Study on Fluid–Solid Coupling Numerical Simulation and Early Warning of Weathered Granite Landslides Induced by Extreme Rainfall
Abstract
:1. Introduction
2. Characteristics of the Landslide
3. Numerical Simulation
3.1. Simulation Method
3.2. Modeling
3.3. Grid Size
4. Result and Analysis
4.1. Response of Seepage Field
4.2. Response to Deformation
4.3. Slope Stability
4.4. Comprehensive Analysis
4.5. Early Warning
5. Conclusions
- (1)
- The fully weathered granite landslide in Fanling is a pushover-type failure. The deformation occurs from the middle of the slope and extends in both directions at the bottom and top, with a faster expansion rate towards the top. And the response of horizontal deformation is greater than that of vertical deformation.
- (2)
- The impact of different rainfall intensities and times on slope stability varies. For a completely weathered granite landslide, a short-term heavy rainstorm is more harmful than a long-term small rainstorm; the pore pressure and displacement response of the slope is faster, the loss of factor of safety of the slope is more, and the slope is more prone to instability and failure.
- (3)
- A rainfall warning curve for under-stable and unstable of fully weathered granite landslides has been established. In future research, the author will further utilize machine learning methods to develop warning programs, providing a reference for the warning and prevention of similar regional landslides.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ministry of Natural Resources of the People’s Republic of China. Available online: http://news.mnr.gov.cn/dt/mtsy/202304/t20230413_2781443.html (accessed on 13 April 2023).
- Fan, X.; Yang, F.; Subramanian, S.S.; Xu, Q.; Feng, Z.; Mavrouli, O.; Peng, M.; Ouyang, C.; Jansen, J.D.; Huang, R. Prediction of a multi-hazard chain by an integrated numerical simulation approach: The Baige landslide, Jinsha River, China. Landslides 2020, 17, 147–164. [Google Scholar] [CrossRef]
- Wang, M.; Shen, W.; Liu, J.; Shao, J. Phase-field modeling of cracking process in partially saturated porous media and application to rainfall-induced landslides. Eng. Geol. 2022, 310, 106884. [Google Scholar] [CrossRef]
- Gatto, M.P.A.; Montrasio, L. X-SLIP: A SLIP-based multi-approach algorithm to predict the spatial–temporal triggering of rainfall-induced shallow landslides over large areas. Comput. Geotech. 2023, 154, 105175. [Google Scholar] [CrossRef]
- Bao, Y.; Su, L.; Chen, J.; Ouyang, C.; Yang, T.; Lei, Z.; Li, Z. Dynamic process of a high-level landslide blocking river event in a deep valley area based on FDEM-SPH coupling approach. Eng. Geol. 2023, 319, 107108. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y. Probabilistic simulation of entire process of rainfall-induced landslides using random finite element and material point methods with hydro-mechanical coupling. Comput. Geotech. 2021, 132, 103989. [Google Scholar] [CrossRef]
- Li, D.; Nian, T.; Tiong, R.L.K.; Shen, Y.; Shao, Z. River blockage and impulse wave evolution of the Baige landslide in October 2018: Insights from coupled DEM-CFD analyses. Eng. Geol. 2023, 321, 107169. [Google Scholar] [CrossRef]
- Jiang, S.; Li, J.; Zhang, S.; Gu, Q.; Lu, C.; Liu, H. Landslide risk prediction by using GBRT algorithm: Application of artificial intelligence in disaster prevention of energy mining. Process Saf. Environ. Prot. 2022, 166, 384–392. [Google Scholar] [CrossRef]
- Sun, P.; Wang, H.; Wang, G.; Li, R.; Zhang, Z.; Huo, X. Field model experiments and numerical analysis of rainfall-induced shallow loess landslides. Eng. Geol. 2021, 295, 106411. [Google Scholar] [CrossRef]
- Luo, S.-L.; Huang, D.; Peng, J.-B.; Aierken, A.; Li, Z.; Kuang, X.-B.; Tomás, R. Performance and application of a novel drainage anti-slide pile on accumulation landslide with a chair-like deposit-bedrock interface in the Three Gorges Reservoir area, China. Comput. Geotech. 2023, 155, 105199. [Google Scholar] [CrossRef]
- Ji, J.; Zhang, T.; Cui, H.; Yin, X.; Zhang, W. Numerical investigation of post-earthquake rainfall-induced slope instability considering strain-softening effect of soils. Soil Dyn. Earthq. Eng. 2023, 171, 107938. [Google Scholar] [CrossRef]
- Mreyen, A.-S.; Donati, D.; Elmo, D.; Donze, F.V.; Havenith, H.-B. Dynamic numerical modelling of co-seismic landslides using the 3D distinct element method: Insights from the Balta rockslide (Romania). Eng. Geol. 2022, 307, 106774. [Google Scholar] [CrossRef]
- Liu, C.; Yan, Y.P.; Yang, H.Q. Numerical modeling of small-scale unsaturated soil slope subjected to transient rainfall. Geosyst. Geoenviron. 2023, 2, 100193. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, L.; Zhang, L.; Zhou, Y.; Ye, G.; Guo, N. Modelling rainfall-induced landslides from initiation of instability to post-failure. Comput. Geotech. 2021, 129, 103877. [Google Scholar] [CrossRef]
- Yu, H.; Li, C.; Zhou, J.-Q.; Chen, W.; Zhu, Y. A semi-analytical model for transient infiltration into inclined soil interlayer considering varying water head and stratified water content. J. Hydrol. 2022, 614, 128627. [Google Scholar] [CrossRef]
- Thomas, J.; Gupta, M.; Prusty, G. Assessing global parameters of slope stability model using Earth data observations for forecasting rainfall—Induced shallow landslides. J. Appl. Geophys. 2023, 212, 104994. [Google Scholar] [CrossRef]
- Bilal, M.; Xing, A.; Zhuang, Y.; Zhang, Y.; Jin, K.; Zhu, Y.; Leng, Y. Coupled 3D numerical model for a landslide-induced impulse water wave: A case study of the Fuquan landslide. Eng. Geol. 2021, 290, 106209. [Google Scholar] [CrossRef]
- Marotti, J.C.; Gomes, G.J.; Velloso, R.Q.; Júnior, E.A.V.; Nunes, R.S.; Fernandes, N.F. Exploring extreme rainfall-triggered landslides using 3D unsaturated flow, antecedent moisture and spatially distributed soil depth. Catena 2023, 229, 107241. [Google Scholar] [CrossRef]
- Kafle, L.; Xu, W.-J.; Zeng, S.-Y.; Nagel, T. A numerical investigation of slope stability influenced by the combined effects of reservoir water level fluctuations and precipitation: A case study of the Bianjiazhai landslide in China. Eng. Geol. 2022, 297, 106508. [Google Scholar] [CrossRef]
- Xu, J.W.; Ueda, K.; Uzuoka, R. Numerical modeling of seepage and deformation of unsaturated slope subjected to post-earthquake rainfall. Comput. Geotech. 2022, 148, 104791. [Google Scholar] [CrossRef]
- Li, C.; Wang, M.; Chen, F.; Coulthard, T.J.; Wang, L. Integrating the SLIDE model within CAESAR-Lisflood: Modeling the ‘rainfall-landslide-flash flood’ disaster chain mechanism under landscape evolution in a mountainous area. Catena 2023, 227, 107124. [Google Scholar] [CrossRef]
- Wang, C.-H.; Fang, L.; Chang, D.T.-T.; Huang, F.-C. Back-analysis of a rainfall-induced landslide case history using deterministic and random limit equilibrium methods. Eng. Geol. 2023, 317, 107055. [Google Scholar] [CrossRef]
- Hao, J.; Jia, P.; Wu, T.; Li, W.; Chen, J.; Yang, X.; Wu, X.; Hu, G.; Cui, K.; Zhang, M. Numerical analysis of the impacts of rainfall on permafrost-related slope stability on the Qinghai–Tibet Plateau. J. Hydrol. Reg. Stud. 2023, 47, 101439. [Google Scholar] [CrossRef]
- Fung, K.F.; Chew, K.S.; Huang, Y.F.; Ahmed, A.N.; Teo, F.Y.; Ng, J.L.; Elshafie, A. Evaluation of spatial interpolation methods and spatiotemporal modeling of rainfall distribution in Peninsular Malaysia. Ain Shams Eng. J. 2022, 13, 101571. [Google Scholar] [CrossRef]
- Dou, H.Q.; Wang, R.; Wang, H.; Jian, W.B. Rainfall early warning threshold and its spatial distribution of rainfall-induced landslides in China. Rock Mech. Bull. 2023, 100056. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y. Analytical solutions for annual probability of slope failure induced by rainfall at a specific slope using bivariate distribution of rainfall intensity and duration. Eng. Geol. 2023, 313, 106969. [Google Scholar] [CrossRef]
- Wei, Z.-L.; Lü, Q.; Sun, H.-Y.; Shang, Y.-Q. Estimating the rainfall threshold of a deep-seated landslide by integrating models for predicting the groundwater level and stability analysis of the slope. Eng. Geol. 2019, 253, 14–26. [Google Scholar] [CrossRef]
- Mandal, K.; Saha, S.; Mandal, S. Applying deep learning and benchmark machine learning algorithms for landslide susceptibility modelling in Rorachu river basin of Sikkim Himalaya, India. Geosci. Front. 2021, 12, 101203. [Google Scholar] [CrossRef]
- Novellino, A.; Cesarano, M.; Cappelletti, P.; Di Martire, D.; Di Napoli, M.; Ramondini, M.; Sowter, A.; Calcaterra, D. Slow-moving landslide risk assessment combining Machine Learning and InSAR techniques. Catena 2021, 203, 105317. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Luo, H.; He, J.; Cheung, R. AI-powered Landslide Susceptibility Assessment in Hong Kong. Eng. Geol. 2021, 288, 106103. [Google Scholar] [CrossRef]
- Skrzypczak, I.; Kokoszka, W.; Zientek, D.; Tang, Y.; Kogut, J. Landslide Hazard Assessment Map as an Element Supporting Spatial Planning: The Flysch Carpathians Region Study. Remote Sens. 2021, 13, 317. [Google Scholar] [CrossRef]
- Liu, H.; Yu, P.; Lu, H.; Xie, Y.; Wang, Z.; Hao, S.; Liu, H.; Fu, Y. Experimental study on disaster mechanism of completely weathered granite landslide induced by extreme rainfall. Geoenviron. Disasters 2023, 10, 5. [Google Scholar] [CrossRef]
- Nian, T.-K.; Wu, H.; Takara, K.; Li, D.-Y.; Zhang, Y.-J. Numerical investigation on the evolution of landslide-induced river blocking using coupled DEM-CFD. Comput. Geotech. 2021, 134, 104101. [Google Scholar] [CrossRef]
- Fan, X.; Dufresne, A.; Whiteley, J.; Yunus, A.P.; Subramanian, S.S.; Okeke, C.A.; Pánek, T.; Hermanns, R.L.; Ming, P.; Strom, A.; et al. Recent technological and methodological advances for the investigation of landslide dams. Earth Sci. Rev. 2021, 218, 103646. [Google Scholar] [CrossRef]
- Zhang, S.G. Research on Stability Analysis of a High Slope and Optimization Design by Anti-Slide Pile. Master’s Thesis, China University of Geosciences, Beijing, China, 2017. (In Chinese). [Google Scholar]
- Zhang, S.N. Analysis of Slope Stability and Anti-Slide Pile Optimization Based on ABAQUS. Master’s Thesis, Hebei University of Engineering, Shijiazhuang, China, 2019. (In Chinese). [Google Scholar]
- Li, Z.T. Study on the Load-Displacement Coupled Prediction Parameters and Catastrophic Dynamic Prediction Criterion of the Landslides Induced by Extreme Rainfall. Master’s Thesis, Qingdao Technological University, Qingdao, China, 2013. (In Chinese). [Google Scholar]
- Tian, Y. Study on the Law of Pile-Soil Interaction and Parameter Optimization Design of Anti Slide Pile in Accumulation Landslide. Master’s Thesis, Qingdao Technological University, Qingdao, China, 2021. (In Chinese). [Google Scholar]
- Liu, X.; Wang, Y. Quantifying annual occurrence probability of rainfall-induced landslide at a specific slope. Comput. Geotech. 2022, 149, 104877. [Google Scholar] [CrossRef]
- Zhou, K.; Wang, H.; Liao, J.; Zhang, Y.; Chen, F.; Yang, Z. Deformation and failure mechanism of colluvial landslide under sustained rainfall-a case study of Xinzhan landslide in Tongzi County, China. Alex. Eng. J. 2023, 71, 89–103. [Google Scholar] [CrossRef]
Soil Weight (KN/m3) | Elastic Modulus (kPa) | Poisson’s Ratio | Internal Friction Angle (°) | Cohesive Force (kPa) | Permeability Coefficient (mm/h) | |
---|---|---|---|---|---|---|
Sliding mass | 19 | 50,000 | 0.25 | 20 | 25 | 0.08 |
Sliding bed | 26 | 1,000,000 | 0.2 | 37 | 1000 | 0.00001 |
Group | Rainfall Intensity (mm/h) | Rainfall Time (h) |
---|---|---|
N1 | 32 | 24 |
N2 | 20 | 24 |
N3 | 10 | 24 |
N4 | 20 | 48 |
N5 | 20 | 72 |
Group | N1 | N2 | N3 | N4 | N5 |
---|---|---|---|---|---|
Safety factor | 1.168 | 1.378 | 1.495 | 1.214 | 1.126 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, P.; Liu, H.; Yu, H.; Xie, Y.; Yu, Y.; Zhu, C.; Dong, J.; Guan, Y. Study on Fluid–Solid Coupling Numerical Simulation and Early Warning of Weathered Granite Landslides Induced by Extreme Rainfall. Sustainability 2023, 15, 11738. https://doi.org/10.3390/su151511738
Yu P, Liu H, Yu H, Xie Y, Yu Y, Zhu C, Dong J, Guan Y. Study on Fluid–Solid Coupling Numerical Simulation and Early Warning of Weathered Granite Landslides Induced by Extreme Rainfall. Sustainability. 2023; 15(15):11738. https://doi.org/10.3390/su151511738
Chicago/Turabian StyleYu, Peng, Honghua Liu, Hongbo Yu, Yongjian Xie, Yang Yu, Chenghao Zhu, Jie Dong, and Yong Guan. 2023. "Study on Fluid–Solid Coupling Numerical Simulation and Early Warning of Weathered Granite Landslides Induced by Extreme Rainfall" Sustainability 15, no. 15: 11738. https://doi.org/10.3390/su151511738
APA StyleYu, P., Liu, H., Yu, H., Xie, Y., Yu, Y., Zhu, C., Dong, J., & Guan, Y. (2023). Study on Fluid–Solid Coupling Numerical Simulation and Early Warning of Weathered Granite Landslides Induced by Extreme Rainfall. Sustainability, 15(15), 11738. https://doi.org/10.3390/su151511738