress: Washington, DC, USA, 2014. [Google Scholar]
- Tarantelli, T.; Sheridan, R. Toxic Industrial Colorants Found in Imported Foods; State Department of Agriculture & Markets Food Laboratory: New York, NY, USA, 2011. [Google Scholar]
- Yoshioka, N.; Ichihashi, K. Determination of 40 Synthetic Food Colors in Drinks and Candies by High-Performance Liquid Chromatography Using a Short Column with Photodiode Array Detection. Talanta 2008, 74, 1408–1413. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Li, S.; Fang, K.; Wang, Y.; Yang, Y.; Han, C.; Shen, Y. Rapid Determination of 93 Banned Industrial Dyes in Beverage, Fish, Cookie Using Solid-Supported Liquid-Liquid Extraction and Ultrahigh-Performance Liquid Chromatography Quadrupole Orbitrap High-Resolution Mass Spectrometry. Food Chem. 2022, 388, 132976. [Google Scholar] [CrossRef] [PubMed]
- Schuster, R.; Gratzfeld-Hüsgen, A. Analysis of Synthetic Dyes in Food Samples by Capillary Zone Electrophoresis. In Hewlett R Packard Application Note; HP Company: Palo Alto, CA, USA, 1995. [Google Scholar]
- Teepakakorn, A.P.; Bureekaew, S.; Ogawa, M. Adsorption-Induced Dye Stability of Cationic Dyes on Clay Nanosheets. Langmuir 2018, 34, 14069–14075. [Google Scholar] [CrossRef] [PubMed]
- Dejoie, C.; Martinetto, P.; Dooryhee, E.; Van Elslande, E.; Blanc, S.; Bordat, P.; Brown, R.; Porcher, F.; Anne, M. Association of Indigo with Zeolites for Improved Color Stabilization. Appl. Spectrosc. 2010, 64, 1131–1138. [Google Scholar] [CrossRef]
- Schlintl, C.; Schienle, A. Effects of Coloring Food Images on the Propensity to Eat: A Placebo Approach with Color Suggestions. Front. Psychol. 2020, 11, 589826. [Google Scholar] [CrossRef]
- Spence, C.; Levitan, C.A.; Shankar, M.U.; Zampini, M. Does Food Color Influence Taste and Flavor Perception in Humans? Chemosens. Percept. 2010, 3, 68–84. [Google Scholar] [CrossRef]
- Wadhera, D.; Capaldi-Phillips, E.D. A Review of Visual Cues Associated with Food on Food Acceptance and Consumption. Eat. Behav. 2014, 15, 132–143. [Google Scholar] [CrossRef]
- Suzuki, M.; Kimura, R.; Kido, Y.; Inoue, T.; Moritani, T.; Nagai, N. Color of Hot Soup Modulates Postprandial Satiety, Thermal Sensation, and Body Temperature in Young Women. Appetite 2017, 114, 209–216. [Google Scholar] [CrossRef]
- Garber, L.L.J.; Hyatt, E.M.; Starr, R.G., Jr. Placing Food Color Experimentation into a Valid Consumer Context. J. Food Prod. Mark. 2001, 7, 3–24. [Google Scholar] [CrossRef]
- Moskowitz, H. Children and “Tween” Acceptance of Single Candy Colors and Two-Color Combinations. J. Sens. Stud. 2002, 17, 115–120. [Google Scholar] [CrossRef]
- Galetović, A.; Seura, F.; Gallardo, V.; Graves, R.; Cortés, J.; Valdivia, C.; Núñez, J.; Tapia, C.; Neira, I.; Sanzana, S.; et al. Use of Phycobiliproteins from Atacama Cyanobacteria as Food Colorants in a Dairy Beverage Prototype. Foods 2020, 9, 244. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Barba, F.J.; Bursać Kovačević, D.; Lorenzo, J.M.; Cruz, A.G.; Putnik, P. Functional Foods: Product Development, Technological Trends, Efficacy Testing, and Safety. Annu. Rev. Food Sci. Technol. 2020, 11, 93–118. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Lu, J. Eat with Your Eyes: Package Color Influences the Perceptions of Food Taste and Healthiness Moderated by External Eating. Mark. Manag. 2015, 25, 71–87. [Google Scholar]
- Su, J.; Wang, S. Influence of Food Packaging Color and Foods Type on Consumer Purchase Intention: The Mediating Role of Perceived Fluency. Front. Nutr. 2024, 10, 1344237. [Google Scholar] [CrossRef]
- Kaya, N.; Epps, H.H. Relationship between Color and Emotion: A Study of College Students. Coll. Stud. J. 2004, 38, 396–406. [Google Scholar]
- Muniz, V.; Ribeiro, I.; Beckmam, K.; Godoy, R. The Impact of Color on Food Choice. Braz. J. Food Technol. 2023, 26, e2022088. [Google Scholar] [CrossRef]
- Theben, A.; Gerards, M.; Folkvord, F. The Effect of Packaging Color and Health Claims on Product Attitude and Buying Intention. Int. J. Environ. Res. Public Health 2020, 17, 1991. [Google Scholar] [CrossRef]
- Baptista, I.Y.F. The Flavor of the Color and the Texture of the Shape: Effects of Visual Aspects on Expectation and Perception of Chocolates. Ph.D. Thesis, Universidade Estadual de Campinas, Campinas, Brazil, 2022. [Google Scholar]
- Hallez, L.; Vansteenbeeck, H.; Boen, F.; Smits, T. Persuasive Packaging? The Impact of Packaging Color and Claims on Young Consumers’ Perceptions of Product Healthiness, Sustainability and Tastiness. Appetite 2023, 182, 106433. [Google Scholar] [CrossRef]
- Steiner, K.; Florack, A. The Influence of Packaging Color on Consumer Perceptions of Healthfulness: A Systematic Review and Theoretical Framework. Foods 2023, 12, 3911. [Google Scholar] [CrossRef]
- Pereira, C.P.d.A. A Cor Do Infinito e a Beleza Inatingível: Sobre a Função Simbólica Do Azul Em Embalagens de Alimento. Blucher Des. Proc. 2014, 1, 58–66. [Google Scholar] [CrossRef]
- Guilhon, D.; Castro, E.; Silva, V. Perfil Cromático de Embalagens de Produtos Lácteos–Um Estudo Preliminar; Sociedade Brasileira de Design da Informação: Curitiba, Brazil, 2021; pp. 131–148. [Google Scholar]
- Berthold, A.; Guion, S.; Siegrist, M. The Influence of Material and Color of Food Packaging on Consumers’ Perception and Consumption Willingness. Food Humanit. 2024, 2, 100265. [Google Scholar] [CrossRef]
- Guéguen, N.; Jacob, C. Coffee Cup Color and Evaluation of a Beverage’s “Warmth Quality”. Color Res. Appl. 2014, 39, 79–81. [Google Scholar] [CrossRef]
- Crumpacker, B. The Sex Life of Food: When Body and Soul Meet to Eat; Thomas Dunne Books: New York, NY, USA, 2006; ISBN 0-312-34207-1. [Google Scholar]
- Cho, S.; Han, A.; Taylor, M.H.; Huck, A.C.; Mishler, A.M.; Mattal, K.L.; Barker, C.A.; Seo, H.-S. Blue Lighting Decreases the Amount of Food Consumed in Men, but Not in Women. Appetite 2015, 85, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Suk, H.-J.; Park, G.L.; Kim, Y. Bon Appétit! An Investigation about the Best and Worst Color Combinations of Lighting and Food. J. Lit. Art. Stud. 2012, 2, 559–566. [Google Scholar]
- Yang, F.; Cho, S.; Seo, H.-S. Effects of Light Color on Consumers’ Acceptability and Willingness to Eat Apples and Bell Peppers. J. Sens. Stud. 2016, 31, 3–11. [Google Scholar] [CrossRef]
- Guéguen, N. The Effect of Glass Colour on the Evaluation of a Beverage’s Thirst-Quenching Quality. Curr. Psychol. Lett. Behav. Brain Cogn. 2003, 11, 1–6. [Google Scholar] [CrossRef]
- Motoki, K.; Spence, C.; Velasco, C. When Visual Cues Influence Taste/Flavour Perception: A Systematic Review. Food Qual. Prefer. 2023, 111, 104996. [Google Scholar] [CrossRef]
- Spence, C. On the Manipulation, and Meaning(s), of Color in Food: A Historical Perspective. J. Food Sci. 2023, 88, A5–A20. [Google Scholar] [CrossRef]
- Agustini, T.; Amalia, U.; Dewi, E.; Kurniasih, R. Application of Basil Leaf Extracts to Decrease Spirulina Platensis off-Odour in Increasing Food Consumption. Int. Food Res. J. 2019, 26, 1789–1794. [Google Scholar]
- Burrows, A. Palette of Our Palates: A Brief History of Food Coloring and Its Regulation. Compr. Rev. Food Sci. Food Saf. 2009, 8, 394–408. [Google Scholar] [CrossRef]
- Lehto, S.; Buchweitz, M.; Klimm, A.; Straßburger, R.; Bechtold, C.; Ulberth, F. Comparison of Food Colour Regulations in the EU and the US: A Review of Current Provisions. Food Addit. Contam. Part A 2017, 34, 335–355. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, M.C. Food Law and Regulation for Non-Lawyers: A US Perspectives, Food Science Text Series; 1st ed.; Springer: Cham, Switzerland, 2015; ISBN 978-3-319-12472-8. [Google Scholar]
- Carocho, M.; Barreiro, M.F.; Morales, P.; Ferreira, I.C.F.R. Adding Molecules to Food, Pros and Cons: A Review on Synthetic and Natural Food Additives. Compr. Rev. Food Sci. Food Saf. 2014, 13, 377–399. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Joint FAO/WHO Expert Committee on Food Additives. In Evaluation of Certain Food Additives: Eighty-Second Report of the Joint FAO/WHO Expert Committee on Food Additives, 82nd ed.; World Health Organization: Geneva, Switzerland, 2016; ISBN 978-92-4-121000-3. [Google Scholar]
- CXS 192-1995; Codex Alimentarius International Food Standards, General Standard for Food Additives. Food and Agriculture Organization-World Health Organization: Geneva, Switzerland, 2023; pp. 1–535.
- JECFA. Codex Alimentarius Commisssion, JOINT FAO/WHO Food Standards Programme Codex Alimentarius Commission. In Proceedings of the Report of the Fifty Fourth Session of the Codex Committee on Food Additives, Chengdu, China, 22–26 April 2024; pp. 1–196. [Google Scholar]
- Magnuson, B.; Munro, I.; Abbot, P.; Baldwin, N.; López-Garcia, R.; Ly, K.; McGirr, L.; Roberts, A.; Socolovsky, S. Review of the Regulation and Safety Assessment of Food Substances in Various Countries and Jurisdictions. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2013, 30, 1147–1220. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Panel on Food Additives and Nutrient Sources added to Food (ANS) Scientific Opinion on the Re-evaluation of Indigo Carmine (E 132) as a Food Additive. EFSA J. 2014, 12, 3768. [Google Scholar] [CrossRef]
- EFSA. Panel on Food Additives and Nutrient Sources added to Food (ANS) Scientific Opinion on the Re-evaluation of Patent Blue V (E 131) as a Food Additive. EFSA J. 2013, 11, 2818. [Google Scholar]
- Food and Agriculture Organization. Compendium of Food Additive Specifications. In Joint FAO/WHO Expert Committee on Food Additives (JECFA); Food and Agriculture Organization: Rome, Italy, 2016. [Google Scholar]
- Oplatowska-Stachowiak, M.; Elliott, C.T. Food Colors: Existing and Emerging Food Safety Concerns. Crit. Rev. Food Sci. Nutr. 2015, 57, 524–548. [Google Scholar] [CrossRef]
- Okafor, S.N.; Obonga, W.; Ezeokonkwo, M.A.; Nurudeen, J.; Orovwigho, U.; Ahiabuike, J. Assessment of the Health Implications of Synthetic and Natural Food Colourants—A Critical Review. Pharm. Biosci. J. 2016, 4, 01–11. [Google Scholar] [CrossRef]
- Pereira, H.; Deuchande, T.; Fundo, J.F.; Leal, T.; Pintado, M.E.; Amaro, A.L. Painting the Picture of Food Colouring Agents: Near-Ubiquitous Molecules of Everyday Life—A Review. Trends Food Sci. Technol. 2024, 143, 104249. [Google Scholar] [CrossRef]
- Lomax, S.Q.; Learner, T. A Review of the Classes, Structures, and Methods of Analysis of Synthetic Organic Pigments. J. Am. Inst. Conserv. 2006, 45, 107–125. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D. Natural Food Pigments and Colorants. Curr. Opin. Food Sci. 2016, 7, 20–26. [Google Scholar] [CrossRef]
- Gamage, G.C.V.; Goh, J.K.; Choo, W.S. Application of Anthocyanins from Blue Pea Flower in Yoghurt and Fermented Milk: An Alternate Natural Blue Colour to Spirulina. Int. J. Gastron. Food Sci. 2024, 37, 100957. [Google Scholar] [CrossRef]
- Jia, L.; Lu, W.; Hu, D.; Feng, M.; Wang, A.; Wang, R.; Sun, H.; Wang, P.; Xia, Q.; Ma, S. Genetically Engineered Blue Silkworm Capable of Synthesizing Natural Blue Pigment. Int. J. Biol. Macromol. 2023, 235, 123863. [Google Scholar] [CrossRef] [PubMed]
- Noda, N. Recent Advances in the Research and Development of Blue Flowers. Breed. Sci. 2018, 68, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Azadi, P.; Bagheri, H.; Nalousi, A.M.; Nazari, F.; Chandler, S.F. Current Status and Biotechnological Advances in Genetic Engineering of Ornamental Plants. Biotechnol. Adv. 2016, 34, 1073–1090. [Google Scholar] [CrossRef]
- Katsumoto, Y.; Fukuchi-Mizutani, M.; Fukui, Y.; Brugliera, F.; Holton, T.; Karan, M.; Nakamura, N.; Yonekura-Sakakibara, K.; Togami, J.; Pigeaire, A.; et al. Engineering of the Rose Flavonoid Biosynthetic Pathway Successfully Generated Blue-Hued Flowers Accumulating Delphinidin. Plant Cell Physiol. 2007, 48, 1589–1600. [Google Scholar] [CrossRef]
- Scotter, M. Emerging and Persistent Issues with Artificial Food Colours: Natural Colour Additives as Alternatives to Synthetic Colours in Food and Drink. Qual. Assur. Saf. Crops Foods 2011, 3, 28–39. [Google Scholar] [CrossRef]
- Joshi, V.K.; Attri, D.; Bala, A.; Bhushan, S. Microbial Pigments. Indian J. Biotechnol. 2003, 2, 362–369. [Google Scholar]
- Venil, C.K.; Zakaria, Z.A.; Ahmad, W.A. Bacterial Pigments and Their Applications. Process Biochem. 2013, 48, 1065–1079. [Google Scholar] [CrossRef]
- CXG 36-1989; Codex Alimentarius-Class Names and the International Numbering System for Food Additives. Food and Agriculture Organization-World Health Organization: Geneva, Switzerland, 2023.
- Department of Health and Human Services Food and Drug Administration. Listing of Color Additives Exempt From Certification: Butterfly Pea Flower Extract-Federal Register; Food and Drug Administration: Silver Spring, MD, USA, 2021; Volume 86 FR 49230, pp. 49230–49234. [Google Scholar]
- Jespersen, L.; Strømdahl, L.D.; Olsen, K.; Skibsted, L.H. Heat and Light Stability of Three Natural Blue Colorants for Use in Confectionery and Beverages. Eur. Food Res. Technol. 2005, 220, 261–266. [Google Scholar] [CrossRef]
Colourant | ε | λmax | Properties |
---|---|---|---|
E131, INS 131 patent blue V | 10,600 | 635 | Excellent light and heat stability. Faded by acids and SO2. |
E132, INS 132 indigo carmine syn. Indigotin | 7920 | 607 | Poor light heat and acid stability. Poor oxidative and SO2 stability. Faded by ascorbic acid. |
E133, INS 133 brilliant blue | 134,000 | 630 | Fair light and acid stability. Poor oxidative stability. |
Colourant | ADI (mg/kg) | ||
---|---|---|---|
EU a | US b | JECFA c | |
Patent Blue V | 5 | banned | No ADI allocated |
Indigotine/FD&C Blue no. 2 | 5 | 2.5 | 0–5 |
Brilliant blue FCF/FD&C Blue no. 1 | 6 | 12 | 0–6 |
Colourant | INS | E | Colour Index | Colour Index Number | CAS | Number in Japan | US | EU | Australia/New Zealand | Japan | Brazil | China | India |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Indanthrone blue | 130 | E130 | Vat Blue 4 | 69,800 | 81-77-6 | n/a | ☓ | ☓ | ☓ | ☓ | ☓ | ☓ | ☓ |
Patent blue V | 131 | E131 | Acid Blue 3 Food Blue 5 | 42,051 | 3536-49-0 | n/a | ☓ | √ | ☓ | ☓ | √ | ☓ | ☓ |
Indigo carmine | 132 | E132 | Food Blue 1 Acid Blue 74 | 73,015 | 860-22-0 | 221 | √ | √ | √ | √ | √ | √ | √ |
Brilliant blue | 133 | E133 | Food Blue 2 Acid Blue 9 | 42,090 | 3844-45-9 | 220 | √ | √ | √ | √ | √ | √ | √ |
Colourant INS No. | Description/Plant Source |
---|---|
163 (ii) | Grape skin extract |
163 (iii) | Blackcurrant extract |
163 (iv) | Purple corn colour |
163 (v) | Red cabbage colour |
163 (vi) | Black carrot extract |
163 (vii) | Purple sweet potato colour |
163 (viii) | Red radish colour |
163 (ix) | Elderberry colour |
163 (x) | Hibiscus colour |
163 (xi) | Butterfly pea flower extract |
Food Category | Food Additive/INS | |||||
---|---|---|---|---|---|---|
Indigotine (Indigo Carmine) | Brilliant Blue FCF | Spirulina a | Anthocyanins | Jagua (Genipin -Glycine) Blue b | ||
No. | Name | 132 | 133 | 134 | 163 | 183 |
Maximum Level [mg/kg] | ||||||
01.1.4 | Flavoured fluid milk drinks | 300 | 150 | GMP | 100 | 160 |
01.3 | Condensed milk and analogues (plain) | GMP | ||||
01.4.3 | Clotted cream (plain) | GMP | ||||
01.4.4 | Cream analogues | GMP | 150 | |||
01.5 | Milk powder and cream powder and powder analogues (plain) | GMP | ||||
01.5.2 | Milk and cream powder analogues | 150 | ||||
01.6.1 | Unripened cheese | 200 | GMP | |||
01.6.2 | Ripened cheese | GMP | ||||
01.6.2.2 | Rind of ripened cheese | 100 | 100 | 1000 | ||
01.6.4 | Unripened cheese | GMP | ||||
01.6.4.2 | Flavoured processed cheese, including containing fruit, vegetables, meat, etc. | 100 | 1000 | 44 | ||
01.6.5 | Cheese analogues | 200 | 100 | GMP | 1000 | |
01.7 | Dairy-based desserts (e.g., pudding, fruit or flavoured yoghurt) | 150 | 150 | GMP | 200 | 120 |
01.8.1 | Liquid whey and whey products, excluding whey cheeses | GMP | ||||
02.2.2 | Fat spreads, dairy fat spreads, and blended spreads | GMP | ||||
02.3 | Fat emulsions mainly of type oil-in-water, including mixed and/or flavoured products based on fat emulsions | 100 | 100 | GMP | 160 | |
02.4 | Fat-based desserts, excluding dairy-based dessert products of food category | 150 | 150 | GMP | 200 | 200 |
03.0 | Edible ices, including sherbet and sorbet | 150 | 150 | GMP | 100 | 120 |
04.1.2 | Processed fruit | GMP | ||||
04.1.2.3 | Fruit in vinegar, oil, or brine | 1500 | ||||
04.1.2.4 | Canned or bottled (pasteurised) fruit | 200 | 1500 | |||
04.1.2.5 | Jams, jellies, marmalades | 300 | 100 | 500 | 120 | |
04.1.2.6 | Fruit-based spreads (e.g., chutney) excluding products of food category 04.1.2.5 | 100 | 500 | |||
04.1.2.7 | Candied fruit | 200 | 100 | 1000 | ||
04.1.2.8 | Fruit preparations, including pulp, purees, fruit toppings and coconut milk | 150 | 100 | 500 | 120 | |
04.1.2.8 | Regional standard for: Date Paste | 150 | 100 | |||
04.1.2.9 | Fruit-based desserts, including fruit-flavoured water -based desserts | 150 | 150 | 500 | 120 | |
04.1.2.10 | Fermented fruit products | 500 | ||||
04.1.2.11 | Fruit fillings for pastries | 150 | 250 | 500 | 120 | |
04.2.2.2. | Dried vegetables (including mushrooms and fungi, roots and tubers, pulses and legumes, and aloe vera), seaweeds, and nuts and seeds | GMP | ||||
04.2.2.3 | Vegetables (including mushrooms and fungi, roots and tubers, pulses and legumes, and aloe vera), and seaweeds in vinegar, oil, brine, or soybean sauce | 150 | 500 | GMP | 100 | |
04.2.2.4 | Canned or bottled (pasteurized) or retort pouch vegetables (including mushrooms and fungi, roots and tubers, pulses and legumes, and aloe vera), and seaweeds | 200 | GMP | |||
04.2.2.4 | Processed Tomato Concentrates | 200 | 100 | |||
04.2.2.5 | Vegetable (including mushrooms and fungi, roots and tubers, pulses and legumes, and aloe vera), seaweed, and nut and seed purees and spreads (e.g., peanut butter) | GMP | 100 | |||
04.2.2.6 | Vegetable (including mushrooms and fungi, roots and tubers, pulses and legumes, and aloe vera), seaweed, and nut and seed pulps and preparations (e.g., vegetable desserts and sauces, candied vegetables) | 200 | 100 | GMP | 100 | |
04.2.2.6 | Regional standard for: Harissa (Red Hot Pepper Paste) | 200 | 100 | |||
04.2.2.7 | Fermented vegetable (including mushrooms and fungi, roots and tubers, pulses and legumes, and aloe vera) and seaweed products, excluding fermented soybean products of food categories 06.8.6, 06.8.7, 12.9.1, 12.9.2.1 and 12.9.2.3 | 300 | 100 | 100 | ||
04.2.2.8 | Cooked or fried vegetables (including mushrooms and fungi, roots and tubers, pulses and legumes, and aloe vera), and seaweeds | GMP | ||||
05.0 | Confectionery | GMP | ||||
05.1.3 | Cocoa-based spreads, including fillings | 100 | 200 | |||
05.1.4 | Cocoa and chocolate products | 450 | 100 | 200 | 800 | |
05.1.5 | Imitation chocolate, chocolate substitute products | 300 | 100 | 200 | ||
05.2 | Confectionery including hard and soft candy, nougats, etc. | 300 | 300 | 800 | ||
05.2.2 | Soft candy | 1700 | ||||
05.3 | Chewing gum | 300 | 300 | 500 | 800 | |
05.4 | Decorations (e.g., for fine bakery wares), toppings (non-fruit) and sweet sauces | 300 | 500 | 500 | 120 | |
06.3 | Breakfast cereals, including rolled oats | 200 | GMP | 200 | 2000 | |
06.4.3 | Pre-cooked pastas and noodles and like products | GMP | ||||
06.5 | Cereal and starch based desserts (e.g., rice pudding, tapioca pudding) | 150 | 150 | GMP | 200 | 84 |
06.6 | Batters (e.g., for breading or batters for fish or poultry) | GMP | ||||
06.7 | Pre-cooked or processed rice products, including rice cakes (Oriental type only) | GMP | ||||
06.8 | Soybean products (excluding soybean-based seasonings and condiments of food category 12.9) | GMP | ||||
07.0 | Bakery wares | GMP | ||||
07.1 | Bread and ordinary bakery wares | 100 | ||||
07.1.1.1 | Yeast-leavened breads and specialty breads | 100 | ||||
07.1.1.2 | Soda breads | 100 | ||||
07.1.2 | Crackers, excluding sweet crackers | 100 | 200 | |||
07.1.3 | Other ordinary bakery products (e.g., bagels, pita, English muffins) | 100 | ||||
07.1.4 | Bread-type products, including bread stuffing and bread crumbs | 100 | 200 | |||
07.1.5 | Steamed breads and buns | 100 | ||||
07.1.6 | Mixes for bread and ordinary bakery wares | 100 | ||||
07.2 | Fine bakery wares (sweet, salty, savoury) and mixes | 200 | 200 | |||
08.0 | Meat and meat products, including poultry and game | 100 | ||||
08.1.2 | Fresh meat, poultry, and game, comminuted | 1000 | ||||
08.2 | Processed meat, poultry, and game products in whole pieces or cuts | GMP | 5000 | |||
08.3 | Processed comminuted meat, poultry, and game products | GMP | 5000 | |||
08.4 | Edible casings (e.g., sausage casings) | GMP | 5000 | |||
09.1.1 | Fresh fish | 300 | 300 | |||
09.1.2 | Fresh mollusks, crustaceans, and echinoderms | 500 | ||||
09.2.1 | Frozen fish, fish fillets, and fish products, including mollusks, crustaceans, and echinoderms | 300 | 500 | |||
09.2.2 | Frozen battered fish, fish fillets, and fish products, including mollusks, crustaceans, and echinoderms | 500 | 500 | |||
09.2.3 | Frozen minced and creamed fish products, including mollusks, crustaceans, and echinoderms | 500 | GMP | |||
09.2.4.1 | Cooked fish and fish products | 300 | 100 | 500 | ||
09.2.4.2 | Cooked mollusks, crustaceans, and echinoderms | 250 | 100 | 1000 | ||
09.2.4.3 | Fried fish and fish products, including mollusks, crustaceans, and echinoderms | 500 | 1000 | |||
09.2.5 | Smoked, dried, fermented, and/or salted fish and fish products, including mollusks, crustaceans, and echinoderms | 1000 | ||||
09.3 | Semi-preserved fish and fish products, including mollusks, crustaceans, and echinoderms | GMP | ||||
09.3.1 | Fish and fish products, including mollusks, crustaceans, and echinoderms, marinated and/or in jelly | 500 | 500 | |||
09.3.2 | Fish and fish products, including mollusks, crustaceans, and echinoderms, pickled and/or in brine | 500 | 1500 | |||
09.3.3 | Salmon substitutes, caviar, and other fish roe products | 300 | 500 | 1500 | ||
09.3.4 | Semi-preserved fish and fish products, including mollusks, crustaceans, and echinoderms (e.g., fish paste), excluding products of food categories 09.3.1–09.3.3 | 300 | 1500 | |||
09.4 | Fully preserved, including canned or fermented fish and fish products, including mollusks, crustaceans, and echinoderms | 300 | 500 | GMP | 1500 | |
10.1 | Fresh eggs | 300 | GMP | 1500 | ||
10.2.3 | Dried and/or heat coagulated egg products | GMP | ||||
10.3 | Preserved eggs, including alkaline, salted, and canned eggs | GMP | ||||
10.4 | Egg-based desserts (e.g., custard) | 300 | 150 | GMP | 200 | |
11.4 | Other sugars and syrups (e.g., xylose, maple syrup, sugar toppings) | 300 | 120 | |||
11.6 | Table-top sweeteners, including those containing high-intensity sweeteners | GMP | ||||
12.2 12.2.2 | Seasonings and condiments | 300 | 100 | GMP | 600 | |
12.3 | Vinegars | GMP | ||||
12.4 | Mustards | 300 | 100 | GMP | 200 | |
12.5 | Soups and broths | 50 | 50 | GMP | 500 | |
12.6 | Sauces and like products | 300 | 100 | GMP | ||
12.6.1 | Emulsified sauces and dips (e.g., mayonnaise, salad dressing, onion dip) | 300 | ||||
12.6.2 | Non-emulsified sauces (e.g., ketchup, cheese sauce, cream sauce, brown gravy) | 300 | ||||
12.6.3 | Mixes for sauces and gravies | 300 | ||||
12.7 | Salads (e.g., macaroni salad, potato salad) and sandwich spreads excluding cocoa- and nut-based spreads of food categories 04.2.2.5 and 05.1.3 | GMP | 1500 | |||
12.8 | Yeast and like products | GMP | ||||
12.9 | Soybean-based seasonings and condiments | GMP | ||||
12.10 | Protein products other than from soybeans | GMP | ||||
13.3 | Dietetic foods intended for special medical purposes (excluding products of food category 13.1) | 50 | 50 | GMP | 250 | |
13.4 | Dietetic formulae for slimming purposes and weight reduction | 50 | 50 | GMP | 250 | 65 |
13.5 | Dietetic foods (e.g., supplementary foods for dietary use) excluding products of food categories 13.1–13.4 and 13.6 | 300 | 300 | GMP | 250 | 65 |
13.6 | Food supplements | 300 | 300 | GMP | 500 | |
14.1.4 | Water-based flavoured drinks, including “sport”, “energy”, or “electrolyte” drinks and particulated drinks | 100 | 100 | GMP | 300 | 80 |
14.2.1 | Beer and malt beverages | GMP | ||||
14.2.2 | Cider and perry | 200 | 200 | GMP | 300 | |
14.2.4 | Wines (other than grape) | 200 | 200 | 300 | ||
14.2.5 | Mead | GMP | ||||
14.2.6 | Distilled spirituous beverages containing more than 15% alcohol | 300 | 200 | GMp | 300 | |
14.2.7 | Aromatized alcoholic beverages (e.g., beer, wine and spirituous cooler-type beverages, low alcoholic refreshers) | 200 | 200 | GMP | 300 | |
15.0 | Ready-to-eat savouries | GMP | ||||
15.1 | Snacks—potato, cereal, flour or starch based (from roots and tubers, pulses and legumes) | 200 | 200 | 500 | 600 (in blue/purple tortilla chips 1200 | |
15.2 | Processed nuts, including coated nuts and nut mixtures (with, e.g., dried fruit) | 100 | 100 | 300 | 800 | |
15.3 | Snacks—fish based | 400 | ||||
16.0 | Prepared foods | GMP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szmagara, A. Blue in Food and Beverages—A Review of Socio-Cultural, Economic, and Environmental Implications. Sustainability 2024, 16, 8142. https://doi.org/10.3390/su16188142
Szmagara A. Blue in Food and Beverages—A Review of Socio-Cultural, Economic, and Environmental Implications. Sustainability. 2024; 16(18):8142. https://doi.org/10.3390/su16188142
Chicago/Turabian StyleSzmagara, Agnieszka. 2024. "Blue in Food and Beverages—A Review of Socio-Cultural, Economic, and Environmental Implications" Sustainability 16, no. 18: 8142. https://doi.org/10.3390/su16188142
APA StyleSzmagara, A. (2024). Blue in Food and Beverages—A Review of Socio-Cultural, Economic, and Environmental Implications. Sustainability, 16(18), 8142. https://doi.org/10.3390/su16188142