The State-of-the-Art Estimation of Groundwater Recharge and Water Balance with a Special Emphasis on India: A Critical Review
Abstract
:1. Introduction
2. Review of Commonly Used Groundwater Recharge Estimation Techniques
2.1. Physical Methods
2.1.1. Zero Flux Plane (ZFP) Method
2.1.2. Soil Water Balance Method
2.1.3. Groundwater Level Fluctuation Method
2.1.4. Groundwater Balance Method
2.2. Tracer Techniques
2.2.1. Chloride Method
2.2.2. Tritium Method
2.2.3. Stable Isotopes
2.3. Numerical Model-Based Estimation Methods
2.3.1. One-Dimensional Soil Water Flow Method
2.3.2. Inverse Modeling
3. Groundwater Scenario and Aquifer Systems in India
4. Historical Background for Groundwater Recharge Estimation in India
5. Critical Review of Groundwater Recharge Estimation Practices in India
6. Selection of Suitable Recharge Estimation Methods
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Saha, D.; Ray, R.K. Groundwater resources of India: Potential, challenges and management. In Groundwater Development and Management; Springer: Berlin/Heidelberg, Germany, 2019; pp. 19–42. [Google Scholar]
- The UN General Assembly (UNGA). Resolution Adopted by the General Assembly on 28 July 2010. 64/292. The Human Right to Water and Sanitation. Available online: https://undocs.org/pdf?symbol=en/a/res/64/292 (accessed on 10 November 2021).
- The UN General Assembly (UNGA). The Human Right to Safe Drinking Water and Sanitation; UNGA: Geneva, Switzerland, 2014; Resolution 68/157/2013; Available online: https://undocs.org/pdf?symbol=en/A/RES/68/157 (accessed on 11 November 2021).
- Gandhi, V.P.; Namboodiri, N. Groundwater Irrigation in India: Gains, Costs and Risks. 2009. Available online: http://www.iimahd.ernet.in/publications/data/2009-03-08Gandhi.pdf (accessed on 1 June 2014).
- CGWB. Dynamic Groundwater Resources of India, as on 31 March 2013, Central Ground Water Board, Ministry of Water Resources. River Development and Ganga Rejuvenation. Government of India, Faridabad. 2017. Available online: http://cgwb.gov.in/Documents/Dynamic-GW-Resources-2011.pdf (accessed on 15 June 2018).
- CGWB. Status Report on Review of Ground Water Resources Estimation Methodology. 2009. Available online: http://cgwb.gov.in/documents/gec97.pdf (accessed on 12 April 2017).
- Guevara-Ochoa, C.; Medina-Sierra, A.; Vives, L. Spatio-temporal effect of climate change on water balance and interactions between groundwater and surface water in plains. Sci. Total Environ. 2020, 722, 137886. [Google Scholar] [CrossRef] [PubMed]
- Mojid, M.A.; Parvez, M.F.; Mainuddin, M.; Hodgson, G. Water Table Trend—A Sustainability Status of Groundwater Development in North-West Bangladesh. Water 2019, 11, 1182. [Google Scholar] [CrossRef] [Green Version]
- de Vries, J.J.; Simmers, I. Groundwater recharge: An overview of processes and challenges. Hydrogeol. J. 2002, 10, 5–17. [Google Scholar] [CrossRef]
- Ruiz, L.; Varma, M.R.R.; Kumar, M.S.M.; Sekhar, M.; Maréchal, J.-C.; Descloitres, M.; Riotte, J.; Kumar, S.; Kumar, C.; Braun, J.-J. Water balance modelling in a tropical watershed under deciduous forest (Mule Hole, India): Regolith matric storage buffers the groundwater recharge process. J. Hydrol. 2010, 380, 460–472. [Google Scholar] [CrossRef] [Green Version]
- Uc, C.J.L.; Leal, J.A.R.; Cruz, D.A.M.; Martínez, A.C.; Celestino, A.E.M. Identification of the Dominant Factors in Groundwater Recharge Process, Using Multivariate Statistical Approaches in a Semi-Arid Region. Sustainability 2021, 13, 11543. [Google Scholar]
- Israil, M.; Al-Hadithi, M.; Singhal, D.C.; Kumar, B. Groundwater-recharge estimation using a surface electrical resistivity method in the Himalayan foothill region, India. Hydrogeol. J. 2006, 14, 44–50. [Google Scholar] [CrossRef]
- Singh, A. Long-Term (44 Years) Regional Groundwater Recharge Estimation for Agricultural Sustainability. Nat. Resour. Res. 2021, 1–11. [Google Scholar] [CrossRef]
- Asoka, A.; Wada, Y.; Fishman, R.; Mishra, V. Strong Linkage Between Precipitation Intensity and Monsoon Season Groundwater Recharge in India. Geophys. Res. Lett. 2018, 45, 5536–5544. [Google Scholar] [CrossRef] [Green Version]
- Allison, G.B.; Gee, G.W.; Tyler, S.W. Vadose-Zone Techniques for Estimating Groundwater Recharge in Arid and Semiarid Regions. Soil Sci. Soc. Am. J. 1994, 58, 6–14. [Google Scholar] [CrossRef]
- Schilling, O.S.; Parajuli, A.; Tremblay Otis, C.; Müller, T.U.; Antolinez Quijano, W.; Tremblay, Y.; Brennwald, M.S.; Nadeau, D.F.; Jutras, S.; Kipfer, R.; et al. Quantifying Groundwater Recharge Dynamics and Unsaturated Zone Processes in Snow-Dominated Catchments via On-Site Dissolved Gas Analysis. Water Resour. Res. 2021, 57, e2020WR028479. [Google Scholar] [CrossRef]
- Pan, Y.; Gong, H.; Zhou, D.; Li, X.; Nakagoshi, N. Impact of land use change on groundwater recharge in Guishui River Basin, China. Chin. Geogr. Sci. 2011, 21, 734–743. [Google Scholar] [CrossRef]
- Hughes, A.; Mansour, M.; Ward, R.; Kieboom, N.; Allen, S.; Seccombe, D.; Charlton, M.; Prudhomme, C. The impact of climate change on groundwater recharge: National-scale assessment for the British mainland. J. Hydrol. 2021, 598, 126336. [Google Scholar] [CrossRef]
- Rangarajan, R.; Athavale, R.N. Annual replenishable ground water potential of India—An estimate based on injected tritium studies. J. Hydrol. 2000, 234, 38–53. [Google Scholar] [CrossRef]
- Paul, S.; Ghosh, S.; Mathew, M.; Devanand, A.; Karmakar, S.; Niyogi, D. Increased Spatial Variability and Intensification of Extreme Monsoon Rainfall due to Urbanization. Sci. Rep. 2018, 8, 3918. [Google Scholar] [CrossRef] [PubMed]
- World Bank. India Groundwater: A Valuable but Diminishing Resource. 2012. Available online: http://www.worldbank.org/en/news/feature/2012/03/06/india-groundwater-critical-diminishing (accessed on 25 October 2017).
- Narain, S. Sanitation for all. Nature 2012, 486, 185. [Google Scholar] [CrossRef] [PubMed]
- Sha, M. A 21st Century Institutional Architecture for India’s Water Reforms; CWC: New Delhi, India; CGWB: New Delhi, India, 2016; p. 146.
- Saha, D.; Marwaha, S.; Mukherjee, A. Groundwater resources and sustainable management issues in India. In Clean and Sustainable Groundwater in India; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–11. [Google Scholar]
- Kumar Joshi, S.; Gupta, S.; Sinha, R.; Logan Densmore, A.; Prakash Rai, S.; Shekhar, S.; Mason, P.J.; Dijk, W.M.V. Strongly heterogeneous patterns of groundwater depletion in Northwestern India. J. Hydrol. 2021, 598, 126492. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Healy, R.W.; Cook, P.G. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol. J. 2002, 10, 18–39. [Google Scholar] [CrossRef]
- Khalil, M.; Sakai, M.; Mizoguchi, M.; Miyazaki, T. Current and prospective applications of zero flux plane (ZFP) method. J. Jpn. Soc. Soil Phys. 2003, 95, 75–90. [Google Scholar]
- Krishnaswamy, J.; Bonell, M.; Venkatesh, B.; Purandara, B.K.; Rakesh, K.N.; Lele, S.; Kiran, M.C.; Reddy, V.; Badiger, S. The groundwater recharge response and hydrologic services of tropical humid forest ecosystems to use and reforestation: Support for the “infiltration-evapotranspiration trade-off hypothesis”. J. Hydrol. 2013, 498, 191–209. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55. [Google Scholar] [CrossRef]
- Healy, R.W.; Cook, P.G. Using groundwater levels to estimate recharge. Hydrogeol. J. 2002, 10, 91–109. [Google Scholar] [CrossRef]
- Nimmo, J.R.; Healy, R.W.; Stonestrom, D.A. Aquifer Recharge. In Encyclopedia of Hydrological Sciences; Anderson, M.G., McDonnell, J.J., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar] [CrossRef]
- Lerner, D.; Issar, A.S.; Simmers, I. Groundwater recharge. In A Guide to Understanding and Estimating Natural Recharge. International Contributions to Hydrogeology. International Association of Hydrogeologists; Taylor and Francis, Balkema: Rotterdam, The Netherlands, 1990. [Google Scholar]
- Zimmermann, U.; Münnich, K.; Roether, W.; Kreutz, W.; Schubach, K.; Siegel, O. Tracers determine movement of soil moisture and evapotranspiration. Science 1966, 152, 346–347. [Google Scholar] [CrossRef]
- Dincer, T.; Al-Mugrin, A.; Zimmermann, U. Study of the infiltration and recharge through the sand dunes in arid zones with special reference to the stable isotopes and thermonuclear tritium. J. Hydrol. 1974, 23, 79–109. [Google Scholar] [CrossRef]
- Athavale, R.N.; Murti, C.S.; Chand, R. Estimation of recharge to the phreatic aquifers of the Lower Maner Basin, India, by using the titrium injection method. J. Hydrol. 1980, 45, 185–202. [Google Scholar] [CrossRef]
- Wood, W.W.; Sanford, W.E. Chemical and Isotopic Methods for Quantifying Ground-Water Recharge in a Regional, Semiarid Environment. Groundwater 1995, 33, 458–468. [Google Scholar] [CrossRef]
- Chand, R.; Chandra, S.; Rao, V.A.; Singh, V.S.; Jain, S.C. Estimation of natural recharge and its dependency on sub-surface geoelectric parameters. J. Hydrol. 2004, 299, 67–83. [Google Scholar] [CrossRef]
- Edson, T. Tracer Studies and groundwater Recharge Assessment in the Eastern Fringe of the Botswana Kalahari. Ph.D. Thesis, Vrije Universiteit, Amsterdam, The Netherlands, 1998. [Google Scholar]
- Wang, B.; Jin, M.; Nimmo, J.R.; Yang, L.; Wang, W. Estimating groundwater recharge in Hebei Plain, China under varying land use practices using tritium and bromide tracers. J. Hydrol. 2008, 356, 209–222. [Google Scholar] [CrossRef]
- Edmunds, W.M.; Gaye, C.B. Estimating the spatial variability of groundwater recharge in the Sahel using chloride. J. Hydrol. 1994, 156, 47–59. [Google Scholar] [CrossRef]
- Allison, G.; Hughes, M. The use of environmental chloride and tritium to estimate total recharge to an unconfined aquifer. Soil Res. 1978, 16, 181–195. [Google Scholar] [CrossRef]
- Edmunds, W.; Darling, W.; Kinniburgh, D. Solute profile techniques for recharge estimation in semi-arid and arid terrain. In Estimation of Natural Groundwater Recharge; Springer: Berlin/Heidelberg, Germany, 1988; pp. 139–157. [Google Scholar]
- Kinzelbach, W.; Aeschbach, W. A Survey of Methods for Analysing Groundwater Recharge in Arid and Semi-Arid Regions; Division of Early Warning and Assessment, United Nations Environment Programme: Nairobi, Kenya, 2002. [Google Scholar]
- Vogel, J.C.; Thilo, L.; Van Dijken, M. Determination of groundwater recharge with tritium. J. Hydrol. 1974, 23, 131–140. [Google Scholar] [CrossRef]
- Yeh, H.-F.; Lee, C.-H.; Hsu, K.-C.; Chang, P.-H.; Wang, C.-H. Using stable isotopes for assessing the hydrologic characteristics and sources of groundwater recharge. J. Environ. Eng. Manag. 2009, 19, 185–191. [Google Scholar]
- Shahul Hameed, A.; Resmi, T.R.; Suraj, S.; Warrier, C.U.; Sudheesh, M.; Deshpande, R.D. Isotopic characterization and mass balance reveals groundwater recharge pattern in Chaliyar river basin, Kerala, India. J. Hydrol. Reg. Stud. 2015, 4, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Huang, Y.; Ling, M.; Hu, Q.; Liu, B. Numerical modeling groundwater recharge and its implication in water cycles of two interdunal valleys in the Sand Hills of Nebraska. Phys. Chem. Earth Parts A B C 2012, 53–54, 10–18. [Google Scholar] [CrossRef]
- Hsieh, C.-I.; Katul, G.; Chi, T.-W. An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv. Water Resour. 2000, 23, 765–772. [Google Scholar] [CrossRef]
- Sophocleous, M. Interactions between groundwater and surface water: The state of the science. Hydrogeol. J. 2002, 10, 52–67. [Google Scholar] [CrossRef]
- Sanford, W. Recharge and groundwater models: An overview. Hydrogeol. J. 2002, 10, 110–120. [Google Scholar] [CrossRef]
- Winter, T.C. The concept of hydrologic landscapes1. JAWRA J. Am. Water Resour. Assoc. 2001, 37, 335–349. [Google Scholar] [CrossRef]
- Šimçnek, J.; Šejna, M.; Van Genuchten, M.T. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media. Available online: https://www.ars.usda.gov/arsuserfiles/20360500/pdf_pubs/P2119.pdf (accessed on 1 March 2020).
- Chen, X.; Zhang, Z.-C.; Zhang, X.-N.; Chen, Y.-Q.; Qian, M.-K.; Peng, S.-F. Estimation of Groundwater Recharge from Precipitation and Evapotranspiration by Lysimeter Measurement and Soil Moisture Model. J. Hydrol. Eng. 2008, 13, 333–340. [Google Scholar] [CrossRef]
- Shamsi, E.; Ziaei, A.N.; Naghedifar, S.M.R.; Ansary, H. Groundwater Recharge Assessment of Different Irrigation Scenarios by Using Unsaturated Zone Modeling (Case Study: Neishabour Plain). Iran. J. Soil Water Res. 2020, 51, 311–323. [Google Scholar]
- Zeinali, M.; Azari, A.; Heidari, M.M. Simulating unsaturated zone of soil for estimating the recharge rate and flow exchange between a river and an aquifer. Water Resour. Manag. 2020, 34, 425–443. [Google Scholar] [CrossRef]
- Yeh, T.-C.J.; Mao, D.-Q.; Zha, Y.-Y.; Wen, J.-C.; Wan, L.; Hsu, K.-C.; Lee, C.-H. Uniqueness, scale, and resolution issues in groundwater model parameter identification. Water Sci. Eng. 2015, 8, 175–194. [Google Scholar] [CrossRef] [Green Version]
- Knowling, M.J.; Werner, A.D. Estimability of recharge through groundwater model calibration: Insights from a field-scale steady-state example. J. Hydrol. 2016, 540, 973–987. [Google Scholar] [CrossRef]
- Yu, K.C.; Hong, L.D.; Liu, C.Y. Solving Transient Groundwater Inverse Problems Using Space–Time Collocation Trefftz Method. Water 2020, 12, 3580. [Google Scholar]
- Markus, W.; Houben, G.; Lohe, C.; Quinger, M.; Himmelsbach, T. Inverse Modeling and Uncertainty Analysis of Potential Groundwater Recharge to the Confined Semi-Fossil Ohangwena Ii Aquifer, Namibia. Hydrogeol. J. 2017, 25, 2303–2321. [Google Scholar]
- Shah, T.; Bruke, J.; Vullholth, K.; Angelica, M.; Custodio, E.; Daibes, F.; Van Dijk, J.H.; Giordano, M.; Girman, J.; Van Der Gun, J. Groundwater: A global assessment of scale and significance. In Water for Food Water for Life: A Comprehensive Assessment of Water Management in Agriculture; Earthscan: London, UK, 2007; pp. 395–423. [Google Scholar]
- Muralitharan, D.; Athavale, R. Base Paper on Artificial Recharge in India: National Geophysical Research Institute; CSRI: Hyderabad, India, 1998; p. 67. [Google Scholar]
- Sakthivadivel, R. The groundwater recharge movement in India. Agric. Groundw. Revolut. Oppor. Threat. Dev. 2007, 3, 195–210. [Google Scholar]
- CGWB. Principal Aquifer Systems of India, 2014. Available online: http://cgwb.gov.in/AQM/India.pdf (accessed on 8 September 2019).
- Mukherjee, A.; Saha, D.; Harvey, C.F.; Taylor, R.G.; Ahmed, K.M.; Bhanja, S.N. Groundwater systems of the Indian Sub-Continent. J. Hydrol. Reg. Stud. 2015, 4, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, H.; Shah, M.; Vijay Shankar, P.S. Shaping the contours of groundwater governance in India. J. Hydrol. Reg. Stud. 2015, 4, 172–192. [Google Scholar] [CrossRef] [Green Version]
- Kumar, C.; Seethapathi, P. Assessment of natural groundwater recharge in Upper Ganga Canal command area. J. Appl. Hydrol. 2002, 15, 13–20. [Google Scholar]
- Sinha, B.; Sharma, S.K. Natural ground water recharge estimation methodologies in India. In Estimation of Natural Groundwater Recharge; Springer: Berlin/Heidelberg, Germany, 1988; pp. 301–311. [Google Scholar]
- CGWB. Report of the Ground Water Resource Estimation Committee (GEC-2015). Available online: http://cgwb.gov.in/Documents/GEC2015_Report_Final%2030.10.2017.pdf (accessed on 8 September 2019).
- Sukhija, B.S.; Reddy, D.V.; Nagabhushanam, P.; Chand, R. Validity of the environmental chloride method for recharge evaluation of coastal aquifers, India. J. Hydrol. 1988, 99, 349–366. [Google Scholar] [CrossRef]
- Srinivas, A.; Rao, B.V.; Gurunadha Rao, V.V.S. Recharge process and aquifer models of a small watershed. Hydrol. Sci. J. 1999, 44, 681–692. [Google Scholar] [CrossRef]
- Rao, V.V.; Chakraborti, A.K. Water balance study and conjunctive water use planning in an irrigation canal command area: A remote sensing perspective. Int. J. Remote Sens. 2000, 21, 3227–3238. [Google Scholar] [CrossRef]
- Ahmed, I.; Umar, R. Hydrogeological framework and water balance studies in parts of Krishni–Yamuna interstream area, Western Uttar Pradesh, India. Environ. Geol. 2008, 53, 1723–1730. [Google Scholar] [CrossRef]
- Lakshmi Prasad, K.; Rastogi, A.K. Estimating net aquifer recharge and zonal hydraulic conductivity values for Mahi Right Bank Canal project area, India by genetic algorithm. J. Hydrol. 2001, 243, 149–161. [Google Scholar] [CrossRef]
- Chand, R.; Mondal, N.; Singh, V. Estimation of groundwater recharge through neutron moisture probe in Hayatnagar micro-watershed, India. Curr. Sci. 2005, 89, 396–400. [Google Scholar]
- Sharda, V.N.; Kurothe, R.S.; Sena, D.R.; Pande, V.C.; Tiwari, S.P. Estimation of groundwater recharge from water storage structures in a semi-arid climate of India. J. Hydrol. 2006, 329, 224–243. [Google Scholar] [CrossRef]
- Saha, D.; Agrawal, A.K. Determination of specific yield using a water balance approach—Case study of Torla Odha watershed in the Deccan Trap province, Maharastra State, India. Hydrogeol. J. 2006, 14, 625–635. [Google Scholar] [CrossRef]
- Thomas, T.; Jaiswal, R.K.; Galkate, R.; Singh, S. Development of a Rainfall-Recharge Relationship for a Fractured Basaltic Aquifer in Central India. Water Resour. Manag. 2009, 23, 3101–3119. [Google Scholar] [CrossRef]
- Singhal, D.; Israil, M.; Sharma, V.; Kumar, B. Evaluation of groundwater resource and estimation of its potential in Pathri Rao watershed, district Haridwar (Uttarakhand). Curr. Sci. 2010, 98, 162–170. [Google Scholar]
- Singh, A. Estimating long-term regional groundwater recharge for the evaluation of potential solution alternatives to waterlogging and salinisation. J. Hydrol. 2011, 406, 245–255. [Google Scholar] [CrossRef]
- Rawat, K.S.; Mishra, A.K.; Paul, G.; Kumar, R. Estimation of Ground Water Recharge in Shankergarh block of Allahabad (India) using Remote Sensing and Statistical Approach. Glob. J. Sci. Eng. Technol. 2012, 1, 34–48. [Google Scholar]
- Healy, R.W. Estimating Groundwater Recharge; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Santarosa, L.V.; Gastmans, D.; Sitolini, T.P.; Kirchheim, R.E.; Betancur, S.B.; de Oliveira, M.E.D.; Campos, J.C.V.; Manzione, R.L. Assessment of groundwater recharge along the Guarani aquifer system outcrop zone in São Paulo State (Brazil): An important tool towards integrated management. Environ. Earth Sci. 2021, 80, 95. [Google Scholar] [CrossRef]
- Haim, G.; Ronen, D.; Magaritz, M. Anion Exclusion During Transport through the Unsaturated Zone. J. Hydrol. 1986, 87, 267–283. [Google Scholar]
- Delin, G.N.; Healy, R.W.; Landon, M.K.; Böhlke, J.K. Effects of topography and soil properties on recharge at two sites in an agricultural field1. JAWRA J. Am. Water Resour. Assoc. 2000, 36, 1401–1416. [Google Scholar] [CrossRef]
- Manna, F.; Murray, S.; Abbey, D.; Martin, P.; Cherry, J.; Parker, B. Spatial and temporal variability of groundwater recharge in a sandstone aquifer in a semiarid region. Hydrol. Earth Syst. Sci. 2019, 23, 2187–2205. [Google Scholar] [CrossRef] [Green Version]
- Delin, G.N.; Healy, R.W.; Lorenz, D.L.; Nimmo, J.R. Comparison of local- to regional-scale estimates of ground-water recharge in Minnesota, USA. J. Hydrol. 2007, 334, 231–249. [Google Scholar] [CrossRef] [Green Version]
- Pragnaditya, M.; Mukherjee, A.; Bhanja, S.N. Groundwater Recharge under Varied Land Use Regions in the Semi-Arid Parts of Western West Bengal, India. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 12–16 December 2016. [Google Scholar]
- Hayati, H.N.; Yusoff, I.; Raksmey, M. Comparison of Applications to Evaluate Groundwater Recharge at Lower Kelantan River Basin, Malaysia. Geosciences 2020, 10, 289. [Google Scholar]
- Ebrahimi, H.; Ghazavi, R.; Karimi, H. Estimation of Groundwater Recharge from the Rainfall and Irrigation in an Arid Environment Using Inverse Modeling Approach and RS. Water Resour. Manag. 2016, 30, 1939–1951. [Google Scholar] [CrossRef]
Reference Title (Alphabetical) | Location | Area of Estimate | Methodology Used | Inferences |
---|---|---|---|---|
Athavale et al., 1980 [35] | Lower Maner Basin, Andhra Pradesh | 1575 km2 | Tritium injection |
|
Sukhija et al., 1988 [69] | Cuddalore Aquifers, Pondichery | 650 km2 | Env. chloride and tritium injection |
|
Srinivas et al., 1999 [70] | Kanchanapally watershed, Andhara Pradesh | 11 km2 | Water balance/groundwater flow model |
|
Rao and Chakraborti, 2000 [71] | Three blocks in Karim Nagar Dt. Andhra Pradesh | 68 km2 | Semi-empirical water balance model/RS |
|
Ahmed and Umar, 2008 [72] | Krishni-Yamuna Micro-watershed, Uttar Pradesh | 434 km2 | Water balance and tritium method |
|
Prasad and Rastogi, 2001 [73] | Mahi Right Bank Canal project area | 2997 km2 | Numerical/inverse model |
|
Chand et al., 2004 [37] | Bairasagara watershed, Karnataka | 111 km2 | Injected tritium tracer and geo-electric methods |
|
Chand et al., 2005 [74] | Hayat Nagar Micro-watershed | 0.045 km2 | Neutron moisture probe |
|
Sharda et al., 2006 [75] | Kheda, Gujarat | 2.62 km2 | Water table fluctuation (WTF)/chloride mass balance (CMB) |
|
Saha and Agarwal, 2006 [76] | Torla Odha watershed, Maharashtra | 22.05 km2 | Water balance/groundwater budgeting |
|
Thomas et al., 2009 [77] | Sagar Block, Madhya Pradesh | 847.47 km2 | Water balance |
|
Rangarajan et al., 2009 [19] | SIIL watershed, Tuticorin, Tamil Nadu | 112 km2 | Tracer/pumping test methods |
|
Singhal et al., 2010 [78] | Pathri Rao watershed, Uttarakhand | 52 km2 | Geo-electrical/isotope |
|
Ajay Singh, 2011 [79] | Haryana India | 44,212 km2 | Hydrological budget model |
|
Rawat et al., 2012 [80] | Shankergarh block of Allahabad | km2 | Water balance/empirical formula/RS-GIS |
|
Hydrologic Zone | Appropriate Techniques for Different Climates | ||
---|---|---|---|
Arid/Semi-Arid | Tropical/Sub-Tropical | Humid/Mountainous | |
Unsaturated zone | Zero-flux plane Historical and environmental tracers Numerical modeling | Water table fluctuation (WTF) Zero-flux plane Soil water balance model | Isotropic tracers Darcy’s law Lysimeters |
Saturated zone | Historical and environmental tracers Numerical modeling | Isotopic tracers Numerical modeling | Water table fluctuation (WTF) Numerical modeling Darcy’s law |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sajil Kumar, P.J.; Schneider, M.; Elango, L. The State-of-the-Art Estimation of Groundwater Recharge and Water Balance with a Special Emphasis on India: A Critical Review. Sustainability 2022, 14, 340. https://doi.org/10.3390/su14010340
Sajil Kumar PJ, Schneider M, Elango L. The State-of-the-Art Estimation of Groundwater Recharge and Water Balance with a Special Emphasis on India: A Critical Review. Sustainability. 2022; 14(1):340. https://doi.org/10.3390/su14010340
Chicago/Turabian StyleSajil Kumar, Pazhuparambil Jayarajan, Michael Schneider, and Lakshmanan Elango. 2022. "The State-of-the-Art Estimation of Groundwater Recharge and Water Balance with a Special Emphasis on India: A Critical Review" Sustainability 14, no. 1: 340. https://doi.org/10.3390/su14010340
APA StyleSajil Kumar, P. J., Schneider, M., & Elango, L. (2022). The State-of-the-Art Estimation of Groundwater Recharge and Water Balance with a Special Emphasis on India: A Critical Review. Sustainability, 14(1), 340. https://doi.org/10.3390/su14010340