Phytochemical Analysis Using cLC-DAD, Nutritional Importance and Assessment of Antioxidant, Antidiabetic and Anticholinesterase Activities of Ruta tuberculata Forssk Organic Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material and Extraction
2.3. Phytochemical Investigation
2.3.1. Spectrophotometric Determination of Total Phenolic Content
2.3.2. Characterization of Phenolic Compounds Using cLC-DAD Analysis
2.4. In Vitro Antioxidant Assay
2.4.1. DPPH Free Radical Test
2.4.2. ABTS Scavenging Assay
2.4.3. Total Antioxidant Capacity by Phosphomolybdenum Assay (TAC)
2.4.4. Ferric Reducing Antioxidant Power (FRAP) Test
2.4.5. Cupric Reducing Antioxidant Capacity (CUPRAC)
2.4.6. β-Carotene/Linoleic Acid Bleaching Assay
2.5. Anti-Diabetic Test
2.5.1. Anti-α-Amylase Assay
2.5.2. Anti-α-Glucosidase Assay
2.6. Anti-Alzheimer Effect (Anti-Cholinesterase Activity)
2.7. Statistical Analysis
3. Results and Discussion
3.1. Extraction Yield and Spectrophotometric Determination of Total Bioactive Contents
3.2. Phenolic Characterization Using cLC-DAD Analysis
3.3. Antioxidant Activity
3.3.1. Radicals Scavenging Activity
3.3.2. Reducing Power
3.3.3. Total Antioxidant Activity (TAC)
3.3.4. Lipid Peroxidation Inhibition Capacity
3.4. Anti-Diabetic Activity
3.5. Cholinesterase Inhibitory Activity (Anti-Alzheimer Activities)
3.6. Nutritional Importance of the Identified Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- AL-Ishaq, R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. Biomolecules 2019, 9, 430. [Google Scholar] [CrossRef] [PubMed]
- Bensaad, M.; Dassamiour, S.; Hambaba, L.; Bensouici, C.; Karima, O.; Kahoul, M. HPLC-DAD phenolics screening and in vitro investigation of haemostatic, antidiabetic, antioxidant and photoprotective properties of Centaurea tougourensis Boiss. & Reut. Herba Pol. 2021, 67, 16–31. [Google Scholar]
- Bensaad, M.S.; Dassamiour, S.; Hambaba, L.; Saidi, A.; Melakhsou, M.A.; Nouicer, F.; Baghiani, A.; Khennouf, S.; Kahoul, M.A.; Kadrine, N. In vivo investigation of antidiabetic, hepatoprotective, anti-inflammatory and antipyretic activities of Centaurea tougourensis Boiss. & Reut. J. Physiol. Pharmacol. 2021, 72, 439–449. [Google Scholar]
- Kubis-Kubiak, A.; Dyba, A.; Piwowar, A. The Interplay between Diabetes and Alzheimer’s Disease—In the Hunt for Biomarkers. Int. J. Mol. Sci. 2020, 21, 2744. [Google Scholar] [CrossRef] [PubMed]
- Verdile, G.; Keane, K.N.; Cruzat, V.F.; Medic, S.; Sabale, M.; Rowles, J.; Wijesekara, N.; Martins, R.N.; Fraser, P.E.; Newsholme, P. Inflammation and Oxidative Stress: The Molecular Connectivity between Insulin Resistance, Obesity, and Alzheimer’s Disease. Mediat. Inflamm. 2015, 17, 105828–105844. [Google Scholar] [CrossRef] [PubMed]
- Gali, L.; Bedjou, F. Antioxidant and anticholinesterase effects of the ethanol extract, ethanol extract fractions and total alkaloids from the cultivated Ruta chalepensis. S. Afr. J. Bot. 2018, 120, 163–169. [Google Scholar]
- Khadhri, A.; Bouali, I.; Belkhir, S.; Mokded, R.; Smiti, S.; Falé, P.; Araújo, M.E.M.; Serralheiro, M.L.M. In vitro digestion, antioxidant and antiacetylcholinesterase activities of two species of Ruta: Ruta chalepensis and Ruta montana. Pharm. Biol. 2016, 55, 101–107. [Google Scholar] [CrossRef]
- Nag, G.; De, B. Acetylcholinesterase inhibitory activity of Terminalia chebula, Terminalia bellerica and Emblica officinalis and some phenolic compounds. Int. J. Pharm. Pharm. Sci. 2011, 3, 121–124. [Google Scholar]
- Saidi, A.; Hambaba, L.; Bensaad, M.S.; Melakhessou, M.A.; Bensouici, C.; Ferhat, N.; Kahoul, M.A.; Helal, M.; Sami, R.; Alharthy, S.A.; et al. Phenolic Characterization Using cLC-DAD Analysis and Evaluation of in vitro and in vivo Pharmacological Activities of Ruta tuberculata Forssk. Antioxidants 2022, 11, 1351. [Google Scholar] [CrossRef]
- Geng, S.; Shan, S.; Ma, H.; Liu, B. Antioxidant Activity and α-Glucosidase Inhibitory Activities of the Polycondensate of Catechin with Glyoxylic Acid. PLoS ONE 2016, 11, e0150412. [Google Scholar] [CrossRef]
- Sami, R.; Khojah, E.; Mansour, A.M.A.; Al-Mushhin, A.A.M.; Elhakem, A.; El-Sherif, D.M.; Alkaltham, M.S.; Salamatullah, A.M. Nutritional Values, Microbial Population and Bioactive Components of Pomegranate (Punica granatum L.) Peel Extracts. Int. J. Pharmacol. 2021, 17, 208–216. [Google Scholar] [CrossRef]
- Carvalho, L.S.A.d.; Queiroz, L.S.; Junior, I.J.A.; Almeida, A.d.C.; Coimbra, E.S.; Pinto, P.d.F.; Silva, M.P.N.d.; Moraes, J.D.; Filho, A.A.D.S. In vitro Schistosomicidal Activity of the Alkaloid-Rich Fraction from Ruta graveolens L. (Rutaceae) and Its Characterization by UPLC-QTOF-MS. Evid. Based Complement Altern. Med. 2019, 16, 7909137–7909144. [Google Scholar] [CrossRef] [PubMed]
- Saidi, A.; Hambaba, L.; Kucuk, B.; Cacan, E.; Erenler, R. Phenolic Profile, Acute Toxicity, and Hepatoprotective and Antiproliferative Activities of Algerian Ruta tuberculata Forssk. Curr. Bioact. Compd. 2022, 18, 1–12. [Google Scholar] [CrossRef]
- Zahiruddin, G.S.; Parveen, B.; Ibrahim, M.; Sharma, I.; Sharma, S.; Sharma, A.K.; Parveen, R.; Ahmad, S. TLC-MS Bioautography-Based Identification of Free-Radical Scavenging, α-Amylase and α-Glucosidase Inhibitor Compounds of Antidiabetic Tablet BGR-34. ACS Omega 2020, 5, 29688–29697. [Google Scholar]
- Ullah, H.; Khan, H. Anti-Parkinson Potential of Silymarin: Mechanistic Insight and Therapeutic Standing. Front. Pharmacol. 2018, 9, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Al-Brashdi, A.S.; Al-Ariymi, H.; Hashmi, M.A.; Khan, S.A. Evaluation of antioxidant potential, total phenolic content and phytochemical screening of aerial parts of a folkloric medicine, Haplophyllum tuberculatum (Forssk.) A. Juss. J. Coast. Life Med. 2016, 4, 315–319. [Google Scholar] [CrossRef]
- Zengin, G.; Sarikurkcu, C.; Aktumsek, A.; Ceylan, R.; Ceylan, O. A comprehensive study on phytochemical characterization of Haplophyllum myrtifolium Boiss. endemic to Turkey and its inhibitory potential against key enzymes involved in Alzheimer, skin diseases and type II diabetes. Ind. Crops. Prod. 2014, 53, 244–251. [Google Scholar] [CrossRef]
- Aguila, L.; Ruedlinger, J.; Mansilla, K.; Ordenes, J.; Salvatici, R.; Campos, R.R.d.; Romero, F. Relaxant effects of a hydroalcoholic extract of Ruta graveolens on isolated rat tracheal rings. Biol. Res. 2015, 48, 28–33. [Google Scholar] [CrossRef]
- Eissa, T.F.; González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Biological activity of HPLC-characterized ethanol extract from the aerial parts of Haplophyllum tuberculatum. Pharm. Biol. 2014, 52, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Eissa, T.F.; González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Compositional analysis and in vitro protective activity against oxidative stress of essential oils from egyptian plants used in traditional medicine. Nat. Prod. Commun. 2014, 9, 1377–1382. [Google Scholar] [CrossRef]
- Hamdi, A.; Majouli, K.; Abdelhamid, A.; Marzouk, B.; Belghith, H.; Chraief, I.; Bouraoui, A.; Marzouk, Z.; Heyden, Y.V. Pharmacological activities of the organic extracts and fatty acid composition of the petroleum ether extract from Haplophyllum tuberculatum leaves. J. Ethnopharmacol. 2018, 216, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Ulubelen, A.; Öztürk, M. Alkaloids, Coumarins and Lignans from Haplophyllum Species. Rec. Nat. Prod. 2008, 2, 54–69. [Google Scholar]
- Richardson, J.S.M.; Sethi, G.; Lee, G.S.; Malek, S.N.A. Chalepin: Isolated from Ruta angustifolia L. Pers induces mitochondrial mediated apoptosis in lung carcinoma cells. BMC Complement Med. Ther. 2016, 16, 389–415. [Google Scholar] [CrossRef] [PubMed]
- Nayki, C.; Nayki, U.; Cimen, F.K.; Kulhan, M.; Yapca, O.E.; Kurt, N.; Ozbek, A.B. The effect of rutin on ovarian ischemia-reperfusion injury in a rat model. Gynecol. Endocrinol. 2018, 34, 809–814. [Google Scholar] [CrossRef]
- Kasimala, M.B.; Tukue, M.; Ermias, R. Phytochemical Screening and Antibacterial Activity of Two Common Terrestrial Medicinal Plants Ruta chalepensis and Rumex nervosus. Bali Med. J. 2014, 3, 116–121. [Google Scholar] [CrossRef]
- Kacem, M.; Kacem, I.; Simon, G.; BenMansour, A.; Chaabouni, S.; Feki, A.f.E.; Bouaziz, M. Phytochemicals and biological activities of Ruta chalepensis L. growing in Tunisia. Food Biosci. 2015, 12, 73–83. [Google Scholar] [CrossRef]
- Slinkard, K.; Singleton, V.L. Total phenol analyse: Automation and comparison with manual methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar]
- Bahorun, T.; Grinier, B.; Trotin, F.; Brunet, G.; Pin, T.; Luncky, M.; Vasseur, J.; Cazin, M.; Cazin, C.; Pinkas, M. Oxygen species scavenging activity of phenolic extracts from hawthorn fresh plant organs and pharmaceutical preparations. Arzneimitt. Forsch. 1996, 46, 1086–1089. [Google Scholar]
- Heimler, D.; Vignolini, P.; Dini, M.G.; Vincieri, F.F.; Romani, A. Antiradical activity and polyphenol composition of local Brassicaceae edible varieties. Food Chem. 2006, 99, 464–469. [Google Scholar] [CrossRef]
- Erenler, R.; Sen, O.; Yaglioglu, A.S.; Demirtas, I. Bioactivity-Guided Isolation of Antiproliferative Sesquiterpene Lactones from Centaurea solstitialis L. ssp. Solstitialis. Comb. Chem. High Throughput Screen. 2016, 19, 66–72. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable Free Radical. Nature 1958, 4617, 1119–1200. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cationdecoloriza-tionassay. Free Radic. Bio. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Oyaizu, M. Studies on products of browning reactions: Antioxidative activities of browning reaction prepared from glucosamine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Apak, R.; Guclu, K.; Ozyurek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef]
- Marco, G.J. A rapid method for evaluation of antioxidants. J. Am. Oil Chem. Soc. 1968, 45, 594–598. [Google Scholar] [CrossRef]
- Lordan, S.; Smyth, T.J.; Soler-Vila, A.; Stanton, C.; Ross, R.P. The alpha-amylase and alpha-glucosidase inhibitory effects of Irish seaweed extracts. Food Chem. 2013, 141, 2170–2176. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, A., Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Sabry, O.M.M.; Sayed, A.M.E.; Alshalmani, S.K. GC/MS Analysis and Potential Cytotoxic Activity of Haplophyllum tuberculatum Essential Oils against Lung and Liver Cancer Cells. Pharmacogn. J. 2016, 8, 66–69. [Google Scholar] [CrossRef]
- Hamdi, A.; Viane, J.; Mahjoub, M.A.; Majouli, K.; Gad, M.H.H.; Kharbach, M.; Demeyer, K.; Marzouk, Z.; Heyden, Y.V. Polyphenolic contents, antioxidant activities and UPLCndash ESI-MS analysis of Haplophyllum tuberculatum A. Juss leaves extracts. Int. J. Biol. Macromol. 2017, 106, 1071–1079. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Falco, T.; Bonesi, M.; Sicari, V.; Tundis, R.; Bruno, M. Ruta chalepensis L. (Rutaceae) leaf extract: Chemical composition, antioxidant and hypoglicaemic activities. Nat. Prod. Res. 2018, 32, 521–528. [Google Scholar] [PubMed]
- Ouerghemmi, I.; Rebey, I.B.; Rahali, F.Z.; Bourgou, S.; Pistelli, L.; Ksouri, R.; Marzouk, B.; Tounsi, M.S. Antioxidant and antimicrobial phenolic compounds from extracts of cultivated and wild-grown Tunisian Ruta chalepensis. J. Food Drug Anal. 2017, 25, 350–359. [Google Scholar] [PubMed]
- Kahkeshani, N.; Farzaei, F.; Fotouhi, M.; Alavi, S.S.; Bahramsoltani, R.; Naseri, R.; Momtaz, S.; Abbasabadi, Z.; Rahimi, R.; Farzaei, M.H.; et al. Pharmacological Effects of Gallic Acid in Health and Disease: A Mechanistic Review. Iran. J. Basic Med. Sci. 2019, 22, 225–237. [Google Scholar] [PubMed]
- Rha, C.S.; Jeong, H.W.; Park, S.; Lee, S.; Jung, Y.S.; Kim, D.O. Antioxidative, anti-inflammatory, and anticancer effects of purified flavonol glycosides and aglycones in green tea. Antioxidants 2019, 8, E278–E290. [Google Scholar] [PubMed]
- Obrenovich, M.E.; Li, Y.; Parvathaneni, K.; Yendluri, B.B.; Palacios, H.H.; Leszek, J.; Aliev, G. Antioxidants in health, disease and aging. CNS Neurol. Disord. Drug Targets 2011, 10, 192–207. [Google Scholar]
- Boudjada, A.; Touil, A.; Bensouici, C.; Bendif, H.; Rhouati, S. Phenanthrene and dihydrophenanthrene derivatives from Dioscorea communis with anticholinesterase, and antioxidant activities. Nat. Prod. Res. 2018, 33, 3278–3282. [Google Scholar]
- Bazine, I.; Cheraiet, Z.; Bensegueni, R.; Bensouici, C.; Boukhari, A. Synthesis, antioxidant and anticholinesterase activities of novel quinoline-aminophosphonate derivatives. J. Heterocycl. Chem. 2020, 57, 1–11. [Google Scholar]
- Limanto, A.; Simamora, A.; Santoso, A.W.; Timotius, K.H. Antioxidant, a-Glucosidase Inhibitory Activity and Molecular Docking Study of Gallic Acid, Quercetin and Rutin: A Comparative Study. Mol. Cell Biol. Sci. 2019, 3, 67–74. [Google Scholar]
- Priscilla, D.H.; Roy, D.; Suresh, A.; Kumar, V.; Thirumurugan, K. Naringenin inhibitsa-glucosidase activity: A promising strategy for the regulation of postprandial hyperglycemia in high fat diet fed streptozotocin induced diabetic rats. Chem.-Biol. Interact. 2014, 210, 77–85. [Google Scholar]
- Deo, P.; Hewawasam, E.; Karakoulakis, A.; Claudie, D.J.; Nelson, R.; Simpson, B.S.; Smith, N.M.; Semple, S.J. In vitro inhibitory activities of selected Australian medicinal plant extracts against protein glycation, angiotensin converting enzyme (ACE) and digestive enzymes linked to type II diabetes. BMC Complement Altern. Med. 2016, 16, 435–445. [Google Scholar]
- Hartogh, D.J.D.; Tsiani, E. Antidiabetic Properties of Naringenin: A Citrus Fruit Polyphenols. Biomolecules 2019, 9, E99–E119. [Google Scholar]
- Ghorbani, A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed. Pharmacother. 2017, 96, 305–312. [Google Scholar] [PubMed]
- Oboh, G.; Ademosun, A.O.; Ayeni, P.O.; Omojokun, O.S.; Bello, F. Comparative effect of quercetin and rutin onα-amylase, α-glucosidase, and some pro-oxidant-induced lipid peroxidationin rat pancreas. Comp. Clin. Pathol. 2015, 24, 1103–1110. [Google Scholar]
- Tian, R.; Yang, W.; Xue, Q.; Gao, L.; Huo, J.; Ren, D. Rutin ameliorates diabetic neuropathy by lowering plasma glucose and decreasing oxidative stress via Nrf2 signaling pathway in rats. Eur. J. Pharmacol. 2016, 15, 84–92. [Google Scholar]
- Coskun, O.; Kanter, M.; Korkmaz, A.; Oter, S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Pharmacol. Res. 2005, 51, 117–123. [Google Scholar]
- Dong, B.; Shi, Z.; Dong, Y.; Chen, J.; Wud, Z.; Wua, W.; Chen, Z.; Han, C. Quercetin ameliorates oxidative stress-induced cell apoptosis of seminal vesicles via activating Nrf2 in type 1 diabetic rats. Biomed. Pharmacother. 2022, 151, 113108–113113. [Google Scholar]
- Ragheb, S.R.; Wakeel, L.M.E.; Nasr, M.S.; Sabri, N.A. Impact of Rutin and Vitamin C combination on oxidative stress and glycemic control in patients with type 2 diabetes. Clin. Nutr. ESPEN 2019, 35, 128–135. [Google Scholar]
- Abdou, H.M.; Hamaad, F.A.; Ali, E.Y.; Ghoneum, M.H. Antidiabetic efficacy of Trifolium alexandrinum extracts hesperetin and quercetin in ameliorating carbohydrate metabolism and activating IR and AMPK signaling in the pancreatic tissues of diabetic rats. Biomed. Pharmacother. 2022, 149, 112838–112847. [Google Scholar]
- Oboh, G.; Ogunsuyi, O.B.; Ogunbadejo, M.D.; Adefegha, S.A. Influence of gallic acid on α-amylase and α-glucosidase inhibitory properties of acarbose. J. Food Drug Anal. 2016, 24, 627–634. [Google Scholar]
- Abdel-Moneim, A.; El-Twab, S.; Yousef, A.I.; Reheim, E.S.A.; Ashour, M.B. Modulation of hyperglycemia and dyslipidemia in experimental type 2 diabetes by gallic acid and p-coumaric acid: The role of adipocytokines and PPARγ. Biomed. Pharmacother. 2018, 105, 1091–1097. [Google Scholar]
- Wszelaki, N.; Kuciun, A.; Kiss, A.K. Screening of traditional European herbal medicines for acetylcholinesterase and butyrylcholinesterase inhibitory activity. Acta Pharm. 2010, 60, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Talić, S.; Dragičević, I.; Ćorajević, L.; Bevanda, A.M. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of extracts from medicinal plants. Bull. Chem. Technol. Bosnia Herzeg. 2014, 43, 11–14. [Google Scholar]
- Ullah, R.; Ikram, M.; Park, T.J.; Ahmad, R.; Saeed, K.; Alam, S.I.; Rehman, I.U.; Khan, A.; Khan, I.; Jo, M.G.; et al. Vanillic Acid, a Bioactive Phenolic Compound, Counteracts LPS-Induced Neurotoxicity by Regulating c-Jun N-Terminal Kinase in Mouse Brain. Int. J. Mol. Sci. 2020, 22, 361. [Google Scholar] [CrossRef] [PubMed]
- Sakamula, R.; Thong-Asa, W. Neuroprotective effect of p-coumaric acid in mice with cerebral ischemia reperfusion injuries. Metab. Brain Dis. 2018, 33, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.A.; Jung, Y.J.; Hyun, S.K.; Min, B.S.; Kim, D.W.; Jung, J.H.; Choi, J.S. Selective cholinesterase inhibitory activities of a new monoterpene diglycoside and other constituents from Nelumbo nuciferastamens. Biol. Pharm. Bull. 2010, 33, 267–272. [Google Scholar] [CrossRef]
- Hernandez, M.F.; Falé, P.L.V.; Araújo, M.E.M.; Serralheiro, M.L.M. Acetylcholinesterase inhibition and antioxidant activity of the water extracts of several Hypericum species. Food Chem. 2010, 120, 1076–1082. [Google Scholar] [CrossRef]
- Kandhare, A.D.; Raygude, K.S.; Kumar, V.S.; Rajmane, A.R.; Visnagri, A.; Ghule, A.E.; Ghosh, P.; Badole, S.L.; Bodhankar, S.L. Ameliorative effects quercetin against impaired motor nerve function, inflammatory mediators and apoptosis in neonatal streptozotocin-induced diabetic neuropathy in rats. Biomed. Aging Pathol. 2012, 2, 173–186. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, Q.; Liang, X.; Xie, J.; Sun, Q. Quercetin reduces inflammation in a rat model of diabetic peripheral neuropathy by regulating the TLR4/MyD88/NF-κB signalling pathway. Eur. J. Pharmacol. 2021, 912, 174607–174612. [Google Scholar] [CrossRef]
- Hussein, R.M.; Mohamed, W.R.; Omar, H.A. A neuroprotective role of kaempferol against chlorpyrifos-induced oxidative stress and memory deficits in rats via GSK3β-Nrf2 signaling pathway. Pestic. Biochem. Physiol. 2018, 152, 29–37. [Google Scholar] [CrossRef]
- Okello, E.J.; Mather, J. Comparative Kinetics of Acetyl- and Butyryl-Cholinesterase Inhibition by Green Tea: Catechins|Relevance to the Symptomatic Treatment of Alzheimer’s Disease. Nutrients 2020, 12, 1090. [Google Scholar] [CrossRef]
- Cardoso-Lopes, E.M.; Maier, J.A.; Silva, M.R.d.; Regasini, L.O.; Simote, S.Y.; Lopes, N.P.; Pirani, J.R.; Bolzani, V.d.S.; Young, M.C.M. Alkaloids from stems of Esenbeckia leiocarpa Engl. (Rutaceae) as potential treatment for Alzheimer Disease. Molecules 2010, 15, 9205–9213. [Google Scholar] [CrossRef] [PubMed]
- Murray, A.P.; Faraoni, M.B.; Castro, M.J.; Alza, N.P.; Cavallaro, V. Natural AChE Inhibitors from Plants and their Contribution to Alzheimer’s Disease Therapy. Curr. Neuropharmacol. 2013, 11, 388–413. [Google Scholar] [CrossRef] [PubMed]
- Al-Okbi, S.Y.; El-Sayed, E.M.; Ammar, N.M.; El-Sayed, N.K.; Abou-El Kassem, L.T. Effect of Ruta graveolens L. and Euphorbia peplus L. anti-inflammatory extracts on nutritional status of rats and the safety of their use. Indian J. Exp. Biol. 2002, 40, 45–48. [Google Scholar]
- Coimbra, A.T.; Ferreira, S.; Duarte, A.P. Genus Ruta: A natural source of high value products with biological and pharmacological properties. J. Ethnopharmacol. 2020, 260, 113076–113156. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Saeed, F.; Hussain, G.; Imran, A.; Mehmood, Z.; Gondal, T.A.; El-Ghorab, A.; Ahmad, I.; Pezzani, R.; Arshad, M.U.; et al. Myricetin: A comprehensive review on its biological potentials. Food Sci. Nutr. 2021, 9, 5854–5868. [Google Scholar] [CrossRef]
- Akindehin, S.; Jung, Y.S.; Kim, S.N.; Son, Y.H.; Lee, I.; Seong, J.K.; Jeong, H.W.; Lee, Y.H. Myricetin Exerts Anti-Obesity Effects through Upregulation of SIRT3 in Adipose Tissue. Nutrients 2018, 10, 1962. [Google Scholar] [CrossRef] [PubMed]
- Enogieru, A.B.; Haylett, W.; Hiss, D.C.; Bardien, S.; Ekpo, O.E. Rutin as a Potent Antioxidant: Implications for Neurodegenerative Disorders. Oxid. Med. Cell. Longev. 2018, 2018, 6241017–6241034. [Google Scholar] [CrossRef]
- Asgharian, S.; Hojjati, M.R.; Ahrari, M.; Bijad, E.; Deris, F.; Lorigooini, Z. Ruta graveolens and rutin, as its major compound: Investigating their effect on spatial memory and passive avoidance memory in rats. Pharm. Biol. 2020, 58, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Stoldt, A.K.; Derno, M.; Das, G.; Weitzel, J.M.; Wolffram, S.; Metges, C.C. Effects of rutin and buckwheat seeds on energy metabolism and methane production in dairy cows. J. Dairy Sci. 2016, 99, 2161–2168. [Google Scholar] [CrossRef]
- Alotaibi, S.M.; Saleem, M.S.; Al-Humaidi, J.G. Phytochemical contents and biological evaluation of Ruta chalepennsis L. growing in Saudi Arabia. Saudi Pharm. J. 2018, 26, 504–508. [Google Scholar] [CrossRef]
- Li, Y.; Rokayya, S.; Jia, F.; Nie, X.; Xu, J.; Elhakem, A.; Almatrafi, M.; Benajiba, N.; Helal, M. Shelf-life, quality, safety evaluations of blueberry fruits coated with chitosan nano-material films. Sci. Rep. 2021, 11, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Majumder, S.; Chandra Das, P.; Sami, R.; Ismail, K.; Almushhin, A.; Iqbal, A.; Vasudevan, R.T. Effect of Spent Green Tea Leaf Extracts, Butylated Hydroxytoluene and Repeated Freezing-Thawing on Physicochemical and Oxidative Properties of Chevon. J. Biobased Mater. Bioenergy 2022, 22, 56–67. [Google Scholar] [CrossRef]
- Baranwal, A.; Aggarwal, P.; Rai, A.; Kumar, N. Pharmacological Actions and Underlying Mechanisms of Catechin: A Review. Mini Rev. Med. Chem. 2022, 22, 821–833. [Google Scholar] [CrossRef] [PubMed]
- Morsy, M.K.; Sami, R.; Algarni, E.; Al-Mushhin, A.; Benajiba, N.; Almasoudi, A.; Almasoudi, A.G.; Mekawi, E. Phytochemical Profile and Antioxidant Activity of Sesame Seed (Sesamum indicum) By-Products for Stability and Shelf Life Improvement of Refined Olive Oil. Antioxidants 2022, 11, 338. [Google Scholar] [CrossRef]
- Hursel, R.; Viechtbauer, W.; Dulloo, A.G.; Tremblay, A.; Tappy, L.; Rumpler, W.; Westerterp-Plantenga, M.S. The effects of catechin rich teas and caffeine on energy expenditure and fat oxidation: A meta-analysis. Obes. Rev. 2011, 12, e573–e581. [Google Scholar] [CrossRef]
- Kiokias, S.; Proestos, C.; Oreopoulou, V. Phenolic Acids of Plant Origin—A Review on Their Antioxidant Activity in vitro (O/W Emulsion Systems) along with Their in vivo Health Biochemical Properties. Foods 2020, 9, 534. [Google Scholar] [CrossRef]
- Bensaad, M.S.; Dassamiour, S.; Hambaba, L.; Bensouici, C.; Haba, H. In vitro assessment of antioxidant, anti-inflammatory, neuroprotective and antimicrobial activities of Centaurea tougourensis Boiss. & Reut. J. Pharm. Pharmacogn. Res. 2021, 9, 790–802. [Google Scholar]
- Figueiredo-González, M.; Reboredo-Rodríguez, P.; González-Barreiro, C.; Simal-Gándara, J.; Valentão, P.; Carrasco-Pancorbo, A.; Andrade, P.B.; Cancho-Grande, B. Evaluation of the neuroprotective and antidiabetic potential of phenol-rich extracts from virgin olive oils by in vitro assays. Food Res. Int. 2018, 106, 558–567. [Google Scholar] [CrossRef]
Extract | Extraction Yield | TPC | FTC | CTC |
---|---|---|---|---|
% | mg GAE/g (d.E) | mg QE/g (d.E) | mg CE/g (d.E) | |
AcE | 1.5 ± 0.2 b | 40.9 ± 0.2 a | 14.3 ± 0.7 | 39.4 ± 0.1 a |
EtOAcE | 2.3 ± 0.3 | 51.0 ± 0.1 | 16.4 ± 0.9 | 43.2 ± 0.6 |
N° | Compound | cLC-DAD | ||
---|---|---|---|---|
RT, UV (min, nm) | EtOAcE | AcE | ||
Extracted Amount (mg/100 g d.E) | ||||
1 | Gallic acid | 10.37 (280) | Nd | 64.02 |
2 | Catechin | 14.12 (280) | 147.02 | 22.24 |
3 | p-hydroxybenzoic acid | 14.80 (254) | 53.85 | 14.06 |
4 | Vanillic acid | 16.68 (280) | 37.03 | 18.20 |
5 | Caffeic acid | 15.62 (325) | 11.15 | 1.34 |
6 | p-coumaric acid | 17.32 (280) | 28.17 | 35.97 |
7 | Trans-Ferulic acid | 17.94 (325) | 16.08 | 2.9 |
8 | Rutin | 19.14 (360) | 645.6 | 172.77 |
9 | Myricetin | 19.51 (360) | 4253.86 | 2111.03 |
10 | Sylimarin | 19.96 (280) | 345.6 | 149.29 |
11 | Naringenin | 18.02 (280) | 29.06 | 9.98 |
12 | Quercetin | 20. 81 (360) | 12.12 | 13.89 |
13 | Kaempferol | Nt | Nt | Nt |
14 | Hesperidin | Nt | Nt | Nt |
15 | Cinnamic acid | 20. 89 (280) | 87.01 | 97.41 |
16 | Trans-cinnamic acid | 21.36 (280) | 74.95 | 86.47 |
Extracts | Radical Scavenging | Lipid Peroxidation (β-Carotene-Linoleic Acid) | Reducing Power | Total Antioxidant Capacity (TAC) | ||
---|---|---|---|---|---|---|
DPPH | ABT’S | FRAP | CUPRAC | |||
IC50 (μg/mL) | IC50 (μg/mL) | IC50 (μg/mL) | A0.5 (μg/mL) | A0.5 (μg/mL) | AAE (mg/g E) | |
AcE | 82.6 ± 1.1 a,b,c,d | 123.58 ± 1.4 d | 60.93 ± 0.5 a,d | 120.93 ± 0.9 d | 184.13 ± 0.7 d | 295.62 ± 2.2 d |
EtOAcE | 186.86 ± 1.0 d | 62.65 ± 1.5 d | 62.19 ± 1.8 d | 111.13 ± 0.3 d | 213.88 ± 0.9 d | 216.60 ± 1.0 |
Extract/ Standard | α-Glucosidase | α-Amylase | Acetyl Cholinesterase | |||
---|---|---|---|---|---|---|
Max inhibition (%) | IC50 (μg/mL) | Max Inhibition (%) | IC50 (μg/mL) | Max Inhibition (%) | IC50 (μg/mL) | |
AcE | 80.2 ± 1.1 | 104.5 ± 1.8 d | 77.9 ± 0.7 | 233.04 ± 0.9 d | 86.7 ± 0.5 | 20.5 ± 0.2 d |
EtOAcE | 74.6 ± 0.5 | 165.4 ± 1.1 d | 79.5 ± 0.07 | 146.7 ± 1.6 d | 77.6 ± 1.2 | 45.6 ± 0.8 d |
Acarbose | 91.05 ± 0.7 | 275.4 ± 1.6 d | 53.05 ± 1.6 | 3650.9 ± 1.7 d | Nt | Nt |
Quercetin | 95.98 ± 0.6 | 4.3 ± 0.2 d | Nt | Nt | Nt | Nt |
Galanthamine | Nt | Nt | Nt | Nt | 94.7 ± 0.3 | 6.3 ± 1.1 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saidi, A.; Hambaba, L.; Bensaad, M.S.; Kadi, I.E.; Bensouici, C.; Sami, R.; Alharthi, S.; Elhakem, A.; Alsharari, Z.D.; Baty, R.S.; et al. Phytochemical Analysis Using cLC-DAD, Nutritional Importance and Assessment of Antioxidant, Antidiabetic and Anticholinesterase Activities of Ruta tuberculata Forssk Organic Extracts. Sustainability 2022, 14, 10451. https://doi.org/10.3390/su141610451
Saidi A, Hambaba L, Bensaad MS, Kadi IE, Bensouici C, Sami R, Alharthi S, Elhakem A, Alsharari ZD, Baty RS, et al. Phytochemical Analysis Using cLC-DAD, Nutritional Importance and Assessment of Antioxidant, Antidiabetic and Anticholinesterase Activities of Ruta tuberculata Forssk Organic Extracts. Sustainability. 2022; 14(16):10451. https://doi.org/10.3390/su141610451
Chicago/Turabian StyleSaidi, Asma, Leila Hambaba, Mohamed Sabri Bensaad, Imed Eddine Kadi, Chawki Bensouici, Rokayya Sami, Sarah Alharthi, Abeer Elhakem, Zayed D. Alsharari, Roua S. Baty, and et al. 2022. "Phytochemical Analysis Using cLC-DAD, Nutritional Importance and Assessment of Antioxidant, Antidiabetic and Anticholinesterase Activities of Ruta tuberculata Forssk Organic Extracts" Sustainability 14, no. 16: 10451. https://doi.org/10.3390/su141610451