# Decentralized Cooperative Active Power Control for Small-Scale Grids with High Renewable Penetration through VSC-HVDC

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. System Descriptions

## 3. Decentralized Active Power Control

## 4. Simulation Results

- Case 1: Normal Operation;
- Case 2: Load Rapid Rise & Decline;
- Case 3: RES Sudden Stop.

#### 4.1. Case 1: Normal Operation

#### 4.2. Case 2: Load Rapid Rise & Decline

- 250 MW rise at t = 5 s;
- 350 MW decline at t = 7 s;
- 100 MW rise at t = 8 s.

#### 4.3. Case 3: RES Stop

## 5. Conclusions

- Case 1: Normal Operation;
- Case 2: Load Rapid Rise & Decline;
- Case 3: RES Sudden Stop.

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Jeju Special Self-Governing Province. The Path to A Carbon-Free Island; Korea Institute of Energy Research: Daejeon, Korea, 2019. [Google Scholar]
- Jeon, W.; Kim, J.; Lee, S. Establishing an Efficient Low-Carbon Power System by Reducing Curtailment of Renewable Energy Using ESS: The Case of Jeju Island in 2025. J. Clim. Chang. Res.
**2022**, 13, 1–9. [Google Scholar] [CrossRef] - IEA. World Energy Outlook 2021. Available online: https://www.iea.org/reports/world-energy-outlook-2021 (accessed on 3 July 2022).
- Jeju Techno Park. Issue Paper. Available online: http://www.jejutp.or.kr (accessed on 25 June 2022).
- Lee, C.; Im, S.; Jung, J.; Lee, B. BESS Deployment Strategy in Jeju Carbon-Free Islands for Reducing Renewable Energy Curtailment. Energies
**2020**, 13, 6082. [Google Scholar] [CrossRef] - Lee, J.; Lee, J.; Wi, Y.-M. Impact of Revised Time of Use Tariff on Variable Renewable Energy Curtailment on Jeju Island. Electronics
**2021**, 10, 135. [Google Scholar] [CrossRef] - Luis, S.V.; Gonzalo, B.-T.; Felipe, L. Wind Power Curtailment and Energy Storage in Transmission Congestion Management Considering Power Plants Ramp Rates. IEEE Trans. Power Syst.
**2015**, 30, 2498–2506. [Google Scholar] - Pilar, M.D.Q.; Javier, C. Optimal Placement of Energy Storage and Wind Power under Uncertainty. Energies
**2016**, 9, 528. [Google Scholar] - Paul, D. Energy Storage to Reduce Renewable Energy Curtailment. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012. [Google Scholar]
- Arslan, A.B.; Andreas, L.; Mahdi, P.-K.; Matti, L. Minimizing Wind Power Curtailment and Carbon Emissions by Power to Heat Sector Coupling-A Stackelberg Game Approach. IEEE Access
**2020**, 8, 211892–211911. [Google Scholar] - Marc, B.; Krzysztof, R. PV Curtailment Reduction with Smart Homes and Heat Pumps. In Proceedings of the 2016 IEEE International Energy Conference (ENERGYCON), Leuven, Belgium, 4–8 April 2016. [Google Scholar]
- Manel, G.; Jonathan, L.; Friedemann, M.; Amy, M.K.; Frank, G.; Siegfried, B.; Rainer, R.; Thomas, K. Renewable Power-to-Gas: A technological and economic review. Renew. Energy
**2016**, 85, 1371–1390. [Google Scholar] - Sebastian, S.; Thomas, G.; Martin, R.; Vanessa, T.; Bhunesh, K.; Detlef, S. Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany. ScienceDirect
**2015**, 40, 4285–4294. [Google Scholar] - Xiaohe, Y.; Xin, Z.; Chenghong, G.; Furong, L. Power to gas: Addressing renewable curtailment by converting to hydrogen. Front. Energy
**2018**, 12, 560–568. [Google Scholar] - Julia, K.S.; Colin, J.R.S.; Nikit, A.; Anand, R.G. Reduced grid operating costs and renewable energy curtailment with electric vehicle charge management. Energy Policy
**2020**, 136, 111156. [Google Scholar] - Simon, P.T.; Geoffrey, L.; Richard, S. 1400 MW New Zealand HVDC upgrade: Introducing power modulation controls and round power mode. In Proceedings of the 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013. [Google Scholar]
- Michael, H.; David, B.B.; Donald, G.R. Planning HVDC and FACTS in New England. In Proceedings of the 2009 IEEE/PES Power Systems Conference and Exposition, Seattle, WA, USA, 15–18 March 2009. [Google Scholar]
- Yoshimasa, S. Novel IEGT based Modular Multilevel Converter for New Hokkaido-Honshu HVDC Power Transmission, 2020. In Proceedings of the 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Vienna, Austria, 13–18 September 2020. [Google Scholar]
- Hertem, D.V.; Gomis-Bellmunt, O.; Liang, J. HVDC Grids: For Offshore and Supergrid of the Future; Wiley-IEEE Press: New York, NJ, USA, 2016; pp. 45–79. [Google Scholar]
- Arrillaga, J.; Liu, Y.H.; Watson, N.R.; Murray, N.J. Self-Commutating Converters for High Power Applications; Wiley: West Sussex, UK, 2009; pp. 1–13. [Google Scholar]
- Oluwafemi, E.O.; Davidson, I.E.; Mbangula, K.N.I. A Review of LCC-HVDC and VSC-HVDC Technologies and Applications. In Proceedings of the IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), Florence, Italy, 1 September 2016. [Google Scholar]
- Yingmei, L.; Chuanyue, L.; Qing, M.; Jun, L. Side-by-side connection of LCC-HVDC links to form a DC grid. In Proceedings of the 2015 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe), Geneva, Switzerland, 8–10 September 2015. [Google Scholar]
- Magnus, C.; Alexandre, P.; Björn, S.; Frank, S.; Joe, C.; Maria-Sophie, D.; Mike, B.; Nikola, K.; Norman, M. Roadmap to the Supergrid Technologies; Friends of Sustainable Grids: Brussels, Begium, 2014; pp. 56–67. [Google Scholar]
- Jun, L.; Tianjun, J.; Oriol, G.-B.; Janaka, E.; Nicholas, J. Operation and Control of Multiterminal HVDC Transmission for Offshore Wind Farms. IEEE Trans. Power Deliv.
**2011**, 26, 2596–2604. [Google Scholar] - Zhou, L.; Ruopei, Z.; Yazhou, L.; Yan, H.; Jinming, H.; Xiaoling, Z.; Xiao-Ping, Z. Recent developments in HVDC transmission systems to support renewable energy integration. Glob. Energy Interconnect.
**2018**, 1, 595–607. [Google Scholar] - Povh, D.; Thepparat, P.; Westermann, D. Analysis of Innovative HVDC Control. In Proceedings of the 2009 IEEE Bucharest PowerTech, Bucharest, Romania, 28 June–2 July 2009. [Google Scholar]
- Lee, J.; Jeong, S.; Kin, H.; Yoo, Y.; Jung, S.; Yoon, M.; Jang, G. Analytical Approach for Fast Frequency Response Control of VSC HVDC. IEEE Access
**2021**, 9, 91303–91313. [Google Scholar] [CrossRef] - Adeuyi, O.D.; Cheah-Mane, M.; Liang, J.; Jenkins, N. Fast Frequency Response from Offshore Multiterminal VSC–HVDC Schemes. IEEE Trans. Power Deliv.
**2017**, 32, 2442–2452. [Google Scholar] [CrossRef] [Green Version] - Sun, K.; Xiao, H.; Liu, S.; Liu, Y. Machine learning-based fast frequency response control for a VSC-HVDC system. CSEE J. Power Energy Syst.
**2021**, 7, 688–697. [Google Scholar] - Amin, M.; Molinas, M.; Lyu, J.; Cai, X. Impact of Power Flow Direction on the Stability of VSC-HVDC Seen from the Impedance Nyquist Plot. IEEE Trans. Power Electron.
**2017**, 32, 8204–8217. [Google Scholar] [CrossRef] - Candelaria, J.; Park, J. VSC-HVDC system protection: A review of current methods. In Proceedings of the 2011 IEEE/PES Power Systems Conference and Exposition, Phoenix, AZ, USA, 20–23 March 2011; pp. 1–7. [Google Scholar]
- Zheng, T.; Chen, L.; Guo, Y.; Wei, W.; Zhou, B.; Sun, X. A VSG-Based Coordinated DC Voltage Control for VSC-HVDC to Participate in Frequency Regulation. Energies
**2021**, 14, 2712. [Google Scholar] [CrossRef] - Liu, H.; Chen, Z. Contribution of VSC-HVDC to Frequency Regulation of Power Systems with Offshore Wind Generation. IEEE Trans. Energy Convers.
**2015**, 30, 918–926. [Google Scholar] [CrossRef] - Fuchs, A.; Imhof, M.; Demiray, T.; Morari, M. Stabilization of Large Power Systems Using VSC–HVDC and Model Predictive Control. IEEE Trans. Power Deliv.
**2014**, 29, 480–488. [Google Scholar] [CrossRef] - Liu, Z.; Liu, J.; Zhao, Y. A Unified Control Strategy for Three-Phase Inverter in Distributed Generation. IEEE Trans. Power Electron.
**2014**, 29, 1176–1191. [Google Scholar] [CrossRef] - Yazdani, A.; Iravani, R. Voltage-Sourced Converter in Power Systems; Wiley-IEEE Press: New York, NJ, USA, 2010; pp. 245–307. [Google Scholar]
- Haque, M.E.; Negnevitsky, M.; Muttaqi, K.M. A Novel Control Strategy for a Variable-Speed Wind Turbine with a Permanent-Magnet Synchronous Generator. IEEE Trans. Ind. Appl.
**2010**, 46, 331–339. [Google Scholar] [CrossRef] [Green Version] - Kumar, D.; Chatterjee, K. A review of conventional and advanced MPPT algorithms for wind energy systems. Renew. Sustain. Energy Rev.
**2016**, 55, 957–970. [Google Scholar] [CrossRef] - Yang, X.-P.; Duan, X.-F.; Feng, F.; Tian, L.-L. Low Voltage Ride-Through of Directly Driven Wind Turbine with Permanent Magnet Synchronous Generator. In Proceedings of the 2009 Asia-Pacific Power and Energy Engineering Conference, Wuhan, China, 28–30 March 2009; pp. 1–5. [Google Scholar]
- Ma, Y.; Cao, W.; Yang, L.; Wang, F.; Tolbert, L.M. Virtual Synchronous Generator Control of Full Converter Wind Turbines with Short-Term Energy Storage. IEEE Trans. Ind. Electron.
**2017**, 64, 8821–8831. [Google Scholar] [CrossRef] - Femia, N.; Petrone, G.; Spagnuolo, G.; Vitelli, M. A Technique for Improving P&O MPPT Performances of Double-Stage Grid-Connected Photovoltaic Systems. IEEE Trans. Ind. Electron.
**2009**, 56, 4473–4482. [Google Scholar] - Ahmed, J.; Salam, Z. An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency. Appl. Energy
**2015**, 150, 97–108. [Google Scholar] - Ahmed, J.; Salam, Z. Enhanced Adaptive P&O MPPT for Fast and Efficient Tracking Under Varying Environmental Conditions. IEEE Trans. Sustain. Energy
**2018**, 9, 1487–1496. [Google Scholar] - Alobaid, F.; Postler, R.; Ströhle, J.; Epple, B.; Kim, H.-G. Modeling and investigation start-up procedures of a combined cycle power plant. Appl. Energy
**2008**, 85, 1173–1189. [Google Scholar] - Alobaid, F.; Pfeiffer, S.; Epple, B.; Seon, C.-Y.; Kim, H.-G. Fast start-up analyses for Benson heat recovery steam generator. Energy
**2012**, 46, 295–309. [Google Scholar] [CrossRef] - Power Engineering: Power Industry and Energy News. Available online: https://www.power-eng.com/coal/gas-turbine-combined-cycle-fast-start-the-physics-behind-the-con/ (accessed on 25 July 2022).
- Anaya-Lara, O.; Acha, E. Modeling and Analysis of Custom Power Systems by PSCAD/EMTDC. IEEE Power Eng. Rev.
**2011**, 21, 56. [Google Scholar] [CrossRef] - Knowledge Base PSCAD. Available online: https://www.pscad.com/knowledge-base/article/625 (accessed on 26 July 2022).
- Republic of Korea. The 9th Basic Plan for Long-term Electricity Supply and Demand; Ministry of Trade, Industry and Energy: Sejong, Korea, 2020; pp. 101–105.

**Figure 11.**Simulation results in case 1 (Load and output power of HVDC no. 3 and DGs; grid frequency). (

**a**): Decrement band. (

**b**): Dead band. (

**c**): Increment band. (

**d**): Dead band. (

**e**): Decrement band.

**Figure 13.**Simulation results in case 2 (Load and output power of HVDC no. 3 and DGs; grid frequency).

**Figure 14.**Zoomed plot of simulation results in case 2 (load; output power of HVDC no. 3; grid frequency; output power of HVDC no. 1&2; output power of WTG & PV; output power of T/P 1&2).

**Figure 15.**Simulation results in normal operation case 3 (Load and output power of HVDC no. 3 and DGs; grid frequency).

**Figure 16.**Zoomed plot of simulation results in case 3 (load; output power of HVDC no. 3; grid frequency; output power of HVDC no.1 &2; output power of WTG & PV; output power of T/P 1&2).

Symbol | Value | Unit |
---|---|---|

${f}_{g,nom}$ | 60 | Hz |

${f}_{g,base}$ | −0.2 | Hz |

${P}_{1,\mathrm{min}}$ | −40 | MW |

${P}_{1,base}$ | −110 | MW |

${P}_{2,\mathrm{min}}$ | 40 | MW |

${P}_{2,base}$ | 210 | MW |

${P}_{wtg,\mathrm{max}}$ | ${P}_{wtg,mppt}$ | MW |

${P}_{wtg,base}$ | ${P}_{wtg,mppt}$ | MW |

${P}_{pv,\mathrm{max}}$ | ${P}_{pv,mppt}$ | MW |

${P}_{pv,base}$ | ${P}_{pv,mppt}$ | MW |

${f}_{g,\mathrm{lim}}^{+}$ | 60.2 | Hz |

${f}_{g,\mathrm{lim}}^{-}$ | 59.8 | Hz |

${P}_{3,\mathrm{lim}}^{+}$ | 200 | MW |

${P}_{3,thr}^{+}$ | 130 | MW |

${P}_{3,\mathrm{lim}}^{-}$ | −200 | MW |

${P}_{3,thr}^{-}$ | −130 | MW |

Component | Value | Unit |
---|---|---|

Peak load | 927 | MW |

Average load | 750 | MW |

HVDC no. 1 (rating) | 150 | MW |

HVDC no. 1 (minimum) | 40 | MW |

HVDC no. 2 (rating) | 250 | MW |

HVDC no. 2 (minimum) | 40 | MW |

HVDC no. 3 | 200 | MW |

WTG | 640 | MW |

PV | 996 | MW |

T/P1 | 105 | MW |

114 | ||

T/P2 | 105 | MW |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

So, J.; Shin, H.; Tran, T.N.; Choi, Y.-J.
Decentralized Cooperative Active Power Control for Small-Scale Grids with High Renewable Penetration through VSC-HVDC. *Sustainability* **2022**, *14*, 9539.
https://doi.org/10.3390/su14159539

**AMA Style**

So J, Shin H, Tran TN, Choi Y-J.
Decentralized Cooperative Active Power Control for Small-Scale Grids with High Renewable Penetration through VSC-HVDC. *Sustainability*. 2022; 14(15):9539.
https://doi.org/10.3390/su14159539

**Chicago/Turabian Style**

So, Jihun, Hyun Shin, Thai Nguyen Tran, and Yeong-Jun Choi.
2022. "Decentralized Cooperative Active Power Control for Small-Scale Grids with High Renewable Penetration through VSC-HVDC" *Sustainability* 14, no. 15: 9539.
https://doi.org/10.3390/su14159539