A GIS-Based Multi-Criteria Analysis Framework to Evaluate Urban Physical Resilience against Earthquakes
Abstract
:1. Introduction
- Clarifying the concept of urban physical resilience by explaining its influencing characteristics and indicators;
- Determining and analyzing the relationship between indicators of the urban physical structure to measure their effects on urban physical resilience;
- Determining the importance of urban physical characteristics and indicators to measure their effects on resilience; and
- Developing a conceptual framework for assessing urban physical resilience and pilot testing it in an earthquake-prone city.
2. Case Study
3. Methodology
- Determining the characteristics of urban physical resilience and related indicators through a literature review and interviews with experts;
- Utilizing Interpretive Structural Modeling (ISM) to determine the interrelationships between urban physical indicators. In this qualitative-quantitative method, experts can better express their views on the interlinkages between factors (i.e., how they mutually affect each other);
- Determining the relative weight/importance of indicators with regard to the urban physical resilience using the Analytic Network Process (ANP);
- Determining the relative weight/importance of characteristics with regard to the urban physical resilience using the Analytical Hierarchy Process (AHP);
- Presenting characteristics and indicators in an overall evaluation framework; and
- Implementing the proposed framework in a district in Kerman using GIS software at the last stage.
3.1. Interpretive Structural Model (ISM)
3.2. ANP Method
3.3. AHP Method
4. Results
4.1. Characteristics of Urban Physical Resilience and Urban Physical Indicators
4.2. ISM Implementation and Results
4.3. ANP Implementation
4.4. Applying the Analytic Hierarchy Process (AHP)
4.5. Development of the Proposed Framework and the Final Index for Urban Physical Resilience Evaluation
4.6. Applying the Framework to the Case Study and Mapping the Physical Resilience
- Very low resilience (<−1.5 standard deviation)
- Low resilience (from −1.5 to −0.5 standard deviation)
- Medium resilience (from −0.5 to 0.5 standard deviation)
- High resilience (from 0.5 to 1.5 standard deviation), and
- Very high resilience (>1.5 standard deviation)
5. Discussion
6. Conclusions
- Locating medical uses and crisis management support centers along the main and wide streets to speed up rescue operations and services;
- Allocating more space to open and green spaces in neighborhoods and dense areas;
- Removing/relocating buildings in the vicinity of gas and electricity facilities and stations;
- Ensuring adequate provision of open spaces around these land uses to prevent fire spread during earthquakes; and
- Taking measures to ensure that incompatible land uses are not situated next to each other.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UNISDR. Global Assessment Report on Disaster Risk Reduction 2019; United Nations International Strategy for Disaster Reduction: Geneva, Switzerland, 2019. [Google Scholar]
- Wallemacq, P. Economic Losses, Poverty & Disasters: 1998–2017; Centre for Research on the Epidemiology of Disasters, CRED: Brussels, Belgium, 2018. [Google Scholar]
- Bozza, A.; Asprone, D.; Manfredi, G. Developing an integrated framework to quantify resilience of urban systems against disasters. Nat. Hazards 2015, 78, 1729–1748. [Google Scholar] [CrossRef]
- Heilig, G.K. World Urbanization Prospects: The 2011 Revision; United Nations, Department of Economic and Social Affairs (DESA), Population Division, Population Estimates and Projections Section: New York, NY, USA, 2012; Volume 14, p. 555. [Google Scholar]
- Chen, T.-L.; Lin, Z.-H. Impact of land use types on the spatial heterogeneity of extreme heat environments in a metropolitan area. Sustain. Cities Soc. 2021, 72, 103005. [Google Scholar] [CrossRef]
- Shao, Z.; Wu, W.; Li, D. Spatio-temporal-spectral observation model for urban remote sensing. Geo-Spat. Inf. Sci. 2021, 24, 372–386. [Google Scholar] [CrossRef]
- Sharifi, A. Resilient urban forms: A review of literature on streets and street networks. Build. Environ. 2019, 147, 171–187. [Google Scholar] [CrossRef]
- Rus, K.; Kilar, V.; Koren, D. Resilience assessment of complex urban systems to natural disasters: A new literature review. Int. J. Disaster Risk Reduct. 2018, 31, 311–330. [Google Scholar] [CrossRef]
- Li, G.; Zhao, J.; Murray, V.; Song, C.; Zhang, L. Gap analysis on open data interconnectivity for disaster risk research. Geo-Spat. Inf. Sci. 2019, 22, 45–58. [Google Scholar] [CrossRef] [Green Version]
- Ghasemzadeh, B.; Sharifi, A. Modeling and Analysis of Barriers to Climate Change Adaptation in Tehran. Climate 2020, 8, 104. [Google Scholar] [CrossRef]
- Koren, D.; Kilar, V.; Rus, K. A conceptual framework for the seismic resilience assessment of complex urban systems. In Proceedings of the 16th European Conference on Earthquake Engineering, Thessaloniki, Greece, 18–21 June 2018. [Google Scholar]
- Freddi, F.; Galasso, C.; Cremen, G.; Dall’Asta, A.; Di Sarno, L.; Giaralis, A.; Gutiérrez-Urzúa, F.; Málaga-Chuquitaype, C.; Mitoulis, S.A.; Petrone, C. INNOVATIONS in earthquake risk reduction for resilience: RECENT advances and challenges. Int. J. Disaster Risk Reduct. 2021, 60, 102267. [Google Scholar] [CrossRef]
- Guha-Sapir, D.; Vos, F. Earthquakes, an epidemiological perspective on patterns and trends. In Human Casualties in Earthquakes; Springer: Berlin/Heidelberg, Germany, 2011; pp. 13–24. [Google Scholar]
- Kamranzad, F.; Memarian, H.; Zare, M. Earthquake risk assessment for Tehran, Iran. ISPRS Int. J. Geo-Inf. 2020, 9, 430. [Google Scholar] [CrossRef]
- Twigg, J. Disaster Risk Reduction; Overseas Development Institute, Humanitarian Policy Group London: London, UK, 2015. [Google Scholar]
- Wu, X.; Zhang, J.; Geng, X.; Wang, T.; Wang, K.; Liu, S. Increasing green infrastructure-based ecological resilience in urban systems: A perspective from locating ecological and disturbance sources in a resource-based city. Sustain. Cities Soc. 2020, 61, 102354. [Google Scholar] [CrossRef]
- Huang, W.; Ling, M. System resilience assessment method of urban lifeline system for GIS. Comput. Environ. Urban Syst. 2018, 71, 67–80. [Google Scholar] [CrossRef]
- Xu, W.; Zhong, M.; Hong, Y.; Lin, K. Enhancing community resilience to urban floods with a network structuring model. Saf. Sci. 2020, 127, 104699. [Google Scholar] [CrossRef]
- Sajjad, M.; Chan, J.C.; Chopra, S.S. Rethinking disaster resilience in high-density cities: Towards an urban resilience knowledge system. Sustain. Cities Soc. 2021, 69, 102850. [Google Scholar] [CrossRef]
- Moghadas, M.; Asadzadeh, A.; Vafeidis, A.; Fekete, A.; Kötter, T. A multi-criteria approach for assessing urban flood resilience in Tehran, Iran. Int. J. Disaster Risk Reduct. 2019, 35, 101069. [Google Scholar] [CrossRef]
- Cavallaro, M.; Asprone, D.; Latora, V.; Manfredi, G.; Nicosia, V. Assessment of urban ecosystem resilience through hybrid social–physical complex networks. Comput.-Aided Civ. Infrastruct. Eng. 2014, 29, 608–625. [Google Scholar] [CrossRef]
- Cerè, G.; Rezgui, Y.; Zhao, W. Urban-scale framework for assessing the resilience of buildings informed by a delphi expert consultation. Int. J. Disaster Risk Reduct. 2019, 36, 101079. [Google Scholar] [CrossRef]
- Burton, C.G. A validation of metrics for community resilience to natural hazards and disasters using the recovery from Hurricane Katrina as a case study. Ann. Assoc. Am. Geogr. 2015, 105, 67–86. [Google Scholar] [CrossRef]
- Sellberg, M.M.; Wilkinson, C.; Peterson, G.D. Resilience assessment: A useful approach to navigate urban sustainability challenges. Ecol. Soc. 2015, 20, 43. [Google Scholar] [CrossRef]
- Yang, Y.; Ng, S.T.; Zhou, S.; Xu, F.J.; Li, H. A physics-based framework for analyzing the resilience of interdependent civil infrastructure systems: A climatic extreme event case in Hong Kong. Sustain. Cities Soc. 2019, 47, 101485. [Google Scholar] [CrossRef]
- Bruneau, M.; Chang, S.E.; Eguchi, R.T.; Lee, G.C.; O’Rourke, T.D.; Reinhorn, A.M.; Shinozuka, M.; Tierney, K.; Wallace, W.A.; Von Winterfeldt, D. A framework to quantitatively assess and enhance the seismic resilience of communities. Earthq. Spectra 2003, 19, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Aydin, N.Y.; Duzgun, H.S.; Wenzel, F.; Heinimann, H.R. Integration of stress testing with graph theory to assess the resilience of urban road networks under seismic hazards. Nat. Hazards 2018, 91, 37–68. [Google Scholar] [CrossRef]
- Suárez, M.; Gómez-Baggethun, E.; Benayas, J.; Tilbury, D. Towards an urban resilience Index: A case study in 50 Spanish cities. Sustainability 2016, 8, 774. [Google Scholar] [CrossRef] [Green Version]
- Feliciotti, A.; Romice, O.; Porta, S. Design for change: Five proxies for resilience in the urban form. Open House Int. 2016, 41, 23–30. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P.; Stults, M. Defining urban resilience: A review. Landsc. Urban Plan. 2016, 147, 38–49. [Google Scholar] [CrossRef]
- Sharifi, A.; Yamagata, Y. Principles and criteria for assessing urban energy resilience: A literature review. Renew. Sustain. Energy Rev. 2016, 60, 1654–1677. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, A. Resilient urban forms: A macro-scale analysis. Cities 2019, 85, 1–14. [Google Scholar] [CrossRef]
- Karatani, Y.; Hayashi, H. Verification of recovery process under the great Hanshin-Awaji earthquake disaster based on the recovery index. In Proceedings of the 13th World Conference on Earhquake Engineering, Vancouver, BC, Canada, 1–6 August 2004. [Google Scholar]
- Beniya, S. The Evaluation of the Status of Disaster Areas by using Recovery Indicators—In the case of the Great Hanshin-Awaji Earthquake. In Proceedings of the 2nd International Conference on Urban Disaster Reduction, Taipei, Taiwan, 27–29 November 2007. [Google Scholar]
- Chang, S.E. Urban disaster recovery: A measurement framework and its application to the 1995 Kobe earthquake. Disasters 2010, 34, 303–327. [Google Scholar] [CrossRef]
- Jones, C.A.; Dempsey, N.; Brown, C.; Porta, S.; Jenks, M.; Bramley, G. Elements of urban form. In Dimensions of the Sustainable City; Springer: Berlin/Heidelberg, Germany, 2010; pp. 21–51. [Google Scholar]
- Allan, P.; Bryant, M. The critical role of open space in earthquake recovery: A case study. In Proceedings of the 2010 NZSEE ConferenceNueva Zelandia, Wellington, New Zealand, 26–28 March 2010; pp. 1–10. [Google Scholar]
- Chapagain, N.K. Reflections on the Built Environment and Associated Practices; Master of Science in Energy for Sustainable Social Development (MSESSD) Programme: Kirtipur, Nepal, 2016; Volume 2. [Google Scholar]
- Allan, P.; Bryant, M.; Wirsching, C.; Garcia, D.; Teresa Rodriguez, M. The influence of urban morphology on the resilience of cities following an earthquake. J. Urban Des. 2013, 18, 242–262. [Google Scholar] [CrossRef]
- Shrestha, S.R.; Sliuzas, R.; Kuffer, M. Open spaces and risk perception in post-earthquake Kathmandu city. Appl. Geogr. 2018, 93, 81–91. [Google Scholar] [CrossRef]
- Davis, J.; Uffer, S. Evolving Cities: Exploring the Relations between Urban form ‘Resilience’and the Governance of Urban Form; London School of Economics: London, UK, 2013. [Google Scholar]
- Marcus, L.; Colding, J. Toward an integrated theory of spatial morphology and resilient urban systems. Ecol. Soc. 2014, 19, 55. [Google Scholar] [CrossRef] [Green Version]
- León, J.; March, A. Urban morphology as a tool for supporting tsunami rapid resilience: A case study of Talcahuano, Chile. Habitat Int. 2014, 43, 250–262. [Google Scholar] [CrossRef]
- Brand, D.; Nicholson, H. Public space and recovery: Learning from post-earthquake Christchurch. J. Urban Des. 2016, 21, 159–176. [Google Scholar] [CrossRef]
- Unisdr, U. Sendai framework for disaster risk reduction 2015–2030. In Proceedings of the 3rd United Nations World Conference on DRR, Sendai, Japan, 14–18 March 2015. [Google Scholar]
- Parizi, S.M.; Taleai, M.; Sharifi, A. Integrated methods to determine urban physical resilience characteristics and their interactions. Nat. Hazards 2021, 109, 725–754. [Google Scholar] [CrossRef]
- Zafarani, H.; Hajimohammadi, B.; Jalalalhosseini, S.M. Earthquake hazard in the Tehran region based on the characteristic earthquake model. J. Earthq. Eng. 2019, 23, 1485–1511. [Google Scholar] [CrossRef]
- Fekete, A.; Asadzadeh, A.; Ghafory-Ashtiany, M.; Amini-Hosseini, K.; Hetkämper, C.; Moghadas, M.; Ostadtaghizadeh, A.; Rohr, A.; Kötter, T. Pathways for advancing integrative disaster risk and resilience management in Iran: Needs, challenges and opportunities. Int. J. Disaster Risk Reduct. 2020, 49, 101635. [Google Scholar] [CrossRef]
- Taleai, M.; Rahnama, A.H. Demand and Supply Evaluation of Urban Facilities Needed for Management of Tehran after an Earthquake: A DEA Approach. Available online: https://www.researchgate.net/profile/Mohammad-Taleai/publication/281646824_Demand_and_Supply_Evaluation_of_Urban_Facilities_Needed_for_Management_of_Tehran_after_an_Earthquake_a_DEA_approach/links/55f2b36a08ae0960a389747d/Demand-and-Supply-Evaluation-of-Urban-Facilities-Needed-for-Management-of-Tehran-after-an-Earthquake-a-DEA-approach.pdf (accessed on 14 March 2022).
- Zoej, A.H.-M.J.V.; Mohammadzadeh, A.; Taleai, M. Détection de Dommages et Évaluation des Dégâts du Réseau Routier Après un Séisme, en Utilisant des Images Quick Bird Haute Résolution. Available online: https://www.academia.edu/22746686/D%C3%A9tection_de_dommages_et_%C3%A9valuation_des_d%C3%A9g%C3%A2ts_du_r%C3%A9seau_routier_apr%C3%A8s_un_s%C3%A9isme_en_utilisant_des_images_QuickBird_haute_r%C3%A9solution (accessed on 14 March 2022).
- Berberian, M.; Jackson, J.; Fielding, E.; Parsons, B.; Priestley, K.; Qorashi, M.; Talebian, M.; Walker, R.; Wright, T.; Baker, C. The 1998 March 14 Fandoqa earthquake (Mw 6.6) in Kerman province, southeast Iran: Re-rupture of the 1981 Sirch earthquake fault, triggering of slip on adjacent thrusts and the active tectonics of the Gowk fault zone. Geophys. J. Int. 2001, 146, 371–398. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, A.; Singh, A.; Jharkharia, S. An interpretive structural modeling (ISM) and decision-making trail and evaluation laboratory (DEMATEL) method approach for the analysis of barriers of waste recycling in India. J. Air Waste Manag. Assoc. 2018, 68, 100–110. [Google Scholar] [CrossRef]
- Rajesh, R. Technological capabilities and supply chain resilience of firms: A relational analysis using Total Interpretive Structural Modeling (TISM). Technol. Forecast. Soc. Chang. 2017, 118, 161–169. [Google Scholar] [CrossRef]
- Taleai, M.; Sharifi, A.; Sliuzas, R.; Mesgari, M. Evaluating the compatibility of multi-functional and intensive urban land uses. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 375–391. [Google Scholar] [CrossRef]
- Rajabi, M.; Mansourian, A.; Talei, M. A comparing study between AHP, AHP-OWA and Fuzzy AHP-OWA multi-criteria decision making methods for site selection of residential complexes in Tabriz-Iran. J. Environ. Stud. 2011, 37, 77–92. [Google Scholar]
- Ujoh, F.; Igbawua, T.; Ogidi Paul, M. Suitability mapping for rice cultivation in Benue State, Nigeria using satellite data. Geo-Spat. Inf. Sci. 2019, 22, 332–344. [Google Scholar] [CrossRef] [Green Version]
- Malaperdas, G.; Zacharias, N. The habitation Model Trend Calculation (MTC): A new effective tool for predictive modeling in archaeology. Geo-Spat. Inf. Sci. 2019, 22, 314–331. [Google Scholar] [CrossRef]
- Taleai, M.; Mansourian, A.; Sharifi, A. Surveying general prospects and challenges of GIS implementation in developing countries: A SWOT–AHP approach. J. Geogr. Syst. 2009, 11, 291–310. [Google Scholar] [CrossRef]
- Saaty, T.L. Fundamentals of the analytic network process—multiple networks with benefits, costs, opportunities and risks. J. Syst. Sci. Syst. Eng. 2004, 13, 348–379. [Google Scholar] [CrossRef]
- Yin, S.-H.; Wang, C.-C.; Teng, L.-Y.; Hsing, Y.M. Application of DEMATEL, ISM, and ANP for key success factor (KSF) complexity analysis in RD alliance. Sci. Res. Essays 2012, 7, 1872–1890. [Google Scholar]
- Saaty, T.L. The analytical hierarchy process, planning, priority. In Resource Allocation; RWS Publications: Pittsburgh, PA, USA, 1980. [Google Scholar]
- Saaty, T.L. Decision Making with Dependence and Feedback: The Analytic Network Process; RWS publications: Pittsburgh, PA, USA, 1996; Volume 4922. [Google Scholar]
- Saaty, T.L.; Vargas, L.G. Decision Making with the Analytic Network Process; Springer: Berlin/Heidelberg, Germany, 2006; Volume 282. [Google Scholar]
- Taleai, M.; Mansourian, A. Using Delphi-AHP method to survey major factors causing urban plan implementation failure. J. Appl. Sci. 2008, 8, 2746–2751. [Google Scholar] [CrossRef] [Green Version]
- Coaffee, J.; Clarke, J. On securing the generational challenge of urban resilience. Town Plan. Rev. 2015, 86, 249–255. [Google Scholar] [CrossRef]
- Ahern, J. From fail-safe to safe-to-fail: Sustainability and resilience in the new urban world. Landsc. Urban Plan. 2011, 100, 341–343. [Google Scholar] [CrossRef] [Green Version]
- Walker, B.; Salt, D. Resilience Thinking: Sustaining Ecosystems and People in a Changing World; Island Press: Washington, DC, USA, 2012. [Google Scholar]
- Godschalk, D.R. Urban hazard mitigation: Creating resilient cities. Nat. Hazards Rev. 2003, 4, 136–143. [Google Scholar] [CrossRef]
- Sharifi, A.; Yamagata, Y. Urban resilience assessment: Multiple dimensions, criteria, and indicators. In Urban Resilience; Springer: Berlin/Heidelberg, Germany, 2016; pp. 259–276. [Google Scholar]
- Chelleri, L.; Olazabal, M. Multidisciplinary Perspectives on Urban Resilience: A Workshop Report; BC3, Basque Centre for Climate Change: Leioa, Spain, 2012. [Google Scholar]
- Eraydin, A. “Resilience Thinking” for Planning. In Resilience Thinking in Urban Planning; Springer: Berlin/Heidelberg, Germany, 2013; pp. 17–37. [Google Scholar]
- Eraydin, A.; Tuna, T.K. Resilience Thinking in Urban Planning Springer; Kok, T.T., Ed.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Grafakos, S.; Gianoli, A.; Tsatsou, A. Towards the development of an integrated sustainability and resilience benefits assessment framework of urban green growth interventions. Sustainability 2016, 8, 461. [Google Scholar] [CrossRef] [Green Version]
- Hassler, U.; Kohler, N. Resilience in the Built Environment; Taylor & Francis: Abingdon, UK, 2014. [Google Scholar]
- Meerow, S.; Stults, M. Comparing conceptualizations of urban climate resilience in theory and practice. Sustainability 2016, 8, 701. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, P.J.G.; Gonçalves, L.A.P.J. Urban resilience: A conceptual framework. Sustain. Cities Soc. 2019, 50, 101625. [Google Scholar] [CrossRef]
- Alizadeh, H.; Sharifi, A. Assessing resilience of urban critical infrastructure networks: A case study of Ahvaz, Iran. Sustainability 2020, 12, 3691. [Google Scholar] [CrossRef]
- Øien, K. Risk indicators as a tool for risk control. Reliab. Eng. Syst. Saf. 2001, 74, 129–145. [Google Scholar] [CrossRef]
- Freudenberg, M. Composite Indicators of Country Performance: A critical Assessment; OECD Publishing: Paris, France, 2003. [Google Scholar]
- Lu, P.; Stead, D. Understanding the notion of resilience in spatial planning: A case study of Rotterdam, The Netherlands. Cities 2013, 35, 200–212. [Google Scholar] [CrossRef]
- Zhao, X.; Cai, H.; Chen, Z.; Gong, H.; Feng, Q. Assessing urban lifeline systems immediately after seismic disaster based on emergency resilience. Struct. Infrastruct. Eng. 2016, 12, 1634–1649. [Google Scholar] [CrossRef]
- Zhang, X.; Miller-Hooks, E.; Denny, K. Assessing the role of network topology in transportation network resilience. J. Transp. Geogr. 2015, 46, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Saxena, M.R. Role of Open Spaces in Disaster Management; AGORA: Baltimore, ML, USA, 2016. [Google Scholar]
- Anhorn, J.; Khazai, B. Open space suitability analysis for emergency shelter after an earthquake. Nat. Hazards Earth Syst. Sci. 2015, 15, 789–803. [Google Scholar] [CrossRef] [Green Version]
- Erten, S.; Torun, A.O.; Gurleyen, T.; Akbas, C.; Zunbiloglu, E. Resilience Abilities of Urban Squares: A Study in Istanbul’s Peripheral districts. 2016. Available online: https://www.semanticscholar.org/paper/Resilience-abilities-of-urban-squares%3A-A-study-in-Erten-Torun/70ca7b319ffab32a0ae93ad40699cd4240796df6 (accessed on 14 March 2022).
- Yousuf Reja, M. Investigating the Role of Open Spaces and Public Buildings for Earthquake Vulnerability Reduction in Old Dhaka. 2012. Available online: http://lib.buet.ac.bd:8080/xmlui/handle/123456789/3053 (accessed on 14 March 2022).
- Siavash, Y.S. Achieving Urban Resilience: Through Urban Design and Planning Principles; Oxford Brookes University: Oxford, UK, 2016. [Google Scholar]
- Silva, M.C.; Horta, I.M.; Leal, V.; Oliveira, V. A spatially-explicit methodological framework based on neural networks to assess the effect of urban form on energy demand. Appl. Energy 2017, 202, 386–398. [Google Scholar] [CrossRef]
- Zekry, M.; Al Hagla, K.; Saadallah, D.M. Urban Governance as a Tool for Enhancing Resilient Urban Form: Case Study Alexandria, Egypt. In Proceedings of the REAL CORP 2020, 25th International Conference on Urban Development, Vienna, Austria, 15–18 April 2020. [Google Scholar]
- Wamsler, C.; Brink, E.; Rivera, C. Planning for climate change in urban areas: From theory to practice. J. Clean. Prod. 2013, 50, 68–81. [Google Scholar] [CrossRef] [Green Version]
- Allan, P.; Bryant, M. Resilience as a framework for urbanism and recovery. J. Landsc. Archit. 2011, 6, 34–45. [Google Scholar] [CrossRef]
- Salat, S.; Vialan, D.; Nowacki, C. A Common Metrics and Set of Indicators for Assessing Buildings and Urban Fabric Sustainability Performance; CESB: Prague, Czech Republic, 2010; pp. 1–12.
- Stevens, M.R.; Berke, P.R.; Song, Y. Creating disaster-resilient communities: Evaluating the promise and performance of new urbanism. Landsc. Urban Plan. 2010, 94, 105–115. [Google Scholar] [CrossRef]
- Van Den Hoek, J.W. The MXI (Mixed-use Index) as tool for urban planning and analysis. In Corporations and Cities: Envisioning Corporate Real Estate in the Urban Future; TUDelft: Delft, The Netherlands, 2008; pp. 1–15. [Google Scholar]
- Downes, N.K.; Storch, H.; Schmidt, M.; Van Nguyen, T.C.; Tran, T.N. Understanding Ho Chi Minh City’s urban structures for urban land-use monitoring and risk-adapted land-use planning. In Sustainable Ho Chi Minh City: Climate Policies for Emerging Mega Cities; Springer: Berlin/Heidelberg, Germany, 2016; pp. 89–116. [Google Scholar]
- Meshkini, A.; Hajilou, M.; Jokar, S.; Esmaeili, A. The role of land use patterns in earthquake resilience: A case study of the Ahvaz Manba Ab neighborhood. Nat. Hazards 2021, 109, 2027–2051. [Google Scholar] [CrossRef]
- Salat, S. A systemic approach of urban resilience: Power laws and urban growth patterns. Int. J. Urban Sustain. Dev. 2017, 9, 107–135. [Google Scholar] [CrossRef]
- Bourdic, L.; Salat, S.; Nowacki, C. Assessing cities: A new system of cross-scale spatial indicators. Build. Res. Inf. 2012, 40, 592–605. [Google Scholar] [CrossRef]
- Verrucci, E.; Rossetto, T.; Twigg, J.; Adams, B. Multi-disciplinary indicators for evaluating the seismic resilience of urban areas. In Proceedings of the 15th World Conference Earthquake Engineering, Lisbon, Portugal, 24–28 September 2012. [Google Scholar]
- Ng, S.T.; Xu, F.J.; Yang, Y.; Lu, M.; Li, J. Necessities and challenges to strengthen the regional infrastructure resilience within city clusters. Procedia Eng. 2018, 212, 198–205. [Google Scholar] [CrossRef]
- Chen, S.; Claramunt, C.; Ray, C. A spatio-temporal modelling approach for the study of the connectivity and accessibility of the Guangzhou metropolitan network. J. Transp. Geogr. 2014, 36, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Boeing, G. Measuring the complexity of urban form and design. Urban Des. Int. 2018, 23, 281–292. [Google Scholar] [CrossRef] [Green Version]
- Silva, C. Structural accessibility for mobility management. Prog. Plan. 2013, 81, 1–49. [Google Scholar] [CrossRef]
- Villagra, P.; Rojas, C.; Ohno, R.; Xue, M.; Gómez, K. A GIS-base exploration of the relationships between open space systems and urban form for the adaptive capacity of cities after an earthquake: The cases of two Chilean cities. Appl. Geogr. 2014, 48, 64–78. [Google Scholar] [CrossRef]
- Sharifi, A.; Roosta, M.; Javadpoor, M. Urban form resilience: A comparative analysis of traditional, semi-planned, and planned neighborhoods in Shiraz, Iran. Urban Sci. 2021, 5, 18. [Google Scholar] [CrossRef]
- Bruwier, M.; Mustafa, A.; Aliaga, D.G.; Archambeau, P.; Erpicum, S.; Nishida, G.; Zhang, X.; Pirotton, M.; Teller, J.; Dewals, B. Influence of urban pattern on inundation flow in floodplains of lowland rivers. Sci. Total Environ. 2018, 622, 446–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irajifar, L.; Sipe, N.; Alizadeh, T. The impact of urban form on disaster resiliency: A case study of Brisbane and Ipswich, Australia. Int. J. Disaster Resil. Built Environ. 2016, 7, 259–275. [Google Scholar] [CrossRef]
- Lotfi Sedighe, N.A. Akbari Fatemeh. Assessment and evaluation of the physical dimensions of urban resilience against earthquakes. New Attitudes Hum. Geogr. 2020, 12, 19–37. [Google Scholar]
- Coaffee, J.; Therrien, M.C.; Chelleri, L.; Henstra, D.; Aldrich, D.P.; Mitchell, C.L.; Tsenkova, S.; Rigaud, É.; on behalf of the participants. Urban Resilience Implementation: A Policy Challenge and Research Agenda for the 21st Century; Wiley Online Library: Hoboken, NJ, USA, 2018; Volume 26, pp. 403–410. [Google Scholar]
Focus Area | Indicators | Relevant Resilience Characteristic | Measurement of Indicators | Effect on Resilience | Related References |
---|---|---|---|---|---|
Built Environment | Building Density (BD) | Modularity, Efficiency | The ratio of the built-up area of a building and the area of land | Negative | [39,40,42,87,88,89] |
Land use Diversity (LUD) | Diversity, Redundancy, Modularity, Adaptability, Multifunctionality, Efficiency | Shannon entropy index | Positive | [28,39,87,88,89,90,91,92,93,94,95,96] | |
Land uses Suitability (LUS) | Diversity, Redundancy, Modularity, Adaptability, Multifunctionality, Efficiency | Land uses compatibility matrix | Positive | ||
Location status of hazardous uses such as gas stations (LHU) | Diversity, Redundancy, Modularity, Adaptability, Multifunctionality, Efficiency | Existing standards related to the placement and location of land uses | Positive | ||
Distribution of uses (DOU) | Diversity, Redundancy, Modularity, Adaptability, Multifunctionality, Efficiency | Proximity Nearest index | Positive | ||
Granulation of parcels (GOP) | Diversity, Adaptability | The ratio of the number of parcels to the total land area | Negative | [88,97,98] | |
Robustness of buildings (ROB) | Robustness, Modularity, Efficiency | The strength of the building according to the number of years of construction | Positive | [39,99] | |
Slope Ratio (SR) | Adaptability, Efficiency | Topographic maps and DEMs | Negative | [100] | |
Access to emergency services centers (AEC) | Modularity, Adaptability, Efficiency | Accessibility | Positive | [28,95] | |
Aspect Ratio (H/W) (AR) | Adaptability, Efficiency | The ratio of the height of the buildings to the width of the adjacent pathway | Negative | [88,98] | |
Urban Network | The length of the main streets (LOS) | Connectivity, Redundancy, Modularity, Adaptability, Efficiency | The ratio of network area with arterial function to the total area | Positive | [39,100] |
Street Width (SW) | Connectivity, Redundancy, Modularity, Adaptability, Efficiency | The numerical value of the width of the street | Positive | [100] | |
Urban Network Type (UNT) | Diversity, Connectivity, Robustness, Modularity, Adaptability, Efficiency | The street network patterns such as grid, ring… | Positive | [82] | |
Connectivity (CO) | Connectivity, Robustness, Modularity, Adaptability, Efficiency | The ratio of the number of links to the number of intersections in the street network | Positive | [7,88,89,100,101,102] | |
Centrality (CE) | Connectivity, Robustness, Modularity, Adaptability, Efficiency | The ratio of the number of nodes to the total number of nodes | Negative | [7] | |
Accessibility (A) | Connectivity, Robustness, Modularity, Adaptability, Efficiency | The maximum distance among all shortest distances between two intersections in the network | Positive | [38,88,103] | |
Urban open and green spaces | Access to open and green spaces (AOGS) | Diversity, Modularity, Adaptability, Multifunctionality, Efficiency | Kernel Density | Positive | [20,38,40,84,87,88,89,98,104] |
The size of open and green spaces (SOGS) | Adaptability, Multifunctionality, Efficiency | Area of open and urban green spaces | Positive | ||
Proportion of open and green spaces (POGS) | Diversity, Connectivity, Modularity, Adaptability, Efficiency | The ratio of urban green and open spaces to the total land area | Positive | ||
Density of the built environment around open spaces (DOBE) | Modularity, Adaptability, Efficiency | Balance Index | Negative |
BD | LUD | LUS | LHU | DOU | GOP | ROB | SR | AEC | AR | LOS | SW | UNT | CO | CE | A | AOGS | SOGS | POGS | DOBE | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BD (1) | X | O | V | V | O | X | O | V | X | X | X | X | O | X | V | V | X | V | X | |
LUD (2) | X | X | X | O | A | O | V | O | O | O | A | A | A | V | V | O | V | A | ||
LUS (3) | X | A | O | O | O | V | O | A | O | O | O | O | V | O | V | V | X | |||
LHU (4) | X | V | O | O | O | O | O | A | A | V | A | V | O | O | O | O | ||||
DOU (5) | O | X | A | X | O | A | A | A | A | A | X | V | V | X | A | |||||
GOP (6) | A | A | O | O | O | O | O | V | O | O | O | O | O | O | ||||||
ROB (7) | A | V | O | X | X | V | V | O | V | V | V | V | O | |||||||
SR (8) | V | O | O | O | V | V | V | V | V | O | V | O | ||||||||
AEC (9) | O | A | A | A | A | A | A | O | O | O | O | |||||||||
AR (10) | X | A | O | V | O | V | O | O | O | O | ||||||||||
LOS (11) | V | X | X | V | X | V | O | O | O | |||||||||||
SW (12) | A | X | O | V | V | O | O | O | ||||||||||||
UNT (13) | X | X | X | V | O | O | O | |||||||||||||
CO (14) | X | X | V | O | O | A | ||||||||||||||
CE (15) | V | V | V | V | A | |||||||||||||||
A (16) | X | O | X | V | ||||||||||||||||
AOGS (17) | A | A | A | |||||||||||||||||
SOGS (18) | V | A | ||||||||||||||||||
POGS (19) | A | |||||||||||||||||||
DOBE (20) |
Factor | Reachability Set | Antecedent Set | Intersection Set |
---|---|---|---|
1 | 1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20 | 1,2,3,4,5,7,8,10,11,12,13,14,15,16,18,20 | 1,2,3,4,5,7,10,11,12,13,14,15,16,18,20 |
2 | 1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20 | 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20 | 1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,18,19,20 |
3 | 1,2,3,4,5,9,11,13,14,15,16,17,18,19,20 | 1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,19,20 | 1,2,3,4,5,9,11,13,14,15,16,19,20 |
4 | 1,2,3,4,5,7,9,11,12,13,14,15,16,17,18,19,20 | 1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,18,19,20 | 1,2,3,4,5,7,9,11,12,13,14,15,16,18,19,20 |
5 | 1,2,3,4,5,6,7,9,11,12,13,14,16,17,18,19,20 | 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 | 1,2,3,4,5,6,7,9,11,12,13,14,16,17,18,19,20 |
6 | 2,5,6,9,11,12,13,14,15,16,17 | 1,2,5,6,7,8,11,12,13,15 | 2,5,6,11,12,13,15 |
7 | 1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20 | 1,2,4,5,7,8,9,10,11,12,13,14,15,16,18,19,20 | 1,2,4,5,7,9,10,11,12,13,14,15,16,18,19,20 |
8 | 1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,20 | 8 | 8 |
9 | 2,3,4,5,7,9,16,17,18,19 | 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 | 2,3,4,5,7,9,16,17,18,19 |
10 | 1,2,3,4,5,7,9,10,11,12,13,14,15,16,17,18,19,20 | 1,2,7,10,11,12,13,14,15,16,18,20 | 1,2,7,10,11,12,13,14,15,16,18,20 |
11 | 1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20 | 1,2,3,4,5,6,7,8,10,11,12,13,14,15,16,17,18,19,20 | 1,2,3,4,5,6,7,10,11,12,13,14,15,16,17,18,19,20 |
12 | 1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20 | 1,2,4,5,6,7,8,10,11,12,13,14,15,16,18,20 | 1,2,4,5,6,7,10,11,12,13,14,15,16,18,20 |
13 | 1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20 | 1,2,3,4,5,6,7,8,10,11,12,13,14,15,16,17,18,19,20 | 1,2,3,4,5,6,7,10,11,12,13,14,15,16,17,18,19,20 |
14 | 1,2,3,4,5,7,9,10,11,12,13,14,15,16,17,18,19,20 | 1,2,3,4,5,6,7,8,10,11,12,13,14,15,16,17,19,20 | 1,2,3,4,5,7,10,11,12,13,14,15,16,17,19,20 |
15 | 1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20 | 1,2,3,4,6,7,8,10,11,12,13,14,15,16,18,20 | 1,2,3,4,6,7,10,11,12,13,14,15,16,18,20 |
16 | 1,2,3,4,5,7,9,10,11,12,13,14,15,16,17,18,19,20 | 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 | 1,2,3,4,5,7,9,10,11,12,13,14,15,16,17,18,19,20 |
17 | 5,9,11,13,14,16,17,19,20 | 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 | 5,9,11,13,14,16,17,19,20 |
18 | 1,2,4,5,7,9,10,11,12,13,15,16,17,18,19,20 | 1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,18,19,20 | 1,2,4,5,7,9,10,11,12,13,15,16,18,19,20 |
19 | 1,2,3,4,5,7,9,11,13,14,16,17,18,19,20 | 1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20 | 1,2,3,4,5,7,9,11,13,14,16,17,18,19,20 |
20 | 1,2,3,4,5,7,9,10,11,12,13,14,15,16,17,18,19,20 | 1,2,3,4,5,7,8,10,11,12,13,14,15,16,17,18,19,20 | 1,2,3,4,5,7,10,11,12,13,14,15,16,17,18,19,20 |
L1 = {5,9,16,17,19} | |||
1 | 1,2,3,4,6,7,10,11,12,13,14,15,18,20 | 1,2,3,4,7,8,10,11,12,13,14,15,18,20 | 1,2,3,4,7,10,11,12,13,14,15,18,20 |
2 | 1,2,3,4,6,7,10,11,12,13,14,15,18,20 | 1,2,3,4,6,7,8,10,11,12,13,14,15,18,20 | 1,2,3,4,6,7,10,11,12,13,14,15,18,20 |
3 | 1,2,3,4,11,13,14,15,18,20 | 1,2,3,4,7,8,10,11,12,13,14,15,20 | 1,2,3,4,11,13,14,15,20 |
4 | 1,2,3,4,7,11,12,13,14,15,18,20 | 1,2,3,4,7,8,10,11,12,13,14,15,18,20 | 1,2,3,4,7,11,12,13,14,15,18,20 |
6 | 2,6,7,11,12,13,14,15 | 1,2,6,7,8,11,12,13,15 | 2,6,7,11,12,13,15 |
7 | 1,2,3,4,6,7,10,11,12,13,14,15,18,20 | 1,2,4,7,8,10,11,12,13,14,15,18,20 | 1,2,4,7,10,11,12,13,14,15,18,20 |
8 | 1,2,3,4,6,7,8,11,12,13,14,15,18,20 | 8 | 8 |
10 | 1,2,3,4,7,10,11,12,13,14,15,18,20 | 1,2,7,10,11,12,13,14,15,18,20 | 1,2,7,10,11,12,13,14,15,18,20 |
11 | 1,2,3,4,6,7,10,11,12,13,14,15,18,20 | 1,2,3,4,6,7,8,10,11,12,13,14,15,18,20 | 1,2,3,4,6,7,10,11,12,13,14,15,18,20 |
12 | 1,2,3,4,6,7,10,11,12,13,14,15,18,20 | 1,2,4,6,7,8,10,11,12,13,14,15,18,20 | 1,2,4,6,7,10,11,12,13,14,15,18,20 |
13 | 1,2,3,4,6,7,10,11,12,13,14,15,18,20 | 1,2,3,4,6,7,8,10,11,12,13,14,15,18,20 | 1,2,3,4,6,7,10,11,12,13,14,15,18,20 |
14 | 1,2,3,4,7,10,11,12,13,14,15,18,20 | 1,2,3,4,6,7,8,10,11,12,13,14,15,20 | 1,2,3,4,7,10,11,12,13,14,15,20 |
15 | 1,2,3,4,6,7,10,11,12,13,14,15,18,20 | 1,2,3,4,6,7,8,10,11,12,13,14,15,18,20 | 1,2,3,4,6,7,10,11,12,13,14,15,18,20 |
18 | 1,2,4,7,10,11,12,13,15,18,20 | 1,2,3,4,7,8,10,11,12,13,14,15,18,20 | 1,2,4,7,10,11,12,13,15,18,20 |
20 | 1,2,3,4,7,10,11,12,13,14,15,18,20 | 1,2,3,4,7,8,10,11,12,13,14,15,18,20 | 1,2,3,4,7,10,11,12,13,14,15,18,20 |
L2 = {2,11,13,15,18,20} | |||
1 | 1,3,4,6,7,10,12,14 | 1,3,4,7,8,10,12,14 | 1,3,4,7,10,12,14 |
3 | 1,3,4,14 | 1,3,4,7,8,10,12,14 | 1,3,4,14 |
4 | 1,3,4,7,12,14 | 1,3,4,7,8,10,12,14 | 1,3,4,7,12,14 |
6 | 6,12,14 | 1,6,7,8,12 | 6,12 |
7 | 1,3,4,6,7,10,12,14 | 1,3,4,7,8,10,12,14 | 1,3,4,7,10,12,14 |
8 | 1,3,4,6,7,8,12,14 | 8 | 8 |
10 | 1,3,4,7,10,12,14 | 1,7,10,12,14 | 1,7,10,12,14 |
12 | 1,3,4,6,7,10,12,14 | 1,4,6,7,8,10,12,14 | 1,4,6,7,10,12,14 |
14 | 1,3,4,7,10,12,14 | 1,3,4,6,7,8,10,12,14 | 1,3,4,7,10,12,14 |
L3 = {3,4,14} | |||
1 | 1,6,7,10,12 | 1,7,8,10,12 | 1,7,10,12 |
6 | 6,12 | 1,6,7,8,12 | 6,12 |
7 | 1,6,7,10,12 | 1,7,8,10,12 | 1,7,10,12 |
8 | 1,6,7,8,12 | 8 | 8 |
10 | 1,7,10,12 | 1,7,10,12 | 1,7,10,12 |
12 | 1,6,7,10,12 | 1,6,7,8,10,12 | 1,6,7,10,12 |
L4 = {6,10,12} | |||
1 | 1,7 | 1,7,8 | 1,7 |
7 | 1,7 | 1,7,8 | 1,7 |
8 | 1,7,8 | 1,7,8 | 1,7,8 |
L5 = {1,7,8} |
BD | LUD | LUS | LHU | DOU | GOP | ROB | SR | AEC | AR | |
---|---|---|---|---|---|---|---|---|---|---|
BD | 0 | 0.09996 | 0.09655 | 0.06874 | 0.09077 | 0.09614 | 0.06655 | 0.09601 | 0.13517 | 0.09259 |
LUD | 0.02852 | 0 | 0.03626 | 0 | 0.04213 | 0.04296 | 0.04033 | 0.03884 | 0 | 0.03824 |
LUS | 0.04844 | 0.04803 | 0 | 0.04983 | 0.05575 | 0.05408 | 0.04933 | 0.03734 | 0.06733 | 0.04915 |
LHU | 0.04554 | 0.03557 | 0.04146 | 0 | 0.04794 | 0.05318 | 0.04223 | 0.04345 | 0.05833 | 0.04374 |
DOU | 0.05935 | 0.06744 | 0.04985 | 0.06016 | 0 | 0.06109 | 0.05684 | 0.05035 | 0.07334 | 0.06026 |
GOP | 0.07376 | 0.06514 | 0.0646 | 0.06914 | 0.07126 | 0.05398 | 0 | 0.06767 | 0.10175 | 0.07197 |
ROB | 0.07686 | 0.09475 | 0.11257 | 0.08725 | 0.09848 | 0 | 0.08066 | 0.08269 | 0.12166 | 0.08208 |
SR | 0.02492 | 0.02912 | 0.02764 | 0.03352 | 0 | 0 | 0.02772 | 0 | 0 | 0.02562 |
AEC | 0.05494 | 0.05193 | 0.04457 | 0.05504 | 0.06305 | 0.05238 | 0.05474 | 0.03053 | 0 | 0.05325 |
AR | 0.08096 | 0.09645 | 0.07461 | 0.07266 | 0.07746 | 0.08252 | 0.08186 | 0.04525 | 0.13467 | 0 |
LOS | 0.03313 | 0.03712 | 0.03272 | 0.04113 | 0.03433 | 0.04266 | 0.03592 | 0.07709 | 0 | 0.03193 |
SW | 0.08036 | 0.07995 | 0.07301 | 0.07265 | 0.08567 | 0.07231 | 0.07635 | 0.03654 | 0.09555 | 0.07787 |
UNT | 0.03693 | 0.03662 | 0.03395 | 0.04573 | 0.03693 | 0.04326 | 0.04313 | 0.06687 | 0 | 0.03353 |
CO | 0.06435 | 0.04883 | 0.05138 | 0.05784 | 0.06705 | 0.05308 | 0.05354 | 0.03544 | 0.06813 | 0.05455 |
CE | 0.07286 | 0.06273 | 0.05996 | 0.05072 | 0.06295 | 0.0641 | 0.06024 | 0.05066 | 0.07114 | 0.06596 |
A | 0.06645 | 0.07194 | 0.05803 | 0.05844 | 0.06205 | 0.0657 | 0.07205 | 0.05987 | 0.07294 | 0.06977 |
AOGS | 0.05354 | 0.03802 | 0.04793 | 0.05133 | 0.05575 | 0.04767 | 0.04643 | 0.05967 | 0 | 0.04905 |
SOGS | 0.02832 | 0 | 0.0268 | 0.03692 | 0 | 0.03385 | 0.03503 | 0.03624 | 0 | 0.0283 |
POGS | 0.04053 | 0.03641 | 0.03806 | 0.04723 | 0.04844 | 0.04146 | 0.04313 | 0.04845 | 0 | 0.04119 |
DOBE | 0.03022 | 0 | 0.03005 | 0.04167 | 0 | 0.03956 | 0.03392 | 0.03704 | 0 | 0.03097 |
LOS | SW | UNT | CO | CE | A | AOGS | SOGS | POGS | DOBE | |
BD | 0.08088 | 0.09307 | 0.07858 | 0.08128 | 0.09238 | 0.07046 | 0.09463 | 0.08588 | 0.09196 | 0.0983 |
LUD | 0.04084 | 0.04324 | 0.03994 | 0.04205 | 0.04164 | 0.03973 | 0 | 0.04434 | 0.03542 | 0.03694 |
LUS | 0.04714 | 0.04894 | 0.04264 | 0.04044 | 0.04985 | 0.05224 | 0.06152 | 0.04904 | 0.05202 | 0.03874 |
LHU | 0.04464 | 0.04724 | 0.04174 | 0.06298 | 0.05145 | 0.04544 | 0 | 0 | 0.04377 | 0.03533 |
DOU | 0.04765 | 0.06365 | 0.05035 | 0.05783 | 0.07036 | 0.06435 | 0.07232 | 0.04954 | 0.05524 | 0.05445 |
GOP | 0.07397 | 0.07166 | 0.07387 | 0.0836 | 0.07897 | 0.06725 | 0.08071 | 0.05785 | 0.06007 | 0.06456 |
ROB | 0.07057 | 0.09408 | 0.08999 | 0.07794 | 0.09919 | 0.08857 | 0.11233 | 0.07136 | 0.08844 | 0.0959 |
SR | 0.02833 | 0.03353 | 0.03103 | 0.05348 | 0.04424 | 0.02722 | 0 | 0.03703 | 0.0319 | 0.02703 |
AEC | 0.04935 | 0.04914 | 0.05295 | 0.06601 | 0.06526 | 0.05314 | 0.05972 | 0.04584 | 0.04809 | 0.04464 |
AR | 0.08839 | 0.07756 | 0.08469 | 0.03932 | 0.09188 | 0.08186 | 0.08542 | 0.07116 | 0.07858 | 0.08268 |
LOS | 0 | 0 | 0 | 0 | 0 | 0.03343 | 0.04121 | 0.04254 | 0.04729 | 0.03213 |
SW | 0.07457 | 0 | 0.07708 | 0.04842 | 0.08017 | 0.07536 | 0.09242 | 0.07557 | 0.0654 | 0.08609 |
UNT | 0.03063 | 0.04073 | 0 | 0 | 0 | 0.03743 | 0.04085 | 0.04604 | 0.03562 | 0.03303 |
CO | 0.05215 | 0.04754 | 0.04665 | 0 | 0.06396 | 0.05674 | 0.06772 | 0.05965 | 0.04719 | 0.04665 |
CE | 0.06056 | 0.06585 | 0.07387 | 0.05014 | 0 | 0.06315 | 0.05902 | 0.06556 | 0.05564 | 0.05475 |
A | 0.06586 | 0.06695 | 0.07267 | 0.05297 | 0.06856 | 0 | 0.07772 | 0.06276 | 0.0648 | 0.06356 |
AOGS | 0.04655 | 0.04724 | 0.04515 | 0.04913 | 0.05635 | 0.04644 | 0 | 0.04144 | 0.04286 | 0.03914 |
SOGS | 0.03113 | 0.03293 | 0.03143 | 0.05297 | 0 | 0.02892 | 0 | 0 | 0.03461 | 0.03674 |
POGS | 0.04053 | 0.03641 | 0.03806 | 0.04723 | 0.04844 | 0.04146 | 0.04313 | 0.04845 | 0 | 0.04119 |
DOBE | 0.03022 | 0 | 0.03005 | 0.04167 | 0 | 0.03956 | 0.03392 | 0.03704 | 0 | 0.03097 |
Rank of Importance | Definition | Description |
---|---|---|
1 | Equal importance | Two elements are equally important to achieve the goal |
3 | Some more important | One element is slightly more important than the other |
5 | Much more important | One element is more important than the other |
7 | Very much important | One element is much more important than the other |
9 | Extremely important | One element is quite more important than the other |
2,4,6,8 | Intermediate values between adjoining values | Comparison times are required |
Reciprocals above | Reciprocal for inverse comparison | In inverse comparison, the inverse number must be considered |
Diversity | Connectivity | Redundancy | Robustness | Modularity | Adaptability | Multifunctionality | Efficiency | Weights | |
---|---|---|---|---|---|---|---|---|---|
Diversity | 0.033 | 0.014 | 0.022 | 0.045 | 0.038 | 0.048 | 0.029 | 0.030 | 0.032 |
Connectivity | 0.200 | 0.082 | 0.054 | 0.105 | 0.057 | 0.065 | 0.118 | 0.121 | 0.100 |
Redundancy | 0.167 | 0.164 | 0.109 | 0.079 | 0.227 | 0.097 | 0.118 | 0.121 | 0.135 |
Robustness | 0.233 | 0.247 | 0.435 | 0.314 | 0.227 | 0.388 | 0.294 | 0.242 | 0.297 |
Modularity | 0.100 | 0.164 | 0.054 | 0.157 | 0.113 | 0.097 | 0.118 | 0.121 | 0.116 |
Adaptability | 0.133 | 0.247 | 0.217 | 0.157 | 0.227 | 0.194 | 0.235 | 0.182 | 0.199 |
Multifunctionality | 0.067 | 0.041 | 0.054 | 0.063 | 0.057 | 0.048 | 0.059 | 0.121 | 0.064 |
Efficiency | 0.067 | 0.041 | 0.054 | 0.079 | 0.057 | 0.064 | 0.029 | 0.061 | 0.056 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parizi, S.M.; Taleai, M.; Sharifi, A. A GIS-Based Multi-Criteria Analysis Framework to Evaluate Urban Physical Resilience against Earthquakes. Sustainability 2022, 14, 5034. https://doi.org/10.3390/su14095034
Parizi SM, Taleai M, Sharifi A. A GIS-Based Multi-Criteria Analysis Framework to Evaluate Urban Physical Resilience against Earthquakes. Sustainability. 2022; 14(9):5034. https://doi.org/10.3390/su14095034
Chicago/Turabian StyleParizi, Sedigheh Meimandi, Mohammad Taleai, and Ayyoob Sharifi. 2022. "A GIS-Based Multi-Criteria Analysis Framework to Evaluate Urban Physical Resilience against Earthquakes" Sustainability 14, no. 9: 5034. https://doi.org/10.3390/su14095034