Applicability of Industry 4.0 Technologies in the Reverse Logistics: A Circular Economy Approach Based on COmprehensive Distance Based RAnking (COBRA) Method
Abstract
:1. Introduction
2. Background
2.1. Reverse Logistics
2.2. Industry 4.0 Technologies in Logistics
2.3. Literature Review on MCDM Methods
3. Methodology
3.1. BWM Method
3.2. COmprehensive Distance Based RAnking—COBRA Method
4. Applicability Evaluation of Industry 4.0 Technologies in Reverse Logistics
4.1. Industry 4.0 Technologies Applicable in Reverse Logistics
4.2. Criteria for the Technology Applicability Evaluation
4.3. Application of the Model and Results
4.4. Validation of Results
4.5. Sensitivity Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.; Hultink, E.J. The Circular Economy–A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef] [Green Version]
- CLM—Council of Logistics Management. Supply Chain Management Terms and Glossary. 2013. Available online: https://cscmp.org/CSCMP/Academia/SCM_Definitions_and_Glossary_of_Terms/CSCMP/Educate/SCM_Definitions_and_Glossary_of_Terms.aspx?hkey=60879588-f65f-4ab5-8c4b-6878815ef921 (accessed on 22 December 2021).
- Guide, V.D.R., Jr.; Van Wassenhove, L.N. OR FORUM—The evolution of closed-loop supply chain research. Oper. Res. 2009, 57, 10–18. [Google Scholar] [CrossRef]
- Govindan, K.; Soleimani, H.; Kannan, D. Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future. Eur. J. Oper. Res. 2015, 240, 603–626. [Google Scholar] [CrossRef] [Green Version]
- Tjahjono, B.; Esplugues, C.; Ares, E.; Pelaez, G. What does industry 4.0 mean to supply chain? Procedia Manuf. 2017, 13, 1175–1182. [Google Scholar] [CrossRef]
- Mastos, T.D.; Nizamis, A.; Terzi, S.; Gkortzis, D.; Papadopoulos, A.; Tsagkalidis, N.; Ioannidis, D.; Votis, K.; Tzovaras, D. Introducing an application of an industry 4.0 solution for circular supply chain management. J. Clean. Prod. 2021, 300, 126886. [Google Scholar] [CrossRef]
- Manavalan, E.; Jayakrishna, K. A review of Internet of Things (IoT) embedded sustainable supply chain for industry 4.0 requirements. Comput. Ind. Eng. 2019, 127, 925–953. [Google Scholar] [CrossRef]
- Birkel, H.S.; Müller, J.M. Potentials of Industry 4.0 for Supply Chain Management within the Triple Bottom Line of Sustainability–A Systematic Literature Review. J. Clean. Prod. 2020, 289, 125612. [Google Scholar] [CrossRef]
- Agnusdei, G.P.; Gnoni, M.G.; Tornese, F. Modelling and Simulation Tools for Integrating Forward and Reverse Logistics: A Literature Review. In Proceedings of the 31st European Modeling and Simulation Symposium (EMSS), Lisbon, Portugal, 18–20 September 2019; pp. 317–326. Available online: https://www.cal-tek.eu/proceedings/i3m/2019/emss/045/pdf.pdf (accessed on 10 January 2022).
- Merdin, D.; Ersöz, F. Evaluation of the applicability of Industry 4.0 processes in businesses and supply chain applications. In Proceedings of the 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 11–13 October 2019; pp. 1–10. [Google Scholar]
- Grodek-Szostak, Z.; Siguencia, L.O.; Szelag-Sikora, A.; Marzano, G. The impact of industry 4.0 on the labor market. In Proceedings of the 61st International Scientific Conference on Information Technology and Management Science of Riga Technical University (ITMS), Riga, Latvia, 15–16 October 2020; pp. 1–5. [Google Scholar]
- Maresova, P.; Soukal, I.; Svobodova, L.; Hedvicakova, M.; Javanmardi, E.; Selamat, A.; Krejcar, O. Consequences of industry 4.0 in business and economics. Economies 2018, 6, 46. [Google Scholar] [CrossRef] [Green Version]
- Oláh, J.; Aburumman, N.; Popp, J.; Khan, M.A.; Haddad, H.; Kitukutha, N. Impact of Industry 4.0 on environmental sustainability. Sustainability 2020, 12, 4674. [Google Scholar] [CrossRef]
- Prajapati, H.; Kant, R.; Shankar, R. Bequeath life to death: State-of-art review on reverse logistics. J. Clean. Prod. 2019, 211, 503–520. [Google Scholar] [CrossRef]
- Bernon, M.; Cullen, J. An integrated approach to managing reverse logistics. Int. J. Logist. Res. Appl. 2007, 10, 41–56. [Google Scholar] [CrossRef]
- Kazancoglu, Y.; Ekinci, E.; Mangla, S.K.; Sezer, M.D.; Kayikci, Y. Performance evaluation of reverse logistics in food supply chains in a circular economy using system dynamics. Bus. Strategy Environ. 2021, 30, 71–91. [Google Scholar] [CrossRef]
- Mimouni, F.; Abouabdellah, A.; Mharzi, H. Study of the reverse logistics’ break-even in a direct supply chain. Int. Rev. Model. Simul. 2015, 8, 277–283. [Google Scholar] [CrossRef]
- Ilgin, M.A.; Gupta, S.M. Environmentally conscious manufacturing and product recovery (ECMPRO): A review of the state of the art. J. Environ. Manag. 2010, 91, 563–591. [Google Scholar] [CrossRef]
- Rogers, D.S.; Tibben-Lembke, R.S. Going Backwards: Reverse Logistics Trends and Practices; Reverse Logistics Executive Council: Pittsburgh, PA, USA, 1999. [Google Scholar]
- Czerny, A.; Letmathe, P. Eco-efficiency: GHG reduction related environmental and economic performance. The case of the companies participating in the EU Emissions Trading Scheme. Bus. Strategy Environ. 2017, 26, 791–806. [Google Scholar] [CrossRef]
- Le, T.T. Performance measures and metrics in a supply chain environment. Uncertain Supply Chain Manag. 2020, 8, 93–104. [Google Scholar] [CrossRef]
- Mutingi, M. Developing green supply chain management strategies: A taxonomic approach. J. Ind. Eng. Manag. 2013, 6, 525–546. [Google Scholar] [CrossRef] [Green Version]
- Kanashiro, P. Can environmental governance lower toxic emissions? A panel study of US high-polluting industries. Bus. Strategy Environ. 2020, 29, 1634–1646. [Google Scholar] [CrossRef]
- Bazan, E.; Jaber, M.Y.; Zanoni, S. A review of mathematical inventory models for reverse logistics and the future of its modeling: An environmental perspective. Appl. Math. Model. 2016, 40, 4151–4178. [Google Scholar] [CrossRef]
- Bernon, M.; Tjahjono, B.; Ripanti, E.F. Aligning retail reverse logistics practice with circular economy values: An exploratory framework. Prod. Plan. Control 2018, 29, 483–497. [Google Scholar] [CrossRef]
- MacArthur, E. Towards the circular economy. J. Ind. Ecol. 2013, 3, 23–44. [Google Scholar]
- Merli, R.; Preziosi, M.; Acampora, A. How do scholars approach the circular economy? A systematic literature review. J. Clean. Prod. 2018, 178, 703–722. [Google Scholar] [CrossRef]
- Prieto-Sandoval, V.; Jaca, C.; Ormazabal, M. Towards a consensus on the circular economy. J. Clean. Prod. 2018, 179, 605–615. [Google Scholar] [CrossRef]
- Dhakal, M.; Smith, M.H.; Newbery, R. Secondary market: A significant aspect in reverse logistics and sustainability. Int. J. Soc. Sustain. Econ. Soc. Cult. Context 2016, 12, 24–35. [Google Scholar] [CrossRef]
- Islam, M.T.; Huda, N. Reverse logistics and closed-loop supply chain of Waste Electrical and Electronic Equipment (WEEE)/E-waste: A comprehensive literature review. Resour. Conserv. Recycl. 2018, 137, 48–75. [Google Scholar] [CrossRef]
- Sassanelli, C.; Rosa, P.; Terzi, S. Supporting disassembly processes through simulation tools: A systematic literature review with a focus on printed circuit boards. J. Manuf. Syst. 2021, 60, 429–448. [Google Scholar] [CrossRef]
- Chiappetta Jabbour, C.J.; Fiorini, P.D.C.; Ndubisi, N.O.; Queiroz, M.M.; Piato, É.L. Digitally-enabled sustainable supply chains in the 21st century: A review and a research agenda. Sci. Total Environ. 2020, 725, 138177. [Google Scholar] [CrossRef]
- Rosa, P.; Sassanelli, C.; Urbinati, A.; Chiaroni, D.; Terzi, S. Assessing relations between Circular Economy and Industry 4.0: A systematic literature review. Int. J. Prod. Res. 2020, 58, 1662–1687. [Google Scholar] [CrossRef] [Green Version]
- Vinante, C.; Sacco, P.; Orzes, G.; Borgianni, Y. Circular economy metrics: Literature review and company-level classification framework. J. Clean. Prod. 2021, 288, 125090. [Google Scholar] [CrossRef]
- Sassanelli, C.; Rosa, P.; Rocca, R.; Terzi, S. Circular Economy performance assessment methods: A systematic literature review. J. Clean. Prod. 2019, 229, 440–453. [Google Scholar] [CrossRef]
- Kagermann, H.; Lukas, W.D.; Wahlster, W. Industrie 4.0: Mit dem Internet der Dinge auf dem Weg zur 4. Industriellen Revolution. 2011. Available online: http://www.wolfgang-wahlster.de/ (accessed on 14 December 2021). (In German).
- Hofmann, E.; Rüsch, M. Industry 4.0 and the current status as well as future prospects on logistics. Comput. Ind. 2017, 89, 23–34. [Google Scholar] [CrossRef]
- Götz, M.; Gracel, J. Przemysłczwartejgeneracji (Industry 4.0)—wyzwaniadlabada´n w konteksciemiedzynarodowym. Kwartalnik Naukowy Uczelni Vistula 2017, 51, 217–235. (In Polish) [Google Scholar]
- BMBF—Bundesministerium für Bildung und Forschung. Plattform Industrie 4.0: 10-Punkteplan für Industrie 4.0 Handlungsempfehlungen der Plattform Industrie 4.0/ 2017. Available online: https://www.plattform-i40.de/ (accessed on 14 December 2021). (In German).
- Glistau, E.; Machado, N.I.C. Industry 4.0, Logistics 4.0 and Materials—Chances and Solutions. Mater. Sci. Forum. 2019, 919, 307–314. [Google Scholar] [CrossRef]
- Kostrzewski, M.; Varjan, P.; Gnap, J. Solutions Dedicated to Internal Logistics 4.0. In Sustainable Logistics and Production in Industry 4.0; Grzybowska, K., Awasthi, A., Sawhney, R., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2020; pp. 243–262. [Google Scholar] [CrossRef]
- Krstić, M.; Tadić, S.; Zečević, S. Technological solutions in logistics 4.0. Ekon. Preduzeća 2021, 69, 385–401. [Google Scholar] [CrossRef]
- Bahrin, M.A.K.; Othman, M.F.; Nor, N.H.; Azli, M.F.T. Industry 4.0: A Review on Industrial Automation and Robotic. J. Teknol. 2016, 78, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kao, H.A.; Yang, S. Service innovation and smart analytics for Industry 4.0 and big data environment, Product Services Systems and Value Creation. Procedia CIRP 2014, 16, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Jeschke, S. Logistics 4.0—Artificial Intelligence and Other Modern Trends in Transport and Logistics. XIII Forum of Polish Logistics Managers POLISH LOGISTICS; Center for Innovation Management and Transfer of Technology in Warsaw, University of Technology: Warsaw, Poland, 2016. [Google Scholar]
- Barreto, L.; Amaral, A.; Pereira, T. Industry 4.0 implications in logistics: An overview. Procedia Manuf. 2017, 13, 1245–1252. [Google Scholar] [CrossRef]
- Timm, I.J.; Lorig, F. Logistics 4.0—A Challenge for Simulation. In Proceedings of the 2015 Winter Simulation Conference, Huntington Beach, CA, USA, 6–9 December 2015; Yilmaz, L., Chan, W.K.V., Moon, I., Roeder, T.M.K., Macal, C., Rossetti, M.D., Eds.; IEEE: Piscataway, NJ, USA, 2015; pp. 3118–3119. [Google Scholar] [CrossRef]
- Winkelhaus, S.; Grosse, E.H. Logistics 4.0: A systematic review towards a new logistics system. Int. J. Prod. Res. 2020, 58, 18–43. [Google Scholar] [CrossRef]
- Ng, T.C.; Lau, S.Y.; Ghobakhloo, M.; Fathi, M.; Liang, M.S. The Application of Industry 4.0 Technological Constituents for Sustainable Manufacturing: A Content-Centric Review. Sustainability 2022, 14, 4327. [Google Scholar] [CrossRef]
- Narula, S.; Puppala, H.; Kumar, A.; Frederico, G.F.; Dwivedy, M.; Prakash, S.; Talwar, V. Applicability of industry 4.0 technologies in the adoption of global reporting initiative standards for achieving sustainability. J. Clean. Prod. 2021, 305, 127141. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Vaishya, R.; Bahl, S.; Suman, R.; Vaish, A. Industry 4.0 technologies and their applications in fighting COVID-19 pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Jin, M.; Li, S.; Feng, D. Smart logistics based on the internet of things technology: An overview. Int. J. Logist. Res. Appl. 2021, 24, 323–345. [Google Scholar] [CrossRef]
- Golpîra, H.; Khan, S.A.R.; Safaeipour, S. A review of logistics internet-of-things: Current trends and scope for future research. J. Ind. Inf. Integr. 2021, 22, 100194. [Google Scholar] [CrossRef]
- Tsang, Y.P.; Wu, C.H.; Lam, H.Y.; Choy, K.L.; Ho, G.T. Integrating Internet of Things and multi-temperature delivery planning for perishable food E-commerce logistics: A model and application. Int. J. Prod. Res. 2021, 59, 1534–1556. [Google Scholar] [CrossRef]
- Popescu, G.H.; Petreanu, S.; Alexandru, B.; Corpodean, H. Internet of Things-based real-time production logistics, cyber-physical process monitoring systems, and industrial artificial intelligence in sustainable smart manufacturing. J. Self-Gov. Manag. Econ. 2021, 9, 52–62. [Google Scholar] [CrossRef]
- Rey, A.; Panetti, E.; Maglio, R.; Ferretti, M. Determinants in adopting the Internet of Things in the transport and logistics industry. J. Bus. Res. 2021, 131, 584–590. [Google Scholar] [CrossRef]
- Vural, C.A.; Roso, V.; Halldórsson, Á.; Ståhle, G.; Yaruta, M. Can digitalization mitigate barriers to intermodal transport? An exploratory study. Res. Transp. Bus. Manag. 2020, 37, 100525. [Google Scholar] [CrossRef]
- Li, J.; Rombaut, E.; Vanhaverbeke, L. A systematic review of agent-based models for autonomous vehicles in urban mobility and logistics: Possibilities for integrated simulation models. Comput. Environ. Urban Syst. 2021, 89, 101686. [Google Scholar] [CrossRef]
- Willems, L. Understanding the Impacts of Autonomous Vehicles in Logistics. The Digital Transformation of Logistics: Demystifying Impacts of the Fourth Industrial Revolution. In The Digital Transformation of Logistics: Demystifying Impacts of the Fourth Industrial Revolution; Sullivan, M., Kern, J., Eds.; The Institute of Electrical and Electronics Engineers, Inc.: Piscataway, NJ, USA, 2021; pp. 113–127. [Google Scholar] [CrossRef]
- Abosuliman, S.S.; Almagrabi, A.O. Routing and scheduling of intelligent autonomous vehicles in industrial logistics systems. Soft Comput. 2021, 25, 11975–11988. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Z.; Zhang, H.; Yuan, H.; Manokaran, K.B.; Maheshwari, M. Multi-sensor information fusion for IoT in automated guided vehicle in smart city. Soft Comput. 2021, 25, 12017–12029. [Google Scholar] [CrossRef]
- Niranjan, K.; Narayana, K.S.; Rao, M.N. Role of Artifical Intelligence in Logistics and Supply Chain. In Proceedings of the 2021 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 27–29 January 2021; Available online: https://ieeexplore.ieee.org/abstract/document/9402625 (accessed on 11 January 2022).
- Liu, C.; Park, E.M.; Jiang, F. Examining effects of context-awareness on ambient intelligence of logistics service quality: User awareness compatibility as a moderator. J. Ambient Intell. Humaniz. Comput. 2020, 11, 1413–1420. [Google Scholar] [CrossRef]
- Moshood, T.D.; Nawanir, G.; Sorooshian, S.; Okfalisa, O. Digital Twins Driven Supply Chain Visibility within Logistics: A New Paradigm for Future Logistics. Appl. Syst. Innov. 2021, 4, 29. [Google Scholar] [CrossRef]
- Rejeb, A.; Keogh, J.G.; Leong, G.K.; Treiblmaier, H. Potentials and challenges of augmented reality smart glasses in logistics and supply chain management: A systematic literature review. Int. J. Prod. Res. 2021, 59, 3747–3776. [Google Scholar] [CrossRef]
- Silva, N.; Barros, J.; Santos, M.Y.; Costa, C.; Cortez, P.; Carvalho, M.S.; Gonçalves, J.N. Advancing logistics 4.0 with the implementation of a big data warehouse: A demonstration case for the automotive industry. Electronics 2021, 10, 2221. [Google Scholar] [CrossRef]
- Pujiarto, B.; Hanafi, M.; Setyawan, A.; Imani, A.N.; Prasetya, E.R. A Data Mining Practical Approach to Inventory Management and Logistics Optimization. Int. J. Inform. Inf. Syst. 2021, 4, 112–122. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Simske, S.; Treiblmaier, H. Blockchain Technologies in Logistics and Supply Chain Management: A Bibliometric Review. Logistics 2021, 5, 72. [Google Scholar] [CrossRef]
- Yi, H. A secure logistics model based on blockchain. Enterp. Inf. Syst. 2021, 15, 1002–1018. [Google Scholar] [CrossRef]
- Alakaş, H.M.; Eren, T. Integrated Systems and Utilization in Logistics. In Logistics 4.0 and Future of Supply Chains; İyigün, İ., Görçün, Ö.F., Eds.; Springer: Singapore, 2022; pp. 171–190. [Google Scholar]
- Chaising, S.; Haasis, H.D. Cloud computing for logistics and procurement services for SMEs and raw material suppliers. Int. J. Logist. Syst. Manag. 2021, 38, 459–474. [Google Scholar] [CrossRef]
- Fu, D.; Hu, S.; Zhang, L.; He, S.; Qiu, J. An intelligent cloud computing of trunk logistics alliance based on blockchain and big data. J. Supercomput. 2021, 77, 13863–13878. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y. Distribution of the emergency supplies in the COVID-19 pandemic: A cloud computing based approach. Math. Probl. Eng. 2021, 2021, 5972747. [Google Scholar] [CrossRef]
- Ellawala, N.H.; Sachitra, K.M.V. E-Marketplace in the Agricultural Sector in Sri Lanka: Challenges in Adoption. Asian J. Agric. Extension, Econ. Sociol. 2021, 39, 44–58. [Google Scholar] [CrossRef]
- Tamas, P.; Illes, B.; Banyai, T.; Toth, A.B.; Akylbek, U.; Skapinyecz, R. Intensifying Cross-border Logistics Collaboration Opportunities Using a Virtual Logistics Center. J. Eng. Res. Rep. 2020, 13, 1–7. [Google Scholar] [CrossRef]
- Bayraktar, A.N. 3D Printing and Logistics. In Logistics 4.0 and Future of Supply Chains; İyigün, İ., Görçün, Ö.F., Eds.; Springer: Singapore, 2022; pp. 63–82. [Google Scholar]
- Demir, E.; Eyers, D.; Huang, Y. Competing through the last mile: Strategic 3D printing in a city logistics context. Comput. Oper. Res. 2021, 131, 105248. [Google Scholar] [CrossRef]
- Mayershofer, C.; Fottner, J. Towards an Artificial Perception Framework for Autonomous Robots in Logistics. In Advances in Automotive Production Technology–Theory and Application; Weißgraeber, P., Heieck, F., Ackermann, C., Eds.; Springer Vieweg: Berlin/Heidelberg, Germany, 2021; pp. 407–415. [Google Scholar] [CrossRef]
- Mu, F.; Liu, C. Design and Research of Intelligent Logistics Robot based on STM32. Recent Adv. Electr. Electron. Eng. 2021, 14, 44–51. [Google Scholar] [CrossRef]
- Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. A review of multi-criteria decision-making methods applied to the sustainable bridge design. Sustainability 2016, 8, 1295. [Google Scholar] [CrossRef] [Green Version]
- Dalkey, N.C.; Helmer, O. An experimental application of the Delphi method to the use of experts. Manag. Sci. 1963, 9, 458–467. [Google Scholar] [CrossRef]
- Fishburn, P.C. Additive Utilities with Incomplete Product Sets: Application to Priorities and Assignments. Oper. Res. 1967, 15, 537–542. [Google Scholar] [CrossRef]
- Miller, D.W.; Starr, M.K. Executive Decisions and Operations Research; Prentice-Hall: Hoboken, NJ, USA, 1969. [Google Scholar]
- Zavadskas, E.; Kaklauskas, A. Determination of an Efficient Contractor by Using the New Method of Multicriteria Assessment. In International Symposium for the Organization and Management of Construction: Managing construction information; Retik, A., Langford, D.A., Eds.; Taylor & Francis: Oxfordshire, UK, 1996; pp. 94–104. [Google Scholar]
- Zavadskas, E.K.; Turskis, Z. A new additive ratio assessment (ARAS) method in multicriteria decisiondskas, E. Technol. Econ. Dev. Econ. 2010, 16, 159–172. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer: New York, NY, USA, 1981. [Google Scholar]
- Opricovic, S. Multicriteria Optimization of Civil Engineering Systems; Faculty of Civil Engineering: Belgrade, Serbia, 1998. [Google Scholar]
- Brauers, W.K.; Zavadskas, E.K. The MOORA method and its application to privatization in a transition economy. Control Cybern. 2006, 35, 445–469. [Google Scholar]
- Brauers, W.K.M.; Zavadskas, E.K. Project Management by MULTIMOORA as an Instrument for Transition Economies. Technol. Econ. Dev. Econ. 2010, 16, 5–24. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J.; Zakarevicius, A. Optimization of Weighted Aggregated Sum Product Assessment. Elektron. Elektrotech. 2012, 122, 3–6. [Google Scholar] [CrossRef]
- Ghorabaee, K.M.; Zavadskas, E.K.; Olfat, L.; Turskis, Z. Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica 2015, 26, 435–451. [Google Scholar] [CrossRef]
- Ghorabaee, K.M.; Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J. A new combinative distance-based assessment (CODAS) method for multi-criteria decision-making. Econ. Comput. Econ. Cybern. Stud. Res. 2016, 50, 25–44. [Google Scholar]
- Stević, Ž.; Pamučar, D.; Puška, A.; Chatterjee, P. Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS). Comput. Ind. Eng. 2020, 140, 106231. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Costa, C.B.E.; Vansnick, J.C. MACBETH—An interactive path towards the construction of cardinal value functions. Int. Trans. Oper. Res. 1994, 1, 489–500. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision Making with Dependence and Feedback: The Analytic Network Process; RWS Publications: Pittsburgh, PA, USA, 1996. [Google Scholar]
- Hansen, P.; Ombler, F. A new method for scoring additive multin, P.; Ombl value models using pairwise rankings of alternatives. J. Multi-Criteria Decis. Anal. 2008, 15, 87–107. [Google Scholar] [CrossRef]
- Keršuliene, V.; Zavadskas, E.K.; Turskis, Z. Selection of rational dispute resolution method by applying new stepulien weight assessment ratio analysis (SWARA). J. Bus. Econ. Manag. 2010, 11, 243–258. [Google Scholar] [CrossRef]
- Rezaei, J. Best-worst multi-criteria decision-making method. Omega 2015, 53, 49–57. [Google Scholar] [CrossRef]
- Pamučar, D.; Stević, Ž.; Sremac, S. A new model for determining weight coefficients of criteria in mcdm models: Full consistency method (FUCOM). Symmetry 2018, 10, 393. [Google Scholar] [CrossRef] [Green Version]
- Roy, B. Classement et choixenprésence de points de vue multiples (la méthode ELECTRE). Rev. Fr. Inform. Rech. Opér. 1968, 8, 57–75. (In French) [Google Scholar] [CrossRef]
- Brans, J.P. L’ingénierie de la Décision: Élaborationd’instrumentsd’aide à la Décision. La Méthode PROMETHEE; Presses de l’Université Laval, Université Laval, Faculté des sciences de l’administration: Québec, QC, Canada, 1982. (In French) [Google Scholar]
- Ginevičius, R. A new determining method for the criteria weights in multicriteria evaluation. Int. J. Inf. Technol. Decis. Mak. 2011, 10, 1067–1095. [Google Scholar] [CrossRef]
- Krylovas, A.; Zavadskas, E.K.; Kosareva, N.; Dadelo, S. New KEMIRA method for determining criteria priority and weights in solving MCDM problem. Int. J. Inf. Technol. Decis. Mak. 2014, 13, 1119–1133. [Google Scholar] [CrossRef]
- Pamučar, D.; Ćirović, G. The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC). Expert Syst. Appl. 2015, 42, 3016–3028. [Google Scholar] [CrossRef]
- Hatefi, M.A. Indifference threshold-based attribute ratio analysis: A method for assigning the weights to the attributes in multiple attribute decision making. Appl. Soft Comput. 2019, 74, 643–651. [Google Scholar] [CrossRef]
- Roszkowska, E. Multi-criteria decision making models by applying the TOPSIS method to crisp and interval data. Mult. Criteria Decis. Mak. 2011, 6, 200–230. [Google Scholar]
- Opricovic, S.; Tzeng, G.H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [Google Scholar] [CrossRef]
- Çalık, A. A novel Pythagorean fuzzy AHP and fuzzy TOPSIS methodology for green supplier selection in the Industry 4.0 era. Soft Comput. 2021, 25, 2253–2265. [Google Scholar] [CrossRef]
- Alao, M.A.; Popoola, O.M.; Ayodele, T.R. Selection of waste-to-energy technology for distributed generation using IDOCRIW-Weighted TOPSIS method: A case study of the City of Johannesburg, South Africa. Renew. Energy 2021, 178, 162–183. [Google Scholar] [CrossRef]
- Zeng, J.; Lin, G.; Huang, G. Evaluation of the cost-effectiveness of Green Infrastructure in climate change scenarios using TOPSIS. Urban For. Urban Gree. 2021, 64, 127287. [Google Scholar] [CrossRef]
- Micale, R.; Marannano, G.; Giallanza, A.; Miglietta, P.P.; Agnusdei, G.P.; La Scalia, G. Sustainable vehicle routing based on firefly algorithm and TOPSIS methodology. Sustain. Futures 2019, 1, 100001. [Google Scholar] [CrossRef]
- Caterino, N.; Iervolino, I.; Manfredi, G.; Cosenza, E. A comparative analysis of decision making methods for the seismic retrofit of rc buildings. In Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, 12–17 October 2008; Available online: http://wpage.unina.it/iuniervo/papers/09-01-0168.pdf (accessed on 10 January 2022).
- Opricovic, S.; Tzeng, G.H. Extended VIKOR method in comparison with outranking methods. Eur. J. Oper. Res. 2007, 178, 514–529. [Google Scholar] [CrossRef]
- Krstić, M.; Tadić, S.; Kovač, M.; Roso, V.; Zečević, S. A Novel Hybrid MCDM Model for the Evaluation of Sustainable Last Mile Solutions. Math. Probl. Eng. 2021, 2021, 5969788. [Google Scholar] [CrossRef]
- Wang, C.N.; Nguyen, N.A.T.; Dang, T.T.; Lu, C.M. A compromised decision-making approach to third-party logistics selection in sustainable supply chain using fuzzy AHP and fuzzy VIKOR methods. Mathematics 2021, 9, 886. [Google Scholar] [CrossRef]
- Lam, W.S.; Lam, W.H.; Jaaman, S.H.; Liew, K.F. Performance evaluation of construction companies using integrated entropy–fuzzy VIKOR model. Entropy 2021, 23, 320. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Lei, F.; Wei, G.; Wang, R.; Wu, J.; Wei, C. EDAS method for multiple attribute group decision making with probabilistic uncertain linguistic information and its application to green supplier selection. Int. J. Comput. Intell. 2019, 12, 1361–1370. [Google Scholar] [CrossRef] [Green Version]
- U-Dominic, C.M.; Orji, I.J.; Okwu, M. Analyzing the Barriers to Reverse Logistics (RL) Implementation: A Hybrid Model Based on IF-DEMATEL-EDAS. Sustainability 2021, 13, 876. [Google Scholar] [CrossRef]
- Rashid, T.; Ali, A.; Chu, Y.M. Hybrid BW-EDAS MCDM methodology for optimal industrial robot selection. PLoS ONE 2021, 16, e0246738. [Google Scholar] [CrossRef]
- Mukul, E.; Güler, M.; Büyüközkan, G. Evaluation of Clean Energy Alternatives with Hesitant Fuzzy Linguistic MCDM Methods. In INFUS 2021: Intelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation; Kahraman, C., Cebi, S., Onar, S.C., Oztaysi, B., Tolga, A.C., Sari, I.U., Eds.; Springer: Cham, Switzerland, 2021; pp. 325–332. [Google Scholar]
- Chakraborty, S. Applications of the MOORA method for decision making in manufacturing environment. Int. J. Adv. Manuf. 2011, 54, 1155–1166. [Google Scholar] [CrossRef]
- Attri, R.; Grover, S. Decision making over the production system life cycle: MOORA method. Int. J. Syst. Assur. Eng. Manag. 2014, 5, 320–328. [Google Scholar] [CrossRef]
- Ulutaş, A.; Karaköy, Ç. Evaluation of LPI Values of Transition Economies Countries with a Grey MCDM Model. In Handbook of Research on Applied AI for International Business and Marketing Applications; Christiansen, B., Škrinjarić, T., Eds.; IGI Global: Hershey, PA, USA, 2021; pp. 499–511. [Google Scholar] [CrossRef]
- Feizi, F.; Karbalaei-Ramezanali, A.A.; Farhadi, S. FUCOM-MOORA and FUCOM-MOOSRA: New MCDM-based knowledge-driven procedures for mineral potential mapping in greenfields. SN Appl. Sci. 2021, 3, 358. [Google Scholar] [CrossRef]
- Petrov, I. Renewable energies projects selection: Block criteria systematization with AHP and Entropy-MOORA methods in MCDM. E3S Web Conf. 2021, 327, 02004. [Google Scholar] [CrossRef]
- Karagoz, S.; Deveci, M.; Simic, V.; Aydin, N.; Bolukbas, U. A novel intuitionistic fuzzy MCDM-based CODAS approach for locating an authorized dismantling center: A case study of Istanbul. Waste Manag. Res. 2020, 38, 660–672. [Google Scholar] [CrossRef] [PubMed]
- Ulutas, A. A grey hybrid model to select the optimal third-party logistics provider. S. Afr. J. Ind. Eng. 2021, 32, 171–181. [Google Scholar] [CrossRef]
- Gorcun, O.F.; Senthil, S.; Küçükönder, H. Evaluation of tanker vehicle selection using a novel hybrid fuzzy MCDM technique. Decis. Mak. Appl. Manag. Eng. 2021, 4, 140–162. [Google Scholar] [CrossRef]
- Zandi, I.; Pahlavani, P.; Bigdeli, B. Combining CRITIC Objective Weighting Method with CODAS and VIKOR Methods for Selecting Prospect Hospital Sites (Case Study: District 5 of Tehran). Geogr. Urban Space Devel. 2021, 7, 41–63. (In Iranian) [Google Scholar] [CrossRef]
- Zolfani, H.S.; Aghdaie, M.H.; Derakhti, A.; Zavadskas, E.K.; Varzandeh, M.H.M. Decision making on business issues with foresight perspective; an application of new hybrid MCDM model in shopping mall locating. Expert Syst. Appl. 2013, 40, 7111–7121. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Chakraborty, S.; Bhattacharyya, O.; Antucheviciene, J. Application of WASPAS method as an optimization tool in non-traditional machining processes. Inf. Technol. Control 2015, 44, 77–88. [Google Scholar] [CrossRef] [Green Version]
- Simić, V.; Lazarević, D.; Dobrodolac, M. Picture fuzzy WASPAS method for selecting last-mile delivery mode: A case study of Belgrade. Eur. Transp. Res. Rev. 2021, 13, 43. [Google Scholar] [CrossRef]
- Saraswat, S.K.; Digalwar, A.K.; Yadav, S.S. Sustainability Assessment of Renewable and Conventional Energy Sources in India Using Fuzzy Integrated AHP-WASPAS Approach. J. Mult.-Valued Log. Soft Comput. 2021, 37, 335–362. [Google Scholar] [CrossRef]
- Sokolović, J.; Stanujkić, D.; Štirbanović, Z. Selection of process for aluminium separation from waste cables by TOPSIS and WASPAS methods. Miner. Eng. 2021, 173, 107186. [Google Scholar] [CrossRef]
- Stanković, M.; Stević, Ž.; Das, D.K.; Subotić, M.; Pamučar, D. A new fuzzy MARCOS method for road traffic risk analysis. Mathematics 2020, 8, 457. [Google Scholar] [CrossRef] [Green Version]
- Kovač, M.; Tadić, S.; Krstić, M.; Bouraima, M.B. Novel Spherical Fuzzy MARCOS Method for Assessment of Drone-Based City Logistics Concepts. Complexity 2021, 2021, 2374955. [Google Scholar] [CrossRef]
- Blagojević, A.; Kasalica, S.; Stević, Ž.; Tričković, G.; Pavelkić, V. Evaluation of safety degree at railway crossings in order to achieve sustainable traffic management: A novel integrated fuzzy MCDM model. Sustainability 2021, 13, 832. [Google Scholar] [CrossRef]
- Torkayesh, A.E.; Torkayesh, S.E. Evaluation of information and communication technology development in G7 countries: An integrated MCDM approach. Technol. Soc. 2021, 66, 101670. [Google Scholar] [CrossRef]
- Guo, S.; Zhao, H. Fuzzy best-worst multi-criteria decision-making method and its applications. Knowl. -Based Syst. 2017, 121, 23–31. [Google Scholar] [CrossRef]
- Sarabi, E.P.; Darestani, S.A. Developing a decision support system for logistics service provider selection employing fuzzy MULTIMOORA & BWM in mining equipment manufacturing. Appl. Soft Comput. 2021, 98, 106849. [Google Scholar] [CrossRef]
- Mostafa, A.M. An MCDM Approach for Cloud Computing Service Selection Based on Best-Only Method. IEEE Access 2021, 9, 155072–155086. [Google Scholar] [CrossRef]
- Liang, X.; Chen, T.; Ye, M.; Lin, H.; Li, Z. A hybrid fuzzy BWM-VIKOR MCDM to evaluate the service level of bike-sharing companies: A case study from Chengdu, China. J. Clean. Prod. 2021, 298, 126759. [Google Scholar] [CrossRef]
- Lasi, H.; Kemper, H.G.; Fettke, P.; Feld, T.; Hoffmann, M. Industry 4.0. Bus. Inf. Syst. Eng. 2014, 4, 239–242. [Google Scholar] [CrossRef]
- Islam, D.M.Z.; Meier, J.F.; Aditjandra, P.T.; Zunder, T.H.; Pace, G. Logistics and Supply Chain Management. Res. Transp. Econ. 2013, 41, 3–16. [Google Scholar] [CrossRef]
- Gudehus, T.; Kotzab, H. ComprehensiveLogistics; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Lu, Y.; Papagiannidis, S.; Alamanos, E. Internet of things: A systematic review of the business literature from the user and organisational perspectives. Technol. Forecast. Soc. Chang. 2018, 136, 285–297. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kim, S. A multi-criteria approach toward discovering killer IoT application in Korea. Technol. Forecast. Soc. Chang. 2016, 102, 143–155. [Google Scholar] [CrossRef]
- Gu, Y.; Liu, Q. Research on the application of the internet of things in reverse logistics information management. Int. J. Ind. Eng. Manag. 2013, 6, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Mboli, J.S.; Thakker, D.; Mishra, J.L. An Internet of Things-enabled decision support system for circular economy business model. Softw.-Pract. Exp. 2020, 52, 772–787. [Google Scholar] [CrossRef]
- Thürer, M.; Pan, Y.H.; Qu, T.; Luo, H.; Li, C.D.; Huang, G.Q. Internet of Things (IoT) driven kanban system for reverse logistics: Solid waste collection. J. Intell. Manuf. 2019, 30, 2621–2630. [Google Scholar] [CrossRef]
- Garrido-Hidalgo, C.; Olivares, T.; Ramirez, F.J.; Roda-Sanchez, L. An end-to-end internet of things solution for reverse supply chain management in industry 4.0. Comput. Ind. 2019, 112, 103127. [Google Scholar] [CrossRef]
- Joshi, A.D.; Gupta, S.M. Evaluation of design alternatives of End-Of-Life products using internet of things. Int. J. Prod. Econ. 2019, 208, 281–293. [Google Scholar] [CrossRef]
- Jünemann, R.; Schmidt, T. Materialflußsysteme: Systemtechnische Grundlagen; Springer: Berlin/Heidelberg, Germany, 2020. (In German) [Google Scholar]
- Sathiya, V.; Chinnadurai, M.; Ramabalan, S.; Appolloni, A. Mobile robots and evolutionary optimization algorithms for green supply chain management in a used-car resale company. Environ. Dev. Sustain. 2021, 23, 9110–9138. [Google Scholar] [CrossRef]
- Ubare, V.; Soundattikar, S.A.; Tech, M. Design and Development of Automated Guided Vehicle for Collection, Sorting and Disposal of Metal Chips in Mechanical Workshop. Int. J. Trend Innov. Res. 2020, 2, 1–5. [Google Scholar]
- Sambhi, S.; Dahiya, P. Reverse vending machine for managing plastic waste. Int. J. Syst. Assur. Eng. Manag. 2020, 11, 635–640. [Google Scholar] [CrossRef]
- Hardai, I.; Illés, B.; Bányai, Á. Efficiency improvement of reverse logistics in industry 4.0 environment. In Solutions for Sustainable Development; Tóthné, K.S., Jármai, K., Voith, K., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 169–177. [Google Scholar]
- Kutila, M.; Viitanen, J.; Vattulainen, A. Scrap metal sorting with colour vision and inductive sensor array, paper presented. In Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, 28–30 November 2005; pp. 725–729. Available online: https://ieeexplore.ieee.org/document/1631224 (accessed on 10 January 2022).
- Berman, D. Transforming Urban Logistics: Our Investment in Gatik. 2019. Available online: https://medium.com/innovationendeavors/transforming-urban-logistics-our-investment-in-gatik-ai-70732fc6a831 (accessed on 11 November 2021).
- Fowler, V.; Medlin, D.B.; Vannoy, S.A. Reverse Logistics: Scenarios Related to Drone Deliveries and Returns. In Proceedings of the Appalachian Research in Business Symposium, East Tennessee State University, Richmond, VA, USA, 22–23 March 2018; pp. 54–58. Available online: https://encompass.eku.edu/cgi/viewcontent.cgi?article=1340&context=fs_research#page=56 (accessed on 10 January 2022).
- Christensen, J. Reverse Logistics: How to Manage E-Commerce Returns with Automation. 2021. Available online: https://hub.seegrid.com/blog/reverse-logistics-how-to-manage-ecommerce-returns-with-automation (accessed on 11 November 2021).
- Le Moigne, R. Reverse Logistics, the Circular Economy Weakest Link. 2020. Available online: https://www.renewablematter.eu/articles/article/reverse-logistics-the-circular-economy-weakest-link (accessed on 11 November 2021).
- Copeland, B.J. Artificial Intelligence; Encyclopædia Britannica, Inc.: Chicago, IL, USA, 2020. [Google Scholar]
- Wilson, M.; Paschen, J.; Pitt, L. The circular economy meets artificial intelligence (AI): Understanding the opportunities of AI for reverse logistics. Manag. Environ. Qual. 2021, 33, 9–25. [Google Scholar] [CrossRef]
- Xing, B.; Gao, W.J.; Battle, K.; Marwala, T.; Nelwamondo, F.V. Artificial Intelligence in Reverse Supply Chain Management. In Proceedings of the Twenty-First Annual Symposium of the Pattern Recognition Association of South Africa, Stellenbosch, South Africa, 22–23 November 2010; Available online: https://arxiv.org/ftp/arxiv/papers/1012/1012.4046.pdf (accessed on 11 January 2021).
- Wu, X.; Zhu, X.; Wu, G.; Ding, W. Data mining with big data. IEEE Trans. Knowl. Data Eng. 2014, 26, 97–107. [Google Scholar] [CrossRef]
- Clifton, C. Data Mining; Encyclopædia Britannica, Inc.: Chicago, IL, USA, 2019. [Google Scholar]
- Ghosh, D. Big Data in Logistics and Supply Chain Management—A rethinking step. In Proceedings of the International Symposium on Advanced Computing and Communication (ISACC), Silchar, India, 14–15 September 2015; pp. 168–173. Available online: https://ieeexplore.ieee.org/abstract/document/7377336 (accessed on 10 January 2021).
- Pushpamali, N.N.C.; Agdas, D.; Rose, T.M. A review of reverse logistics: An upstream construction supply chain perspective. Sustainability 2019, 11, 4143. [Google Scholar] [CrossRef] [Green Version]
- Bag, S.; Luthra, S.; Mangla, S.K.; Kazancoglu, Y. Leveraging big data analytics capabilities in making reverse logistics decisions and improving remanufacturing performance. Int. J. Logist. Manag. 2021, 32, 742–765. [Google Scholar] [CrossRef]
- Govindan, K.; Gholizadeh, H. Robust network design for sustainable-resilient reverse logistics network using big data: A case study of end-of-life vehicles. Transp. Res. E Logist. Transp. Rev. 2021, 149, 102279. [Google Scholar] [CrossRef]
- Nguyen, T.; Li, Z.H.O.U.; Spiegler, V.; Ieromonachou, P.; Lin, Y. Big data analytics in supply chain management: A state-of-the-art literature review. Comput. Oper. Res. 2018, 98, 254–264. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.L.; Wang, C.S. Integrated framework for reverse logistics. In New Trends in Applied Artificial Intelligence; Okuno, H.G., Ali, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 501–510. [Google Scholar] [CrossRef] [Green Version]
- Pilkington, M. Blockchain Technology: Principles and Applications. In Research Handbook on Digital Transformations; Olleros, F.X., Zhegu, M., Eds.; Edward Elgar Publishing: Cheltenham, UK, 2016; pp. 1–39. [Google Scholar]
- Shih, D.H.; Huang, F.C.; Chieh, C.Y.; Shih, M.H.; Wu, T.W. Preventing Return Fraud in Reverse Logistics—A Case Study of ESPRES Solution by Ethereum. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 121. [Google Scholar] [CrossRef]
- Centobelli, P.; Cerchione, R.; Del Vecchio, P.; Oropallo, E.; Secundo, G. Blockchain technology for bridging trust, traceability and transparency in circular supply chain. Inf. Manag. 2021, 2021, 103508. [Google Scholar] [CrossRef]
- Farouk, M.; Darwish, S.M. Reverse Logistics Solution in e-Supply Chain Management by Blockchain Technology. Egypt. Comp. Sci. J. 2020, 44, 22–34. [Google Scholar]
- Mell, P.; Grance, T. The NIST Definition of Cloud Computing: Recommendations of the National Institute of Standards and Technology; U.S. Department of Commerce, National Institute of Standards and Technology: Gaithersburg, MD, USA, 2011.
- Li, J.Q.; Wang, J.D.; Pan, Q.K.; Duan, P.Y.; Sang, H.Y.; Gao, K.Z.; Xue, Y. A hybrid artificial bee colony for optimizing a reverse logistics network system. Soft Comput. 2017, 21, 6001–6018. [Google Scholar] [CrossRef]
- Dos Santos, R.F.; Marins, F.A.S. Integrated model for reverse logistics management of electronic products and components. Procedia Comput. Sci. 2015, 55, 575–585. [Google Scholar] [CrossRef] [Green Version]
- Eng, T.Y. The role of e-marketplaces in supply chain management. Ind. Mark. Manag. 2004, 33, 97–105. [Google Scholar] [CrossRef]
- Kokkinaki, A.; Zuidwijk, R.; van Nunen, J.; Dekker, R. Information and communication technology enabling reverse logistics. In Reverse Logistics; Dekker, R., Fleischmann, M., Inderfurth, K., Van Wassenhove, L.N., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 381–405. [Google Scholar] [CrossRef]
- Yang, Y.; Hao-yu, W. Mechanism of Logistics Information in reverse tracking system under e-commerce. In Proceedings of the IEEE International Conference on Service Operations, Logistics and Informatics, Beijing, China, 10–12 July 2011; pp. 177–181. [Google Scholar] [CrossRef]
- Mckinnon, A.C. The Possible Impact of 3D Printing and Drones on Last-Mile Logistics: An Exploratory Study. Built Environ. 2016, 42, 617–629. [Google Scholar] [CrossRef]
- Strong, D.; Kay, M.; Wakefield, T.; Sirichakwal, I.; Conner, B.; Manogharan, G. Rethinking reverse logistics: Role of additive manufacturing technology in metal remanufacturing. J. Manuf. Technol. Manag. 2020, 31, 124–144. [Google Scholar] [CrossRef]
- Santander, P.; Sanchez, F.A.C.; Boudaoud, H.; Camargo, M. Closed loop supply chain network for local and distributed plastic recycling for 3D printing: A MILP-based optimization approach. Resour. Conserv. Recycl. 2020, 154, 104531. [Google Scholar] [CrossRef] [Green Version]
- Królikowski, T.; Strulak-Wójcikiewicz, R.; Nikończuk, P.; Zmuda-Trzebiatowski, P.; Deja, A. Small-lot Production with Additive Production Using Reverse Logistics and IT Solutions in COVID-19 Era. Eur. Res. Stud. 2020, 23, 569–579. [Google Scholar] [CrossRef]
- DHL. Robotics in Logistics: A DPDHL Perspective on Implications and Use Cases for the Logistics Industry; DHL Customer Solutions & Innovation: Troisdorf, Germany, 2016. [Google Scholar]
- Alvarez, E.; Renteria, A. Collaborative robots in e-waste management. Procedia Manuf. 2017, 11, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Agrawal, R.; Wankhede, V.A.; Sharma, M.; Mulat-Weldemeskel, E. A framework for assessing social acceptability of industry 4.0 technologies for the development of digital manufacturing. Technol. Forecast. Soc. Chang. 2022, 174, 121217. [Google Scholar] [CrossRef]
- Jamwal, A.; Agrawal, R.; Sharma, M.; Kumar, V.; Kumar, S. Developing A sustainability framework for Industry 4.0. Procedia CIRP 2021, 98, 430–435. [Google Scholar] [CrossRef]
- Chang, S.C.; Chang, H.H.; Lu, M.T. Evaluating Industry 4.0 Technology Application in SMEs: Using a Hybrid MCDM Approach. Mathematics 2021, 9, 414. [Google Scholar] [CrossRef]
- Mahdiraji, A.H.; Zavadskas, K.E.; Skare, M.; Kafshgar, R.F.Z.; Arab, A. Evaluating strategies for implementing industry 4.0: A hybrid expert oriented approach of BWM and interval valued intuitionistic fuzzy TODIM. Econ. Res.-Ekon. Istraz. 2020, 33, 1600–1620. [Google Scholar] [CrossRef]
- Kaya, I.; Erdoğan, M.; Karaşan, A.; Özkan, B. Creating a road map for industry 4.0 by using an integrated fuzzy multicriteria decision-making methodology. Soft Comput. 2020, 24, 17931–17956. [Google Scholar] [CrossRef]
- Sriram, R.M.; Vinodh, S. Analysis of readiness factors for Industry 4.0 implementation in SMEs using COPRAS. Int. J. Qual. Reliab. Manag. 2020, 38, 1178–1192. [Google Scholar] [CrossRef]
- Moktadir, M.A.; Ali, S.M.; Kusi-Sarpong, S.; Shaikh, M.A.A. Assessing challenges for implementing Industry 4.0: Implications for process safety and environmental protection. Process Saf. Environ. Prot. 2018, 117, 730–741. [Google Scholar] [CrossRef]
- Si, J.; Marjanovic-Halburd, L.; Nasiri, F.; Bell, S. Assessment of building-integrated green technologies: A review and case study on applications of Multi-Criteria Decision Making (MCDM) method. Sustain. Cities Soc. 2016, 27, 106–115. [Google Scholar] [CrossRef]
- Statista. Available online: https://www.statista.com/statistics/1189076/covid-19-e-commerce-growth-europe-country/ (accessed on 9 December 2021).
Technology | Literature Sources |
---|---|
Internet of Things (IoT) | [52,53,54,55,56,57] |
Autonomous and Automated Guided Vehicles (AV and AGV) | [58,59,60,61] |
Artificial (and Ambient) Intelligence (AI and AmI) and Augmented (and Virtual) reality (AR and VR) | [62,63,64,65] |
Big data (BD) and Data mining (DM) | [57,66,67] |
Data security and Blockchain (BC) | [57,68,69] |
Management systems (MS) and Cloud Computing (CC) | [57,70,71,72,73] |
Electronic Marketplace and Mobile Marketplace (E/M Marketplace) | [74,75] |
3D printing | [76,77] |
Advanced robotics | [78,79] |
Name | Acronym | Sources | Group |
---|---|---|---|
“Delphi” | / | [81] | S |
“Weighted Sum Model” | WSM | [82] | |
“Weighted Product Model” | WPM | [83] | |
“Complex Proportional Assessment” | COPRAS | [84] | |
“Additive Ratio Assessment” | ARAS | [85] | |
“Technique for Order of Preference by Similarity to Ideal Solution” | TOPSIS | [86] | DB |
“VIšeKriterijumska Optimizacija I Kompromisno Rešenje” | VIKOR | [87] | |
“Multi-Objective Optimization by *Ratio Analysis (plus the full MULTIplicative form)” | (MULTI)MOORA | [88,89] | |
“Weighted Aggregated Sum Product Assessment” | WASPAS | [90] | |
“Evaluation based on Distance from Average Solution” | EDAS | [91] | |
“Combinative Distance-based Assessment” | CODAS | [92] | |
“Measurement of Alternatives and Ranking according to Compromise Solution” | MARCOS | [93] | |
“Analytic Hierarchy Process” | AHP | [94] | PC |
“Measuring Attractiveness through a Categorical-Based Evaluation Technique” | MACBETH | [95] | |
“Analytical Network Process” | ANP | [96] | |
“Potentially All Pairwise RanKings of all possible Alternatives” | PAPRIKA | [97] | |
“Step-wise Weight Assessment Ratio Analysis” | SWARA | [98] | |
“Best—worst Method” | BWM | [99] | |
“FUll Consistency Method” | FUCOM | [100] | |
“ÉLimination et Choix Traduisant la REalité” | ELECTRE | [101] | O |
“Preference Ranking Organization METHod for Enrichment of Evaluations” | PROMETHEE | [102] | |
“Factor Relationship” | FARE | [103] | |
“Kemeny Median Indicator Ranks Accordance” | KEMIRA | [104] | |
“Multi-Attributive Border Approximation area Comparison” | MABAC | [105] | |
“Indifference Threshold-based Attribute Ratio Analysis” | ITARA | [106] |
Linguistic Evaluation | Abbreviation | Numerical Value |
---|---|---|
None | N | 1 |
Very Low | VL | 2 |
Low | L | 3 |
Fairly Low | FL | 4 |
Medium | M | 5 |
Fairly High | FH | 6 |
High | H | 7 |
Very High | VH | 8 |
Extremely High | EH | 9 |
Criteria Group | Criterion |
---|---|
Technological | C1—Degree of development |
C2—Possibility of integration (modularity) | |
C3—Complexity of implementation | |
C4—Possibility of standardization | |
C5—Adaptability | |
Socio-political | C6—Safety |
C7—Labor market impact | |
C8—Environmental impact | |
C9- Cultural framework | |
C10—Political framework | |
C11—Regulatory framework | |
Economic-operational | C12—Implementation costs |
C13—Energy consumption efficiency | |
C14—Security | |
C15—Organizational readiness | |
C16—Logistics service quality |
Criterion | Best/Worst | Best over Other | Other over Worst | |||
---|---|---|---|---|---|---|
C1 | L | 3 | H | 7 | 0.082 | |
C2 | FL | 4 | FH | 6 | 0.061 | |
C3 | VL | 2 | VH | 8 | 0.123 | |
C4 | EH | 9 | N | 1 | 0.027 | |
C5 | VH | 8 | VL | 2 | 0.031 | |
C6 | H | 7 | L | 3 | 0.035 | |
C7 | FH | 6 | FL | 4 | 0.041 | |
C8 | M | 5 | M | 5 | 0.049 | |
C9 | CW | EH | 9 | / | 1 | 0.018 |
C10 | H | 7 | L | 3 | 0.035 | |
C11 | FL | 4 | FH | 6 | 0.061 | |
C12 | CB | / | 1 | EH | 9 | 0.202 |
C13 | M | 5 | M | 5 | 0.049 | |
C14 | H | 7 | L | 3 | 0.035 | |
C15 | EH | 9 | N | 1 | 0.027 | |
C16 | VL | 2 | VH | 8 | 0.123 |
T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10 | |
---|---|---|---|---|---|---|---|---|---|---|
C1 | H | VH | VL | L | M | H | FH | EH | FL | M |
C2 | EH | VL | L | H | H | VH | H | M | FL | VL |
C3 | H | L | VL | FL | VH | H | VH | VH | FH | L |
C4 | M | H | FH | VL | M | FH | FH | FH | L | M |
C5 | VH | VL | L | FH | VH | EH | FH | FH | FL | VL |
C6 | H | FH | L | FH | L | FL | M | M | M | EH |
C7 | VH | L | M | FL | H | VH | FH | L | L | N |
C8 | H | L | FH | FH | VL | VL | VL | FL | FH | VL |
C9 | FL | FH | L | L | M | VH | H | EH | FH | L |
C10 | FH | M | M | H | M | M | H | VH | M | FL |
C11 | H | VH | VL | FL | H | FH | EH | VH | H | VH |
C12 | H | VL | N | FL | H | VH | VH | H | M | L |
C13 | VH | H | FH | H | H | VL | VL | H | FH | M |
C14 | FL | FL | VL | FH | FH | EH | FH | FH | M | FL |
C15 | FH | M | L | FH | H | VH | H | FH | M | FL |
C16 | EH | M | FH | H | VH | M | VH | VH | M | L |
T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10 | |
---|---|---|---|---|---|---|---|---|---|---|
d(PIS) | 0.047 | 0.210 | 0.254 | 0.154 | 0.072 | 0.088 | 0.068 | 0.059 | 0.132 | 0.211 |
d(NIS) | 0.236 | 0.094 | 0.063 | 0.125 | 0.223 | 0.232 | 0.247 | 0.232 | 0.143 | 0.082 |
d(AS+) | 0.076 | 0.026 | 0.015 | 0.023 | 0.066 | 0.083 | 0.087 | 0.073 | 0.016 | 0.017 |
d(AS−) | 0.005 | 0.099 | 0.135 | 0.052 | 0.018 | 0.034 | 0.027 | 0.010 | 0.030 | 0.094 |
dC | −0.065 | 0.047 | 0.078 | 0.014 | −0.050 | −0.048 | −0.060 | −0.059 | 0.001 | 0.051 |
Rank | 1 | 8 | 10 | 7 | 4 | 5 | 2 | 3 | 6 | 9 |
T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10 | |
---|---|---|---|---|---|---|---|---|---|---|
COBRA | 1 | 8 | 10 | 7 | 4 | 5 | 2 | 3 | 6 | 9 |
TOPSIS | 1 | 9 | 10 | 7 | 4 | 5 | 3 | 2 | 6 | 8 |
VIKOR | 1 | 8 | 10 | 7 | 4 | 5 | 3 | 2 | 6 | 9 |
CODAS | 1 | 8 | 10 | 7 | 5 | 4 | 2 | 3 | 6 | 9 |
EDAS | 1 | 8 | 10 | 6 | 5 | 4 | 3 | 2 | 7 | 9 |
MOORA | 1 | 8 | 10 | 7 | 5 | 4 | 3 | 2 | 6 | 9 |
WASPAS | 1 | 8 | 10 | 7 | 4 | 5 | 3 | 2 | 6 | 9 |
MARCOS | 1 | 8 | 10 | 7 | 4 | 5 | 3 | 2 | 6 | 9 |
COBRA | TOPSIS | VIKOR | CODAS | EDAS | MOORA | WASPAS | MARCOS | |
---|---|---|---|---|---|---|---|---|
COBRA | 1.00000 | 0.97576 | 0.98788 | 0.98788 | 0.96364 | 0.97576 | 0.98788 | 0.98788 |
TOPSIS | 1.00000 | 0.98788 | 0.96364 | 0.96364 | 0.97576 | 0.98788 | 0.98788 | |
VIKOR | 1.00000 | 0.97576 | 0.97576 | 0.98788 | 1.00000 | 1.00000 | ||
CODAS | 1.00000 | 0.97576 | 0.98788 | 0.97576 | 0.97576 | |||
EDAS | 1.00000 | 0.98788 | 0.97576 | 0.97576 | ||||
MOORA | 1.00000 | 0.98788 | 0.98788 | |||||
WASPAS | 1.00000 | 1.00000 | ||||||
MARCOS | 1.00000 |
T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Sc.0 | dC | −0.065 | 0.047 | 0.078 | 0.014 | −0.050 | −0.048 | −0.060 | −0.059 | 0.001 | 0.051 |
Rank | 1 | 8 | 10 | 7 | 4 | 5 | 2 | 3 | 6 | 9 | |
Sc.1 | dC | −0.034 | 0.014 | 0.035 | 0.007 | −0.015 | −0.021 | −0.015 | −0.026 | 0.008 | 0.029 |
Rank | 1 | 8 | 10 | 6 | 4 | 3 | 5 | 2 | 7 | 9 | |
Sc.2 | dC | −0.043 | 0.016 | 0.038 | 0.008 | −0.027 | −0.011 | −0.025 | −0.037 | 0.006 | 0.036 |
Rank | 1 | 8 | 10 | 7 | 3 | 5 | 4 | 2 | 6 | 9 | |
Sc.3 | dC | −0.060 | 0.040 | 0.068 | 0.010 | −0.040 | −0.043 | −0.051 | −0.049 | 0.004 | 0.044 |
Rank | 1 | 8 | 10 | 7 | 5 | 4 | 2 | 3 | 6 | 9 | |
Sc.4 | dC | −0.058 | 0.045 | 0.080 | 0.018 | −0.046 | −0.054 | −0.056 | −0.055 | −0.004 | 0.042 |
Rank | 1 | 9 | 10 | 7 | 5 | 4 | 2 | 3 | 6 | 8 | |
Sc.5 | dC | −0.026 | −0.001 | 0.024 | 0.006 | −0.004 | −0.008 | −0.003 | −0.018 | 0.006 | 0.013 |
Rank | 1 | 6 | 10 | 7 | 4 | 3 | 5 | 2 | 8 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krstić, M.; Agnusdei, G.P.; Miglietta, P.P.; Tadić, S.; Roso, V. Applicability of Industry 4.0 Technologies in the Reverse Logistics: A Circular Economy Approach Based on COmprehensive Distance Based RAnking (COBRA) Method. Sustainability 2022, 14, 5632. https://doi.org/10.3390/su14095632
Krstić M, Agnusdei GP, Miglietta PP, Tadić S, Roso V. Applicability of Industry 4.0 Technologies in the Reverse Logistics: A Circular Economy Approach Based on COmprehensive Distance Based RAnking (COBRA) Method. Sustainability. 2022; 14(9):5632. https://doi.org/10.3390/su14095632
Chicago/Turabian StyleKrstić, Mladen, Giulio Paolo Agnusdei, Pier Paolo Miglietta, Snežana Tadić, and Violeta Roso. 2022. "Applicability of Industry 4.0 Technologies in the Reverse Logistics: A Circular Economy Approach Based on COmprehensive Distance Based RAnking (COBRA) Method" Sustainability 14, no. 9: 5632. https://doi.org/10.3390/su14095632
APA StyleKrstić, M., Agnusdei, G. P., Miglietta, P. P., Tadić, S., & Roso, V. (2022). Applicability of Industry 4.0 Technologies in the Reverse Logistics: A Circular Economy Approach Based on COmprehensive Distance Based RAnking (COBRA) Method. Sustainability, 14(9), 5632. https://doi.org/10.3390/su14095632