Unveiling High-Tech Metals in Roasted Pyrite Wastes from the Iberian Pyrite Belt, SW Spain
Abstract
:1. Introduction
2. Contextualization of the Roasted Pyritic Wastes “Morrongos”
2.1. The Massive Sulfide Deposits of the Iberian Pyrite Belt
2.2. The Roasted Pyritic Wastes “Morrongos”
3. Materials and Methods
3.1. Sampling and Sample Preparation
3.2. Bulk-Rock Analysis of Major, Minor, and Trace Elements
3.3. FE-SEM and EPMA
3.4. FIB-HRTEM
3.5. In Situ Analysis of Minor and Trace Elements in Minerals by LA-ICP-MS
4. Results
4.1. Whole-Rock Distribution of Major, Minor, and Trace Elements
4.2. Mineralogy
4.3. Mineral Chemistry
4.3.1. Oxides
4.3.2. Silicates
4.3.3. Sulfides
4.3.4. Sulfates
5. Discussion
5.1. Genesis of the “Morrongos” during Pyrite Roasting and Later Evolution
5.2. Mineralogical Sitting of Economic Metals in the Roasted Pyritic Waste: Economic Potential
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watari, T.; Nansai, K.; Nakajima, K. Review of critical metal dynamics to 2050 for 48 elements. Resour. Conserv. Recycl. 2020, 155, 104669. [Google Scholar] [CrossRef]
- Jowitt, S.M.; Mudd, G.M.; Thompson, J.F.H. Future availability of non-renewable metal resources and the influence of environmental, social, and governance conflicts on metal production. Commun. Earth Environ. 2020, 1, 13. [Google Scholar] [CrossRef]
- European Commission. Study on the Critical Raw Materials for the EU 2023-Final Report. Available online: https://single-market-economy.ec.europa.eu/publications/study-critical-raw-materials-eu-2023-final-report_en (accessed on 2 August 2023).
- Mudd, G.M.; Jowitt, S.M. Growing global copper resources, reserves and production: Discovery is not the only control on supply. Econ. Geol. 2018, 113, 1235–1267. [Google Scholar] [CrossRef]
- Mudd, G.M.; Jowitt, S.M.; Werner, T.T. Global platinum group element resources, reserves and mining—A critical assessment. Sci. Total Environ. 2018, 622, 614–625. [Google Scholar] [CrossRef]
- Horn, S.; Gunn, A.G.; Petavratzi, E.; Shaw, R.A.; Eilu, P.; Törmänen, T.; Bjerkgård, J.; Sandstad, E.; Jonsson, S.; Kountourelis, F.; et al. Cobalt resources in Europe and the potential for new discoveries. Ore Geol. Rev. 2021, 130, 103915. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Fan, H.R.; Zhou, L.; Yang, K.F.; She, H.D. Carbonatite-Related REE Deposits: An Overview. Minerals 2020, 10, 965. [Google Scholar] [CrossRef]
- Linnen, R.; Lichtervelde, M.V.; Černý, P. Granitic Pegmatites as Sources of Strategic Metals. Elements 2012, 8, 275–280. [Google Scholar] [CrossRef]
- Blengini, G.A.; Mathieux, F.; Mancini, L.; Nyberg, M.; Viegas, H.M.; Salminen, J.; Garbarino, E.; Orveillon, G.; Saveyn, H.; Mateos Aquilino, V.; et al. Recovery of Critical and Other Raw Materials from Mining Waste and Landfills: State of Play on Existing Practices; EUR 29744 EN; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-76-03391-2. [CrossRef]
- Walton, A.; Anderson, P. Securing Technology-Critical Metals for Britain Ensuring the United Kingdom’s Supply of Strategic Elements & Critical Materials for a Clean Future. © University of Birmingham, Birmingham Centre for Strategic Elements & EPSRC Critical Materials & Critical Elements and Materials (CrEAM) Network 2021. Available online: https://www.birmingham.ac.uk/research/energy/research/centre-strategic-elements-critical-materials/securing-technology-critical-metals-for-britain.aspx (accessed on 2 August 2023).
- Available online: https://www.nsw.gov.au/criticalminerals (accessed on 2 August 2023).
- Hund, K.L.; Arrobas, D.L.; Fabregas Masllovet, T.P.; Laing, T.J.; Drexhage, J.R. Climate-Smart Mining Facility in Minerals for Climate Action: The Mineral Intensity of the Clean Energy Transition; International Bank for Reconstruction and Development: Washington, DC, USA, 2020. [Google Scholar]
- European Commission. Report on Critical Raw Materials in the Circular Economy. 2018. Available online: https://weee4future.eitrawmaterials.eu/wp-content/uploads/2020/09/09_report-of-CRM-and-CE.pdf (accessed on 2 August 2023).
- Gallardo, F.; German, L.; Caro-Moreno, D.; Cantizano, F.A. Successful illegal dumpsite remediation: A landfill mining demonstration project at Andalusia (Spain). Int. J. Environ. Eng. 2023. [Google Scholar] [CrossRef]
- Graedel, T.E.; Allwood, J.; Birat, J.P.; Reck, B.K.; Sibley, S.F.; Sonnemann, G.; Buchert, M.; Hagelüken, C. UNEP. Recycling Rates of Metals—A Status Report, A Report of the Working Group on the Global Metal Flows to the International Resource Panel; 2011. [Google Scholar]
- Forti, V.; Baldé, C.P.; Kuehr, R.; Bel, G. The Global E-Waste Monitor; United Nations University, International Telecommunication Union International Solid Waste Association: Bonn, Germany; Geneva, Switzerland; Rotterdam, The Netherlands, 2020. [Google Scholar]
- Hunt, J.; Lottemoser, B.G.; Parbhakar-Fox, A.; Van Veen, E.; Goermann, K. Precious metals in gossanous waste rocks from the Iberian Pyrite Belt. Miner. Eng. 2016, 87, 45–53. [Google Scholar] [CrossRef]
- Falagán, C.; Grail, B.; Johnson, D. New approaches for extracting and recovering metals from mine tailings. Mine. Eng. 2017, 106, 71–78. [Google Scholar] [CrossRef]
- Wieczorek, M.; Lottermoser, B.G.; Kiefer, S.; Sindern, S.; Gronen, L.; Hensler, A.S. Indium distribution in metalliferous mine wastes of the Iberian Pyrite Belt, Spain–Portugal. Environ. Earth Sci. 2019, 78, 253. [Google Scholar] [CrossRef]
- Gómez-Arias, L.; Yesares, L.; Caraballo, M.; Maleke, D.; Vermeulen, J.M.; Van Heerden, E.N.; Castillo, J. Environmental and geochemical characterization of alkaline mine wastes from Phalaborwa (Palabora) Complex South Africa. J. Geochemical Explor. 2021, 224, 106757. [Google Scholar] [CrossRef]
- Dold, B. Sourcing of critical elements and industrial minerals from mine waste—The final evolutionary step back to sustainability of humankind? J. Geochem. Explor. 2020, 19, 106638. [Google Scholar] [CrossRef]
- Jiang, T.; Tu, Y.; Su, Z.; Lu, M.; Liu, S.; Liu, J.; Gu, F.; Zhang, Y. A novel value-added utilization process for pyrite cinder: Selective recovery of Cu/Co and synthesis of iron phosphate. Hydrometallurgy 2020, 193, 105314. [Google Scholar] [CrossRef]
- Bendz, D.; Tiberg, C.; Kleja, D.B. Mineralogical characterization and speciation of sulfur, zinc and lead in pyrite cinder from Bergvik, Sweden. Appl. Geochem. 2021, 131, 105010. [Google Scholar] [CrossRef]
- Jamieson, H.; Walker, S.R.; Parsons, M. Mineralogical characterization of mine waste. Appl. Geochem. 2015, 57, 85–105. [Google Scholar] [CrossRef]
- Leistel, J.; Marcoux, E.; Thiéblemon, D.; Quesada, C.; Sánchez, A.; Almodóvar, G.R.; Pascual, E.; Sáez, R. The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt Review and preface to the Thematic Issue. Miner. Depos. 1998, 33, 2–30. [Google Scholar] [CrossRef]
- Nocete, F.; Álex, E.; Nieto, J.M.; Sáez, R.; Bayona, M.R. An archaeological approach to regional environmental pollution in the South-Western Iberian Peninsula related to Third Millennium BC mining and metallurgy. J. Archaeol. Sci. 2005, 32, 1566–1576. [Google Scholar] [CrossRef]
- Romero, A.; Gonzalez, I.; Martin, J.M.; Vazquez, M.A.; Ortiz, P. Risk assessment of particle dispersion and trace element contamination from mine-waste dumps. Environ. Geochem. Health 2015, 37, 273–286. [Google Scholar] [CrossRef]
- Sánchez-España, J.; López-Pamo, E.; Pastor, E.S.; Ercilla, M.D. The Acidic Mine Pit Lakes of the Iberian Pyrite Belt: An Approach to Their Physical Limnology and Hydrogeochemistry. Appl. Geochem. 2008, 23, 1260–1287. [Google Scholar] [CrossRef]
- Álvarez-Valero, A.; Sáez, R.; Pérez-López, R.; Delgado, J.; Nieto, J.M. Evaluation of heavy metal bio-availability from Almagrera pyrite-rich tailings dam (Iberian Pyrite Belt, SW Spain) based on a sequential extraction procedure. J. Geochem. Explor. 2009, 102, 87–94. [Google Scholar] [CrossRef]
- Arranz-González, J.C.; Cala-Rivero, V.; Iribarren-Campaña, I. Geochemistry and mineralogy of surface pyritic tailings impoundments at two mining sites of the Iberian Pyrite Belt (SW Spain). Environ. Earth. Sci. 2011, 65, 669–680. [Google Scholar] [CrossRef]
- López-Arce, P.; Garrido, F.; Garcia-Guinea, J.; Voegelin, A.; Göttlicher, J.; Nieto, J.M. Historical roasting of thallium- and arsenic-bearing pyrite: Current Tl pollution in the Riotinto mine area. Sci. Total Environ. 2019, 648, 1263–1274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinedo Vara, I. Piritas de Huelva. Su Historia, Minería y Aprovechamiento; Summa: Madrid, Spain, 1963; p. 1003. [Google Scholar]
- Lopez-Arce, P.; Garcia-Guinea, J.; Garrido, F. Chemistry and phase evolution during roasting of toxic thallium-bearing pyrite. Chemosphere 2017, 181, 447–460. [Google Scholar] [CrossRef]
- Cánovas, C.R.; Quispe, D.; Macías, F.; Callejón-Leblic, B.; Arias-Borrego, A.; García-Barrera, T.; Nieto, J.M. Potential release and bioaccessibility of metal/loids from mine wastes deposited in historical abandoned sulfide mines. Environ. Pollut. 2023, 316, 120629. [Google Scholar] [CrossRef]
- Sáez, R.; Pascual, E.; Toscano, M.; Almodóvar, G.R. The Iberian type of volcano-sedimentary massive sulphide deposits. Miner. Depos. 1999, 34, 549–570. [Google Scholar] [CrossRef]
- Almodóvar, G.R.; Yesares, L.; Sáez, R.; Toscano, M.; González, F.; Pons, J.M. Massive sulfide ores in the Iberian Pyrite Belt: Mineralogical and textural evolution. Minerals 2019, 9, 653. [Google Scholar] [CrossRef] [Green Version]
- Yesares, L.; Piña, R.; González-Jiménez, J.M.; Saéz, R.; Ruíz de Almodóvar, G.; Fanlo, F.; Pons, J.M.; Vega, R. Distribution of critical metals in evolving pyrite from massive sul de ores of the Iberian Pyrite Belt. Ore Geol. Rev. 2023, 153, 105275. [Google Scholar] [CrossRef]
- Mercier-Langevin, P.; Hannington, M.D.; Dubé, B.; Bécu, V. The gold content of volcanogenic massive sulfide deposits. Miner. Depos. 2011, 46, 509–539. [Google Scholar] [CrossRef]
- Yesares, L. Mineralizaciones de oro en la Faja Pirítica Ibérica. In La geología como soporte económico, histórico y social de la región; Moreno, C., Suárez, J., Eds.; Actas de la II Jornada de Arqueología, Historia y Minería de la Faja Pirítica Ibérica; 2019; ISBN 978-84-09-067 77-0. [Google Scholar]
- Conde, C.; Tornos, F.; Danyushevsky, L.V.; Large, R. Laser ablation-ICPMS analysis of trace elements in pyrite from the Tharsis massive sulphide deposit, Iberian Pyrite Belt (Spain). J. Iber. Geol. 2020, 47, 429–440. [Google Scholar] [CrossRef]
- Yesares, L.; Sáez, R.; Nieto, J.M.; Almodóvar, G.R.; Gómez, C.; Escobar, J.M. The Las Cruces deposit, Iberian Pyrite Belt, Spain. Ore Geol. Rev. 2015, 66, 25–46. [Google Scholar] [CrossRef] [Green Version]
- González-Jiménez, J.M.; Yesares, L.; Piña, R.; Sáez, R.; Almodóvar, G.R.; Nieto, F.; Tenorio, S. Polymetallic nanoparticles in pyrite from VMS deposits of the Iberian Pyrite Belt. Ore Geol. Rev. 2022, 145, 104875. [Google Scholar] [CrossRef]
- Tornos, F. Environment of formation and styles of volcanogenic massive sulfides: The Iberian Pyrite Belt. Ore Geol. Rev. 2006, 28, 259–307. [Google Scholar] [CrossRef]
- Saéz, R. La Faja Pirítica Ibérica. Una Perspectiva Geológica, Arqueológica y Ambiental. Unpublished Ph.D. Thesis, University of Huelva, Huelva, Spain, 2010. [Google Scholar]
- Consejería de Cultura (Junta de Andalucía). Expedientes de Minas (1917–1995). Fondo Documental. Delegación Provincial del Ministerio de Industria en Huelva 2001. Available online: https://www.juntadeandalucia.es/cultura/archivos_html/sites/default/contenidos/archivos/ahphuelva/documentos/00029.pdf (accessed on 2 August 2023).
- IGME. Inventario Nacional de Balsas y Escombreras Mineras. Instituto Geológico y Minero de España (IGME) 1989. Available online: https://info.igme.es/catalogo/resource.aspx?portal=1&catalog=3&ctt=1&lang=spa&dlang=eng&llt=dropdown&master=infoigme&shdt=false&shfo=false&resource=8305 (accessed on 2 August 2023).
- Cánovas, C.R.; Macías, F.; González, C.; Pérez-López, R.; Nieto, J.M. Metal/loid release from cyanidation wastes in response to rainfalls. Procedia Earth Planet. Sci. 2017, 17, 436–439. [Google Scholar] [CrossRef]
- Moreno-González, R.; Olías, M.; Macías, F.; Cánovas, C.R.; Fernández de Villarán, R. Hydrological characterization and prediction of flood levels of acidic pit lakes in the Tharsis mines, Iberian Pyrite Belt. J. Hydrol. 2018, 566, 807–817. [Google Scholar] [CrossRef]
- REDIAM Ortofotografía Digital Rigurosa de Andalucía. Consejería de Sostenibilidad, Medio Ambiente y Economía Azul; Junta de Andalucía España: Sevilla, Spain, 2020.
- Hu, G.; Dam-Jhansen, K.; Wedel, S.; Hansen, J.P. Decomposition and oxidation of pyrite. Prog. Energy Combust. Sci. 2006, 32, 295–314. [Google Scholar] [CrossRef]
- Laita, E.; Bauluz, B.; Yuste, A. High-Temperature Mineral Phases Generated in Natural Clinkers by Spontaneous Combustion of Coal. Minerals 2019, 9, 213. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.P.; Yang, K.; Fang, Y.; Robledo-Cabrera, A.; Peng, C.S.; Lopez-Valdivieso, A. Roasting temperature effect on the recovery of refractory gold and silver in pyrite concentrates. J. Min. Metall. Sect. B-Metall. 2021, 57, 235–243. [Google Scholar] [CrossRef]
- Menegazzo, G.; Carbonin, S.; Della Giusta, A. Cation and vacancy distribution in an artificially oxidized natural spinel. Miner. Mag. 1997, 6, 411–421. [Google Scholar] [CrossRef]
- Jastrzebska, I.; Szczerba, J.; Blachowski, A.; Stoch, P. Structure and microstructure evolution of hercynite spinel (Fe2+Al2O4) after annealing treatment. Eur. J. Mineral. 2017, 29, 63–72. [Google Scholar] [CrossRef]
- Marcoux, E.; Moëlo, Y.; Leistel, J.M. Bismuth and cobalt minerals: Indicators of stringer zones to massive sulfide deposits. Iberian Pyrite Belt. Miner. Depos. 1996, 31, 1–26. [Google Scholar] [CrossRef]
- Becattini, V.; Motmans, T.; Zappone, A.; Madonna, M.; Haselbacher, A.; Steinfeld, A. Experimental investigation of the thermal and mechanical stability of rocks for high-temperature thermal-energy storage. Appl. Energy 2017, 203, 373–389. [Google Scholar] [CrossRef]
- Nishihara, K.; Kondo, Y. Studies of the Oxidation of Pyrite I. Mem. Fac. Eng. Kyoto Univ. 1959, 20, 285. [Google Scholar]
- Schorr, J.R.; Everhart, J.O. Thermal Behavior of Pyrite and Its Relation to Carbon and Sulfur Oxidation in Clays. In Proceedings of the Sixty-Sixth Annual Meeting, Atlantic City, NJ, USA, 6 May 1974; The American Ceramic Society: Chicago, IL, USA, 1969. [Google Scholar]
- Huffman, G.P.; Huggins, F.E.; Levasseur, A.A.; Chow, O.; Srinivasachar, S.; Mehta, A.K. Investigation of the transformations of pyrite in a drop-tube furnace. Fuel 1989, 68, 485–490. [Google Scholar] [CrossRef]
- Bhargava, S.K.; Garg, A.; Subasinghe, N. In situ high-temperature phase transformation studies on pyrite. Fuel 2009, 88, 988–993. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Q.; Liu, X.; Xu, B.; Yang, Y.; Jiang, T. A Thermodynamic Analysis on the Roasting of Pyrite. Mineral 2019, 9, 220. [Google Scholar] [CrossRef] [Green Version]
- Reich, M.; Kesler, S.E.; Utsunomiya, S.; Palenik, C.S.; Chryssoulis, S.L.; Ewing, R.C. Solubility of gold in arsenian pyrite. Geochim. Cosmochim. Acta 2005, 69, 2781–2796. [Google Scholar] [CrossRef]
- Reich, M.; Utsunomiya, S.; Kesler, S.E.; Wang, L.M.; Ewing, R.C.; Becker, U. Thermal behaviour of metal nanoparticles in geologic materials. Geology 2006, 34, 1033–1036. [Google Scholar] [CrossRef] [Green Version]
- González-Jiménez, J.M.; Reich, M.; Camprubí, A.; Gervilla, F.; Griffin, W.L.; Colás, V.; O’Reilly, S.Y.; Proenza, J.A.; Pearson, N.J.; Centeno-García, E. Thermal metamorphism of mantle chromites and the stability of noble-metal nanoparticles. Contrib. Miner. Petrol. 2015, 170, 15. [Google Scholar] [CrossRef]
- Domínguez-Carretero, D.; González-Jiménez, J.M.; Proenza, J.A. A track record of Au–Ag nanomelt generation during fluid-mineral interactions. Sci. Rep. 2023, 13, 7895. [Google Scholar] [CrossRef]
- Craig, J.R. Phase relations and mineral assemblages in the Ag–Bi–Pb–S system. Miner. Depos. 1967, 1, 278–306. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Cook, N.J.; Pring, A. Bismuth tellurides as gold scavengers. In Mineral Deposit Research: Meeting the Global Challenge; Mao, J.W., Bierlein, F.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1383–1386. [Google Scholar]
- Ciobanu, C.; Cook, N.; Damian, F. Gold scavenged by bismuth melts: An example from Alpine shear-remobilizates in the Highiş Massif, Romania. Mineral. Petrol. 2006, 87, 351–384. [Google Scholar] [CrossRef]
- Noble, A.C. Technical Report On the Riotinto Copper Project 2022. Available online: www.atalayamining.com (accessed on 2 August 2023).
- Dold, B.; Fontboté, L. A mineralogical and geochemical study of element mobility in sulfide mine tailings of Fe oxide Cu–Au deposits from the Punta del Cobre belt, northern Chile. Chem. Geol. 2002, 189, 135–163. [Google Scholar] [CrossRef]
- Heikkinen, P.M.; Räsänen, M.L. Mineralogical and geochemical alteration of Hitura sulphide mine tailings with emphasis on nickel mobility and retention. J. Geochem. Explor. 2008, 97, 1–20. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Wang, H.; Cui, X.; Wang, X.; Lu, A.; Wang, X.; Wang, C.; Gan, D. Weathering behavior and metal mobility of tailings under an extremely arid climate at Jinchuan Cu-Ni sufide deposit, Western China. J. Geochem. Explor. 2017, 173, 1–12. [Google Scholar] [CrossRef]
- Gómez-Arias, A.; Yesares, L.; Díaz, J.; Caraballo, M.A.; Maleke, M.; Sáez, R.; Van Heerden, E.; Nieto, J.M.V.; Castillo, J. Mine waste from carbonatite deposits as potential rare earth resource: Insight into the Phalaborwa (Palabora) Complex. J. Geochem. Explor. 2022, 232, 106884. [Google Scholar] [CrossRef]
- Chen, D.; Gou, H.; Lv, Y.; Li, P.; Xu, J. Preparation and recovery of iron carbide from pyrite cinder using carburization-magnetic separation technology. J. Min. Metall. Sect. B Metall. 2018, 54, 271. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, G.; Cai, X.; Fu, J.; Liu, M.; Zhang, P.; Yu, H. Leaching behavior of copper and iron extracted from pyrite cinder of reduction roasting. J. Hazard. Mater. 2021, 420, 126561. [Google Scholar] [CrossRef]
- Liu, R.; Jing, N.; Song, Y.; Zhaia, Q.; Mao, Z.; Zhou, Y.; Sun, W. Recovery of valuable elements from pyrite pyrolysis slag using magnetic separation-flotation technique. Sep. Purif. Technol. 2022, 299, 121772. [Google Scholar] [CrossRef]
- Wanga, Y.; Xiaoa, L.; Liuc, H.; Qiana, P.; Yea, S.; Chena, Y. Acid leaching pretreatment on two-stage roasting pyrite cinder for gold T extraction and co-precipitation of arsenic with iron. Hydrometallurgy 2018, 179, 192–197. [Google Scholar] [CrossRef]
- Kenzhaliyev, B.; Surkova, T.; Yessimova, D.; Baltabekova, Z.; Abikak, Y.; Abdikerim, B.; Dosymbayeva, Z. Extraction of Noble Metals from Pyrite Cinders. Chem. Eng. 2023, 7, 14. [Google Scholar] [CrossRef]
- Kenzhaliyev, B.; Surkova, T.; Yessimova, D.; Abikak, Y.; Mukhanova, A.; Fischer, D. Extraction of Noble Metals from Pyrite Cinders. Inorganics 2023, 11, 171. [Google Scholar] [CrossRef]
- Pagé, P.; Barnes, S.-J. The influence of chromite on osmium, iridium, ruthenium and rhodium distribution during early magmatic processes. Chem. Geol. 2016, 420, 51–68. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yesares, L.; González-Jiménez, J.M.; Jiménez-Cantizano, F.A.; González-Pérez, I.; Caro-Moreno, D.; Sánchez, I.M. Unveiling High-Tech Metals in Roasted Pyrite Wastes from the Iberian Pyrite Belt, SW Spain. Sustainability 2023, 15, 12081. https://doi.org/10.3390/su151512081
Yesares L, González-Jiménez JM, Jiménez-Cantizano FA, González-Pérez I, Caro-Moreno D, Sánchez IM. Unveiling High-Tech Metals in Roasted Pyrite Wastes from the Iberian Pyrite Belt, SW Spain. Sustainability. 2023; 15(15):12081. https://doi.org/10.3390/su151512081
Chicago/Turabian StyleYesares, Lola, José María González-Jiménez, Francisco Abel Jiménez-Cantizano, Igor González-Pérez, David Caro-Moreno, and Isabel María Sánchez. 2023. "Unveiling High-Tech Metals in Roasted Pyrite Wastes from the Iberian Pyrite Belt, SW Spain" Sustainability 15, no. 15: 12081. https://doi.org/10.3390/su151512081
APA StyleYesares, L., González-Jiménez, J. M., Jiménez-Cantizano, F. A., González-Pérez, I., Caro-Moreno, D., & Sánchez, I. M. (2023). Unveiling High-Tech Metals in Roasted Pyrite Wastes from the Iberian Pyrite Belt, SW Spain. Sustainability, 15(15), 12081. https://doi.org/10.3390/su151512081