MagWasteVal Project—Towards Sustainability of Mining Waste
Abstract
1. Introduction
2. Materials and Methods
Materials
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laurence, D. Establishing a sustainable mining operation: An overview. J. Clean. Prod. 2011, 19, 278–284. [Google Scholar] [CrossRef]
- Hilson, G.; Murck, B. Sustainable development in the mining industry: Clarifying the corporate perspective. Resour. Policy 2000, 26, 227–238. [Google Scholar] [CrossRef]
- European Union. National/Regional Innovation Strategies for Smart Specialisation (RIS3). Available online: https://ec.europa.eu/regional_policy/sources/docgener/informat/2014/smart_specialisation_en.pdf (accessed on 20 November 2022).
- Kogut-Jaworska, M.; Ociepa-Kicińska, E. Smart specialisation as a strategy for implementing the regional innovation development policy—Poland case study. Sustainability 2020, 12, 7986. [Google Scholar] [CrossRef]
- Pagona, E.; Tzamos, E.; Grieco, G.; Zouboulis, A.; Mitrakas, M. Characterization and evaluation of magnesite ore mining by-products of Gerakini mines (Chalkidiki, N. Greece). Sci. Total Environ. 2020, 732, 139279. [Google Scholar] [CrossRef] [PubMed]
- Tzamos, E.; Bussolesi, M.; Grieco, G.; Marescotti, P.; Crispini, L.; Kasinos, A.; Storni, N.; Simeonidis, K.; Zouboulis, A. Mineralogy and geochemistry of ultramafic rocks from Rachoni magnesite mine, Gerakini (Chalkidiki, Northern Greece). Minerals 2020, 10, 934. [Google Scholar] [CrossRef]
- Cheng, T.W.; Ding, Y.C.; Chiu, J.P. A study of synthetic forsterite refractory materials using waste serpentine cutting. Miner. Eng. 2002, 15, 271–275. [Google Scholar] [CrossRef]
- Emrullahoglu Abi, C.B.; Gürel, S.B.; Kilinç, D.; Emrullahoglu, F. Production of forsterite from serpentine-Effects of magnesium chloride hexahydrate addition. Adv. Powder Technol. 2015, 26, 947–953. [Google Scholar] [CrossRef]
- Kalaitzidou, K.; Pagona, E.; Zouboulis, A.; Mitrakas, M. Exploitation of the fine rejected run of mine (ROM 0–4 mm) material to produce refractories in combination with the mining by-products of magnesite mine. Mater. Chem. Phys. 2022, 292, 126743. [Google Scholar] [CrossRef]
- Pagona, E.; Kalaitzidou, K.; Zouboulis, A.; Mitrakas, M. Effects of additives on the physical properties of magnesite ore mining by-products for the production of refractories. Miner. Eng. 2021, 174, 107247. [Google Scholar] [CrossRef]
- Pagona, E.; Kalaitzidou, K.; Zouboulis, A.; Mitrakas, M. Estimation and addition of MgO dose for upgrading the refractory characteristics of magnesite ore mining wastes/by-products. Waste Biomass Valor. 2022, 13, 4057–4072. [Google Scholar] [CrossRef]
- Kalaitzidou, K.; Pagona, E.; Stratigousis, P.; Ntampou, X.; Zaspalis, V.; Zouboulis, A.; Mitrakas, M. Hematite nanoparticles addition to serpentine/pyroxenes by-products of magnesite mining enrichment process for the production of refractories. Appl. Sci. 2022, 12, 2094. [Google Scholar] [CrossRef]
- Pagona, E.; Kalaitzidou, K.; Zaspalis, V.; Zouboulis, A.; Mitrakas, M. Effects of MgO and Fe2O3 Addition for Upgrading the Refractory Characteristics of Magnesite Ore Mining Waste/By-Products. Clean Technol. 2022, 4, 1103–1126. [Google Scholar] [CrossRef]
- Baragaño, D.; José, J.L.; Forján, R. Short-term experiment for the in situ stabilization of a polluted soil using mining and biomass waste. J. Environ. Manag. 2021, 296, 113179. [Google Scholar] [CrossRef]
- Jąderko-Skubis, K.; Kruczek, M.; Pichlak, M. Potential of using selected industrial waste streams in loop-closing of material flows—The Example of the Silesian Voivodeship in Poland. Sustainability 2022, 14, 4801. [Google Scholar] [CrossRef]
- Woźniak, J.; Pactwa, K. Overview of Polish Mining wastes with circular economy model and its comparison with other wastes. Sustainability 2018, 10, 3994. [Google Scholar] [CrossRef]
- Borja, W.; El Boudour El Idrissi, H.; Mouiya, M.; Sbi, S.; Daafi, Y.; Tamraoui, Y.; Alami, J. Phosphate waste rocks recycling in ceramic wall tiles: Technical performances. Ceram. Int. 2022, 48, 30031–30040. [Google Scholar] [CrossRef]
- Kulczycka, J.; Dziobek, E. Challenges in managing waste from extractive industries during the transition to a circular economy model in Poland. Mater. Proc. 2021, 5, 42. [Google Scholar] [CrossRef]
- Calandra, P.; Quaranta, S.; Apolo Miranda Figueira, B.; Caputo, P.; Porto, M.; Oliviero Rossi, C. Mining wastes to improve bitumen performances: An example of circular economy. J. Colloid Interface Sci. 2022, 614, 277–287. [Google Scholar] [CrossRef]
- Marchamalo, J.; Sotelo, J.; Carrilho, D. ERA-MIN: A decade since the inception of the EU led effort to support the International Raw Materials Research Community. Mater. Proc. 2021, 5, 110. [Google Scholar] [CrossRef]
- Ranjbari, M.; Saidani, M.; Shams Esfandabadi, Z.; Peng, W.; Lam, S.S.; Aghbashlo, M.; Quatraro, F.; Tabatabaei, M. Two decades of research on waste management in the circular economy: Insights from bibliometric, text mining, and content analyses. J. Clean. Prod. 2021, 314, 128009. [Google Scholar] [CrossRef]
- Muan, A.; Osborn, E.F. Phase Equilibria at Liquidus Temperatures in the System MgO-FeO-Fe2O3-SiO2. J. Am. Ceram. Soc. 1956, 39, 121–140. [Google Scholar] [CrossRef]
- Anonymous. ASTM ASTM C20-00 Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water. ASTM Int. 2017.
- Rodríguez Gomez, C.; Das Roy, T.K.; Shaji, S.; Castillo Rodríguez, G.A.; García Quiñonez, L.; Rodríguez, E.; González, J.O.; Aguilar-Martínez, J.A. Effect of addition of Al2O3 and Fe2O3 nanoparticles on the microstructural and physicochemical evolution of dense magnesia composite. Ceram. Int. 2015, 41, 7751–7758. [Google Scholar] [CrossRef]
- Nemat, S.; Ramezani, A.; Emani, S.M. Possible use of waste serpentine from Abdasht chromite mines into refractory and ceramic industries. Ceram. Int. 2016, 42, 18479–18483. [Google Scholar] [CrossRef]
- Nemat, S.; Ramezani, A.; Emami, S.M. Recycling of waste serpentine for the production of forsterite refractories: The effects of various parameters on the sintering behavior. J. Aust. Ceram. Soc. 2019, 55, 425–431. [Google Scholar] [CrossRef]
- Ramezani, A.; Emami, S.M.; Nemat, S. Effect of waste serpentine on the properties of basic insulating refractories. Ceram. Int. 2018, 44, 9269–9275. [Google Scholar] [CrossRef]
- Emami, S.M.; Ramezani, A.; Nemat, S. Sintering behavior of waste serpentine from Abdasht chromite mines and Kaolin blends. Ceram. Int. 2017, 43, 15189–15193. [Google Scholar] [CrossRef]
- Abdelwahab, W.; Mekky, H.; Khalil, A.; Belal, Z. Production of spinel forsterite refractories using sheared serpentinized ultramafic rocks Um Seleimat, Egypt. J. Eng. Appl. Sci. 2019, 14, 3386–3400. [Google Scholar]
- Mymrin, V.; Presotto, P.; Alekseev, K.; Avanci, A.M.; Rolim, P.H.B.; Petukhov, V.; Taskin, A.; Gidarakos, E.; Valouma, A.; Yu, G. Application of hazardous serpentine rocks’ extraction wastes in composites with glass waste and clay-sand mix to produce environmentally clean construction materials. Constr. Build. Mater. 2020, 234, 117319. [Google Scholar] [CrossRef]
Chemical Analysis | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
MgO | SiO2 | FeO | Al2O3 | CaO | Na2O | LOI * | K2O | MnO | NiO | Cr2O3 |
wt.% | mg/kg | |||||||||
39.9 | 43.5 | 7.5 | 0.90 | 0.80 | 0.36 | 5.6 | 941 | 1527 | 2852 | 1090 |
Mineralogical Analysis (main minerals/ores phases) | ||||||||||
Olivine | Pyroxenes | Serpentine | Magnesite | |||||||
62.2 ± 4.3 | 16.4 ± 1.6 | 21.4 ± 1.6 | --- |
Chromite Ore (CO) | MgO | Al2O3 | Fe2O3 | Run-of-Mine (ROM) | Detection Limit | |
---|---|---|---|---|---|---|
wt.% | ||||||
MgO | 31.40 | 100.00 | ND * | 0.16 | 36.5 | 8 × 10−4 |
Cr2O3 | 25.80 | ND | ND | ND | 0.05 | 8 × 10−3 |
Fe2O3 | 12.90 | ND | 0.08 | 96.7 | 5.3 | 1.6 × 10−2 |
Al2O3 | 4.91 | ND | 95.1 | ND | 0.7 | 0.15 |
CaO | 0.21 | ND | 0.01 | 0.17 | 1.55 | 6 × 10−3 |
Na2O | 0.43 | ND | 0.45 | 0.18 | 0.2 | 1.7 × 10−3 |
MnO | 0.15 | ND | ND | 0.28 | 0.1 | 6 × 10−3 |
NiO | 0.14 | ND | 0.014 | 0.04 | 0.1 | 1.7 × 10−3 |
SiO2 | 22.00 | ND | ND | 0.9 | 33.5 | 0.3 |
LOI** | 2.17 | ND | 4.7 | 1.5 | 22.1 | 0.2 |
Product | FS% | AP% | BD (g/cm3) | WA% | Mechanical Strength (MPa) |
---|---|---|---|---|---|
Raw sample | 7.5 | 11.3 | 2.79 | 4.1 | 28 |
Sample + 5% ROM | 9.5 | 10.6 | 2.73 | 3.9 | 34 |
Sample + 5% Al2O3 | 8.6 | 15.6 | 2.66 | 5.9 | <5 |
Sample + 5% CO | 8.8 | 10.0 | 2.83 | 3.5 | 181 |
Sample + 5% Fe2O3 | 10.1 | 10.0 | 2.87 | 3.5 | 57 |
Sample + 5% MgO | 7.0 | 12.2 | 2.82 | 3.6 | 30 |
Sample + 5% MgO + 1% Fe2O3 | 7.8 | 11.8 | 2.80 | 3.8 | 38 |
Product | Olivine (Forsterite Ferroan) | Pyroxenes (Enstatite) | Pyroxenes (Protoenstatite) | Spinel |
---|---|---|---|---|
Raw sample | 68.2 ± 4.8 | 31.8 ± 2.7 | - | - |
Sample + 5% ROM | 73.2 ± 5.0 | 26.8 ± 2.4 | - | - |
Sample + 5% Al2O3 | 59.9 ± 3.8 | 18.0 ± 1.6 | 13.7 ± 1.3 | 8.5 ± 0.8 |
Sample + 5% CO | 69.4 ±4.5 | 23.3 ± 1.8 | - | 7.2 ± 0.6 |
Sample + 5% Fe2O3 | 64.3 ± 4.5 | - | 19.9 ± 1.5 | 15.8 ± 1.0 |
Sample + 5% MgO | 84.2 ± 5.6 | 7.7 ± 0.9 | 8.1 ± 0.6 | - |
Sample + 5% MgO + 1% Fe2O3 | 89.3 ± 5.5 | 2.1 ± 0.7 | - | 8.6 ± 0.8 |
Product of Sample + 5% Fe2O3 | FS% | AP% | BD (g/cm3) | WA% | Mechanical Strength (MPa) |
---|---|---|---|---|---|
1300 °C for 30 min | 10.1 | 10.0 | 2.87 | 3.5 | 57 |
1300 °C for 120 min | 9.4 | 10.8 | 2.84 | 3.8 | 85 |
1600 °C for 30 min | 12.8 | 9.7 | 2.91 | 3.4 | <5 |
Product of Sample + 5% Fe2O3 | Olivine (Forsterite ferroan) | Pyroxenes (Clinoenstatite) | Pyroxenes (Protoenstatite) | Spinel |
---|---|---|---|---|
1300 °C for 30 min | 64.3 ± 4.5 | - | 19.9 ± 1.5 | 15.8 ± 1.0 |
1300 °C for 120 min | 63.2 ± 4.5 | - | 21.4 ± 1.2 | 15.4 ± 1.6 |
1600 °C for 30 min | 90.6 ± 6.6 | 4.8 ± 0.6 | - | 4.6 ± 0.6 |
Waste | Advantages | Disadvantages | Reference |
---|---|---|---|
Abdasht chromite mines | Production of forsterite | Further investigation required | [25] |
Abdasht chromite mines | Production of forsterite with magnesium addition | Does not connect magnesium addition to chemical content of the waste | [26] |
Abdasht chromite mines | Production of insulating refractories with magnesium addition | Does not connect magnesium addition to chemical content of the waste and uses low percentage of the waste | [27] |
Abdasht chromite mines | Production of ceramics with kaolin addition | Lower grade upgrade | [28] |
Taiwan | Production of forsterite with magnesium addition | Does not connect magnesium addition to chemical content of the waste and the basic refractory properties were not examined | [7] |
Kütahya/Turkey Magnesite A.Ş | Forsterite refractory materials from serpentine and magnesium chloride hexahydrate | Does not connect magnesium addition to chemical content of the waste and examination until 1400 °C | [8] |
Um Seleimat area, Egypt | Production of forsterite in addition to used magnesia and calcined bauxite | Low bulk densities | [29] |
Curitiba, Brazil | Production of ceramics by serpentinite asbestos extraction dust waste (70–50 wt%) and 30–50% of traditional raw materials (mix of natural red clay and sand); some of them included also 5% of glass waste | Need further investigation for further upgrades and use of higher percentage of the waste | [30] |
Grecian Magnesite S.A. | Examination of the mining waste content (mineralogical and chemical), calculation of the optimum dose of MgO addition | Requires the experimental investigation of the findings on chemical balance | [5] |
Grecian Magnesite S.A. | Examination of the mining waste with additives: alumina, concentrate chromite-CC, chromite ore-CO and Fe2O3 | Further investigation required. Alumina is not proper | [10] |
Grecian Magnesite S.A. | Iron oxide nanoparticles favor mechanical strength of the products. The more serpentinized waste is more favored by iron oxide addition | Different effects on the mining wastes | [12] |
Grecian Magnesite S.A. | Combination of two types of waste | Products can be used for thermal treatments <1300 °C | [9] |
Grecian Magnesite S.A. | Further examination of MgO addition to the mining waste. Maximization of desired olivine phase in the product. | - | [11] |
Grecian Magnesite S.A. | Combination of MgO addition and iron oxide nanoparticles. Maximization of desired olivine phase and mechanical strength of the product up to 1600 °C | - | [13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalaitzidou, K.; Pagona, E.; Mitrakas, M.; Zouboulis, A. MagWasteVal Project—Towards Sustainability of Mining Waste. Sustainability 2023, 15, 1648. https://doi.org/10.3390/su15021648
Kalaitzidou K, Pagona E, Mitrakas M, Zouboulis A. MagWasteVal Project—Towards Sustainability of Mining Waste. Sustainability. 2023; 15(2):1648. https://doi.org/10.3390/su15021648
Chicago/Turabian StyleKalaitzidou, Kyriaki, Evangelia Pagona, Manassis Mitrakas, and Anastasios Zouboulis. 2023. "MagWasteVal Project—Towards Sustainability of Mining Waste" Sustainability 15, no. 2: 1648. https://doi.org/10.3390/su15021648
APA StyleKalaitzidou, K., Pagona, E., Mitrakas, M., & Zouboulis, A. (2023). MagWasteVal Project—Towards Sustainability of Mining Waste. Sustainability, 15(2), 1648. https://doi.org/10.3390/su15021648