Ecosystem Services Monitoring in the Muthurajawela Marsh and Negombo Lagoon, Sri Lanka, for Sustainable Landscape Planning
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. LUC Change Analysis
2.3. LUC Change Modeling
2.3.1. Model Calibration and Validation
2.3.2. Scenario-Based LUC Change Simulation
2.4. Monitoring ESV Changes
3. Results
3.1. Changes in LUC and ESV (1997–2017)
3.2. Projected Changes in LUC and ESV (2017–2030)
3.3. ESV and Its Changes across the GN Divisions
3.4. LUC Change Model Validation
4. Discussion
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
GN Code | GN Name | ESV (USD Thousand/Year) | ||||||
---|---|---|---|---|---|---|---|---|
1997 | 2007 | 2017 | 2030 BAU | 2030 EP | Change | |||
2017–2030 BAU | 2017–2030 EP | |||||||
190A | Weligampitiya North | 167.40 | 78.90 | 52.60 | 1.00 | 1.00 | 51.60 | 51.60 |
191A | Ja-Ela | 279.00 | 241.20 | 131.40 | 0.60 | 0.60 | 130.80 | 130.80 |
165B | Pulluhena | 171.30 | 168.20 | 133.80 | 133.80 | 133.80 | 0.00 | 0.00 |
175 | Telangapatha | 62.20 | 39.40 | 12.40 | 0.00 | 0.00 | 12.40 | 12.40 |
169 | Hekitta | 57.70 | 17.30 | 4.80 | 0.00 | 0.00 | 4.80 | 4.80 |
175A | Evariwatta | 90.80 | 47.70 | 10.90 | 0.01 | 0.09 | 10.89 | 10.81 |
176B | Galwetiya | 70.50 | 25.20 | 3.90 | 0.02 | 0.06 | 3.88 | 3.84 |
168 | Palliyawatta South | 64.10 | 32.70 | 34.10 | 0.01 | 0.08 | 34.08 | 34.02 |
169A | Kurunduhena | 72.70 | 42.00 | 8.10 | 0.01 | 0.00 | 8.09 | 8.09 |
172C | Nayakakanda South | 136.60 | 75.80 | 29.20 | 0.00 | 0.00 | 29.20 | 29.20 |
170 | Thimbirigasyaya | 49.20 | 26.50 | 1.30 | 0.00 | 0.00 | 1.30 | 1.30 |
176 | Wattala | 140.00 | 71.20 | 13.10 | 0.00 | 0.00 | 13.10 | 13.10 |
172 | Hendala South | 60.90 | 11.60 | 7.10 | 0.00 | 0.00 | 7.10 | 7.10 |
168A | Palliyawatta North | 154.70 | 127.60 | 86.60 | 0.00 | 0.00 | 86.60 | 86.60 |
172B | Nayakakanda North | 41.70 | 29.50 | 9.00 | 0.00 | 0.00 | 9.00 | 9.00 |
170A | Elakanda | 76.80 | 35.00 | 6.40 | 0.00 | 0.00 | 6.40 | 6.40 |
176C | Welikadamulla | 103.40 | 43.90 | 7.80 | 0.00 | 0.00 | 7.80 | 7.80 |
172A | Hendala North | 50.00 | 19.60 | 9.10 | 0.00 | 0.00 | 9.10 | 9.10 |
176A | Mabola | 60.90 | 35.10 | 18.20 | 0.00 | 0.00 | 18.20 | 18.20 |
171A | Matagoda | 134.30 | 64.50 | 35.10 | 0.02 | 0.00 | 35.08 | 35.09 |
177A | Kerangapokuna | 151.20 | 129.90 | 84.10 | 0.00 | 0.90 | 84.10 | 83.20 |
168B | Dikovita | 115.60 | 100.00 | 83.20 | 24.50 | 25.60 | 58.70 | 57.60 |
177 | Mattumagala | 244.20 | 214.90 | 60.20 | 3.00 | 3.00 | 57.20 | 57.20 |
171 | Kerawalapitiya | 500.10 | 243.80 | 136.50 | 16.20 | 16.20 | 120.30 | 120.30 |
178 | Mahabage | 445.60 | 391.90 | 224.60 | 29.50 | 29.50 | 195.10 | 195.10 |
171B | Balagala | 607.50 | 468.60 | 412.10 | 54.60 | 104.20 | 357.50 | 307.90 |
182 | Welisara | 194.60 | 146.70 | 83.60 | 29.30 | 29.30 | 54.30 | 54.30 |
182B | Elehiwatta | 118.50 | 131.70 | 58.80 | 0.00 | 0.00 | 58.80 | 58.80 |
183 | Nagoda | 321.70 | 238.30 | 166.80 | 27.70 | 27.70 | 139.10 | 139.10 |
184B | Uswatta | 153.00 | 86.40 | 39.50 | 1.20 | 1.90 | 38.30 | 37.60 |
167 | Uswetakeiyawa | 391.80 | 397.40 | 314.90 | 245.80 | 280.50 | 69.10 | 34.40 |
167B | Pattiyawala | 2785.40 | 2548.70 | 2493.10 | 1916.50 | 2278.10 | 576.60 | 215.00 |
184 | Kandana West | 28.40 | 20.90 | 4.30 | 0.00 | 0.00 | 4.30 | 4.30 |
187 | Nedurupitiya | 316.70 | 245.40 | 166.60 | 17.10 | 17.10 | 149.50 | 149.50 |
186 | Rilavulla | 127.10 | 111.40 | 42.70 | 3.50 | 3.50 | 39.20 | 39.20 |
188 | Kalaeliya | 171.00 | 142.80 | 94.70 | 19.00 | 38.40 | 75.70 | 56.30 |
190C | Kapuwatta | 302.70 | 233.90 | 118.00 | 4.10 | 4.10 | 113.90 | 113.90 |
189 | Wewala | 428.10 | 368.10 | 297.90 | 183.30 | 224.90 | 114.60 | 73.00 |
167A | Paranambalama | 407.20 | 371.30 | 324.40 | 174.40 | 234.40 | 150.00 | 90.00 |
190 | Weligampitiya South | 153.90 | 80.70 | 55.20 | 1.10 | 1.10 | 54.10 | 54.10 |
166 | Nugape | 594.10 | 541.90 | 448.80 | 439.30 | 448.80 | 9.50 | 0.00 |
166A | Kunjawatta | 1658.50 | 1529.00 | 1458.80 | 1139.90 | 1198.00 | 318.90 | 260.80 |
190E | Indivitiya | 383.40 | 263.40 | 255.90 | 170.70 | 211.20 | 85.20 | 44.70 |
165 | Bopitiya | 102.70 | 78.00 | 47.50 | 47.50 | 47.50 | 0.00 | 0.00 |
165A | Bopitiyathuduwa | 887.70 | 780.10 | 796.20 | 703.00 | 708.30 | 93.20 | 87.90 |
192 | Thudella West | 379.30 | 288.10 | 209.60 | 116.30 | 176.90 | 93.30 | 32.70 |
192A | Thudella South | 65.40 | 39.00 | 14.90 | 0.00 | 0.00 | 14.90 | 14.90 |
191 | Kanuwana | 88.60 | 76.70 | 14.30 | 0.00 | 0.00 | 14.30 | 14.30 |
193A | Delathura East | 462.40 | 334.80 | 326.60 | 326.60 | 326.60 | 0.00 | 0.00 |
192B | Thudella North | 194.70 | 178.60 | 127.20 | 105.40 | 111.20 | 21.80 | 16.00 |
194A | Dehiyagatha South | 123.30 | 105.90 | 93.60 | 55.80 | 85.90 | 37.80 | 7.70 |
195 | Kudahakapola South | 163.40 | 119.40 | 63.80 | 4.10 | 18.20 | 59.70 | 45.60 |
193 | Delathura West | 1453.00 | 1415.20 | 1368.50 | 1358.50 | 1368.50 | 10.00 | 0.00 |
196 | Kudahakapola North | 167.50 | 137.00 | 97.80 | 54.80 | 74.40 | 43.00 | 23.40 |
164A | Maha Pamunugama | 837.30 | 839.30 | 752.60 | 736.10 | 736.10 | 16.50 | 16.50 |
194 | Dandugama | 1090.30 | 952.30 | 1076.70 | 896.30 | 893.40 | 180.40 | 183.30 |
194B | Dehiyagatha North | 158.60 | 147.90 | 120.10 | 120.10 | 120.10 | 0.00 | 0.00 |
164 | Pamunugama | 532.00 | 521.40 | 464.90 | 460.00 | 464.10 | 4.90 | 0.80 |
197A | Udammita South | 159.50 | 156.10 | 109.00 | 94.60 | 107.90 | 14.40 | 1.10 |
198 | Alawathupitiya | 227.40 | 224.20 | 205.20 | 196.80 | 205.20 | 8.40 | 0.00 |
163A | Kepungoda | 218.00 | 289.90 | 188.00 | 140.30 | 181.90 | 47.70 | 6.10 |
198A | Dambaduraya | 285.30 | 259.10 | 160.50 | 160.50 | 160.50 | 0.00 | 0.00 |
146 | Ambalammulla | 1425.80 | 1263.20 | 1159.50 | 1079.40 | 1159.50 | 80.10 | 0.00 |
145 | Bandarawatta West | 308.80 | 169.50 | 92.90 | 91.90 | 91.80 | 1.00 | 1.10 |
145C | Bandarawatta East | 167.50 | 175.20 | 89.90 | 85.10 | 89.90 | 4.80 | 0.00 |
163C | Settappaduwa | 102.90 | 109.80 | 73.10 | 48.40 | 48.40 | 24.70 | 24.70 |
145B | Mookalangamuwa West | 305.80 | 177.70 | 122.00 | 120.10 | 122.00 | 1.90 | 0.00 |
145A | Mookalangamuwa East | 273.90 | 212.90 | 137.40 | 72.80 | 131.50 | 64.60 | 5.90 |
144 | Liyanagemulla South | 244.80 | 200.60 | 134.10 | 70.50 | 108.50 | 63.60 | 25.60 |
163B | Dungalpitiya | 258.10 | 258.70 | 172.10 | 58.60 | 104.90 | 113.50 | 67.20 |
144A | Liyanagemulla North | 293.60 | 189.30 | 127.70 | 34.60 | 50.40 | 93.10 | 77.30 |
143A | Katunayaka South | 81.20 | 140.40 | 63.20 | 0.00 | 0.90 | 63.20 | 62.30 |
143 | Katunayaka North | 60.80 | 82.50 | 132.10 | 0.00 | 0.00 | 132.09 | 132.09 |
142A | Kurana Katunayaka South | 213.20 | 215.50 | 58.40 | 0.00 | 0.00 | 58.40 | 58.40 |
142B | Kurana Katunayaka Central | 265.70 | 256.50 | 80.20 | 0.00 | 0.00 | 80.19 | 80.19 |
163 | Thalahena | 179.30 | 218.50 | 111.60 | 0.01 | 0.02 | 111.58 | 111.57 |
142 | Kurana Katunayaka North | 133.60 | 145.80 | 90.30 | 0.00 | 0.00 | 90.30 | 90.30 |
157B | Kurana West | 196.90 | 150.70 | 45.30 | 0.01 | 0.02 | 45.28 | 45.27 |
157A | Kurana East | 133.10 | 135.50 | 75.50 | 0.09 | 0.02 | 75.41 | 75.48 |
162C | Pitipana Southeast | 107.60 | 110.00 | 49.90 | 0.00 | 0.00 | 49.90 | 49.90 |
162B | Pitipana South -West | 54.40 | 54.00 | 8.90 | 0.00 | 0.00 | 8.90 | 8.90 |
156C | Siriwardana Pedesa | 233.60 | 221.10 | 240.50 | 0.00 | 0.00 | 240.50 | 240.50 |
156 | Munnakkarai | 18.30 | 2.00 | 10.50 | 0.10 | 0.00 | 10.49 | 10.49 |
160A | Thaladoowa | 82.80 | 85.30 | 70.30 | 0.00 | 42.80 | 70.29 | 27.50 |
162D | Pitipana Central | 99.70 | 94.30 | 77.30 | 0.00 | 0.00 | 77.30 | 77.30 |
157 | Bolawalana | 376.00 | 299.30 | 147.00 | 0.00 | 0.30 | 147.00 | 146.70 |
156B | Munnakkarai East | 61.00 | 48.10 | 58.90 | 0.00 | 26.40 | 58.90 | 32.50 |
162 | Pitipana North | 108.00 | 102.80 | 31.50 | 0.00 | 0.00 | 31.50 | 31.50 |
162A | Doowa | 33.70 | 39.10 | 29.10 | 0.05 | 0.01 | 29.05 | 29.09 |
160B | Udayarthoppuwa South | 161.40 | 89.00 | 12.40 | 0.00 | 0.30 | 12.40 | 12.10 |
160 | Udayarthoppuwa | 122.50 | 71.90 | 1.20 | 0.00 | 0.30 | 1.20 | 0.90 |
156A | Munnakkarai North | 32.30 | 54.60 | 71.20 | 0.00 | 11.20 | 71.20 | 60.00 |
161A | Angurukaramulla | 209.30 | 124.60 | 3.90 | 0.00 | 0.00 | 3.90 | 3.90 |
158A | Wella Weediya South | 10.70 | 9.60 | 1.20 | 0.00 | 0.00 | 1.20 | 1.20 |
159 | Periyamulla | 47.30 | 29.20 | 6.70 | 0.00 | 0.00 | 6.70 | 6.70 |
158 | Wella Weediya | 12.50 | 12.30 | 5.00 | 0.00 | 0.00 | 5.00 | 5.00 |
73C | Kudapaduwa South | 45.20 | 38.00 | 6.20 | 0.00 | 0.00 | 6.20 | 6.20 |
158B | Wella Weediya East | 63.70 | 29.90 | 0.20 | 0.00 | 0.00 | 0.20 | 0.20 |
159A | Hunupitiya | 74.70 | 28.70 | 2.00 | 0.00 | 0.00 | 2.00 | 2.00 |
References
- Sinclair, M.; Vishnu Sagar, M.K.; Knudsen, C.; Sabu, J.; Ghermandi, A. Economic appraisal of ecosystem services and restoration scenarios in a tropical coastal Ramsar wetland in India. Ecosyst. Serv. 2021, 47, 101236. [Google Scholar] [CrossRef]
- Ghermandi, A.; Sheela, A.M.; Justus, J. Integrating similarity analysis and ecosystem service value transfer: Results from a tropical coastal wetland in India. Ecosyst. Serv. 2016, 22, 73–82. [Google Scholar] [CrossRef]
- Sustainable Development Goals. Available online: https://sdgs.un.org/goals (accessed on 23 September 2021).
- Assefa, W.W.; Eneyew, B.G.; Wondie, A. The impacts of land-use and land-cover change on wetland ecosystem service values in peri-urban and urban area of Bahir Dar City, Upper Blue Nile Basin, Northwestern Ethiopia. Ecol. Process. 2021, 10, 39. [Google Scholar] [CrossRef]
- Huang, Q.; Zhao, X.; He, C.; Yin, D.; Meng, S. Impacts of urban expansion on wetland ecosystem services in the context of hosting the Winter Olympics: A scenario simulation in the Guanting Reservoir Basin, China. Reg. Environ. Chang. 2019, 19, 2365–2379. [Google Scholar] [CrossRef]
- Tong, C.; Feagin, R.A.; Lu, J.; Zhang, X.; Zhu, X.; Wang, W.; He, W. Ecosystem service values and restoration in the urban Sanyang wetland of Wenzhou, China. Ecol. Eng. 2007, 29, 249–258. [Google Scholar] [CrossRef]
- Kharazmi, R.; Tavili, A.; Rahdari, M.R.; Chaban, L.; Panidi, E.; Rodrigo-Comino, J. Monitoring and assessment of seasonal land cover changes using remote sensing: A 30-year (1987–2016) case study of Hamoun Wetland, Iran. Environ. Monit. Assess. 2018, 190, 1–23. [Google Scholar] [CrossRef]
- Wu, W.; Zhou, Y.; Tian, B. Coastal wetlands facing climate change and anthropogenic activities: A remote sensing analysis and modelling application. Ocean Coast. Manag. 2017, 138, 1–10. [Google Scholar] [CrossRef]
- Athukorala, D.; Estoque, R.C.; Murayama, Y.; Matsushita, B. Impacts of Urbanization on the Muthurajawela Marsh and Negombo Lagoon, Sri Lanka: Implications for landscape planning towards a sustainable urban wetland ecosystem. Remote Sens. 2021, 13, 316. [Google Scholar] [CrossRef]
- CEA; IUCN; IWMI. National Wetland Directory of Sri Lanka; The Central Environmental Authority (CEA); The World Conservation Union (IUCN); The International Water Management Institute (IWMI): Colombo, Sri Lanka, 2006; ISBN 9558177547.
- Emerton, L.; Kekulandala, L.D.C.B. Assessment of the Economic Value of Muthurajawela Wetland; IUCN-Sri Lanka: Colombo, Sri Lanka, 2003; ISBN 9558177199.
- Subasinghe, S.; Estoque, R.; Murayama, Y. Spatiotemporal Analysis of Urban Growth Using GIS and Remote Sensing: A Case Study of the Colombo Metropolitan Area, Sri Lanka. ISPRS Int. J. Geo-Inform. 2016, 5, 197. [Google Scholar] [CrossRef] [Green Version]
- Estoque, R.C.; Murayama, Y. Quantifying landscape pattern and ecosystem service value changes in four rapidly urbanizing hill stations of Southeast Asia. Landsc. Ecol. 2016, 31, 1481–1507. [Google Scholar] [CrossRef]
- Sun, X.; Crittenden, J.C.; Li, F.; Lu, Z.; Dou, X. Urban expansion simulation and the spatio-temporal changes of ecosystem services, a case study in Atlanta Metropolitan area, USA. Sci. Total Environ. 2018, 622–623, 974–987. [Google Scholar] [CrossRef]
- Zhou, D.; Tian, Y.; Jiang, G. Spatio-temporal investigation of the interactive relationship between urbanization and ecosystem services: Case study of the Jingjinji urban agglomeration, China. Ecol. Indic. 2018, 95, 152–164. [Google Scholar] [CrossRef]
- Dai, X.; Wang, L.; Huang, C.; Fang, L.; Wang, S.; Wang, L. Spatio-temporal variations of ecosystem services in the urban agglomerations in the middle reaches of the Yangtze River, China. Ecol. Indic. 2020, 115, 106394. [Google Scholar] [CrossRef]
- He, Y.; Wang, W.; Chen, Y.; Yan, H. Assessing spatio-temporal patterns and driving force of ecosystem service value in the main urban area of Guangzhou. Sci. Rep. 2021, 11, 1–18. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Examining the potential impact of land use/cover changes on the ecosystem services of Baguio city, the Philippines: A scenario-based analysis. Appl. Geogr. 2012, 35, 316–326. [Google Scholar] [CrossRef]
- Yirsaw, E.; Wu, W.; Shi, X.; Temesgen, H.; Bekele, B. Land Use/Land Cover change modeling and the prediction of subsequent changes in ecosystem service values in a coastal area of China, the Su-Xi-Chang region. Sustainability 2017, 9, 1204. [Google Scholar] [CrossRef] [Green Version]
- Swetnam, R.D.; Fisher, B.; Mbilinyi, B.P.; Munishi, P.K.T.; Willcock, S.; Ricketts, T.; Mwakalila, S.; Balmford, A.; Burgess, N.D.; Marshall, A.R.; et al. Mapping socio-economic scenarios of land cover change: A GIS method to enable ecosystem service modelling. J. Environ. Manage. 2011, 92, 563–574. [Google Scholar] [CrossRef]
- Jayathilake, M.B.; Chandrasekara, W.U. Variation of avifaunal diversity in relation to land-use modifications around a tropical estuary, the Negombo estuary in Sri Lanka. J. Asia-Pacific Biodivers. 2015, 8, 72–82. [Google Scholar] [CrossRef] [Green Version]
- Bambaradeniya, C.N.B.; Ekanayake, S.P.; Kekulandala, L.D.C.B.; Samarawickrama, V.A.P.; Ratnayake, N.D.; Fernando, R.H.S.S. An Assessment of the Status of Biodiversity in the Muthurajawela Wetland Sanctuary; IUCN—The World Conservation Union, Sri Lanka Country Office: Colombo, Sri Lanka, 2002; ISBN 9558177172.
- Central Environment Authority, Sri Lanka. Available online: http://www.cea.lk/web/?option=com_content&view=article&layout=edit&id=1155 (accessed on 14 June 2021).
- Department of Meteorology, Sri Lanka. Available online: https://www.meteo.gov.lk/index.php?lang=en (accessed on 15 June 2021).
- Greater Colombo Economic Commision. Environmental Profile of Muthurajawela and Negombo Lagoon; Greater Colombo Economic Commision: Euroconsult, The Netherlands, 1991.
- DIVA-GIS, Free, Simple & Effective. Available online: https://www.diva-gis.org/ (accessed on 15 June 2021).
- Estoque, R.C.; Murayama, Y. Landscape pattern and ecosystem service value changes: Implications for environmental sustainability planning for the rapidly urbanizing summer capital of the Philippines. Landsc. Urban Plan. 2013, 116, 60–72. [Google Scholar] [CrossRef]
- Zhang, X.; Estoque, R.C.; Murayama, Y. An urban heat island study in Nanchang City, China based on land surface temperature and social-ecological variables. Sustain. Cities Soc. 2017, 32, 557–568. [Google Scholar] [CrossRef]
- Hou, H.; Estoque, R.C.; Murayama, Y. Spatiotemporal analysis of urban growth in three African capital cities: A grid-cell-based analysis using remote sensing data. J. African Earth Sci. 2016, 123, 381–391. [Google Scholar] [CrossRef]
- Eastman, J.R. TerrSet, Geospatial Monitoring and Modeling System, Manual; Clark Labs, Clark University: Worcester, MA, USA, 2016. [Google Scholar]
- Eastman, J.R.; Toledano, J.A. A Short Presentation of the Land Change Modeler (LCM). In Geomatic Approaches for Modeling Land Change Scenarios; Lecture Notes in Geoinformation and Cartography; Springer International Publishing AG: Cham, Switzerland, 2018; Volume 6, pp. 499–506. ISBN 9781441980731. [Google Scholar]
- Mas, J.F.; Kolb, M.; Paegelow, M.; Camacho Olmedo, M.T.; Houet, T. Inductive pattern-based land use/cover change models: A comparison of four software packages. Environ. Model. Softw. 2014, 51, 94–111. [Google Scholar] [CrossRef] [Green Version]
- Peng, K.; Jiang, W.; Deng, Y.; Liu, Y.; Wu, Z.; Chen, Z. Simulating wetland changes under different scenarios based on integrating the random forest and CLUE-S models: A case study of Wuhan Urban Agglomeration. Ecol. Indic. 2020, 117, 106671. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, B.; Jiang, W.; Qiu, H. Identification and scenario prediction of degree of wetland damage in Guangxi based on the CA-Markov model. Ecol. Indic. 2021, 127, 107764. [Google Scholar] [CrossRef]
- Ghosh, S.; Das, A. Wetland conversion risk assessment of East Kolkata Wetland: A Ramsar site using random forest and support vector machine model. J. Clean. Prod. 2020, 275, 123475. [Google Scholar] [CrossRef]
- Ansari, A.; Golabi, M.H. Prediction of spatial land use changes based on LCM in a GIS environment for Desert Wetlands—A case study: Meighan Wetland, Iran. Int. Soil Water Conserv. Res. 2019, 7, 64–70. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Measuring Sustainability Based Upon Various Perspectives: A Case Study of a Hill Station in Southeast Asia. Ambio 2014, 43, 943–956. [Google Scholar] [CrossRef] [Green Version]
- Pontius, R.G.; Boersma, W.; Castella, J.C.; Clarke, K.; Nijs, T.; Dietzel, C.; Duan, Z.; Fotsing, E.; Goldstein, N.; Kok, K.; et al. Comparing the input, output, and validation maps for several models of land change. Ann. Reg. Sci. 2008, 42, 11–37. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; Kubiszewski, I.; Cork, S.; Atkins, P.W.B.W.B.; Bean, A.; Diamond, A.; Grigg, N.; Korb, W.; Logg-Scarvell, J.; Navis, R.; et al. Scenarios for Australia in 2050. J. Futur. Stud. 2015, 19, 49–76. [Google Scholar]
- Estoque, R.C.; Gomi, K.; Togawa, T.; Ooba, M.; Hijioka, Y.; Akiyama, C.M.; Nakamura, S.; Yoshioka, A.; Kuroda, K. Scenario-based land abandonment projections: Method, application and implications. Sci. Total Environ. 2019, 692, 903–916. [Google Scholar] [CrossRef]
- Kubiszewski, I.; Costanza, R.; Anderson, S.; Sutton, P. The future value of ecosystem services: Global scenarios and national implications. Ecosyst. Serv. 2017, 26, 289–301. [Google Scholar] [CrossRef]
- DasGupta, R.; Hashimoto, S.; Okuro, T.; Basu, M. Scenario-based land change modelling in the Indian Sundarban delta: An exploratory analysis of plausible alternative regional futures. Sustain. Sci. 2019, 14, 221–240. [Google Scholar] [CrossRef]
- Chen, G.; Li, X.; Liu, X.; Chen, Y.; Liang, X.; Leng, J.; Xu, X.; Liao, W.; Qiu, Y.; Wu, Q.; et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 2020, 11, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, B.A.; Estoque, R.C.; Li, X.; Kumar, P.; Dasgupta, R.; Avtar, R.; Magcale-Macandog, D.B. High-resolution urban change modeling and flood exposure estimation at a national scale using open geospatial data: A case study of the Philippines. Comput. Environ. Urban Syst. 2021, 90, 101704. [Google Scholar] [CrossRef]
- Estoque, R.C.; Ooba, M.; Avitabile, V.; Hijioka, Y.; DasGupta, R.; Togawa, T.; Murayama, Y. The future of Southeast Asia’s forests. Nat. Commun. 2019, 10, 1829. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, B.C.; Kriegler, E.; Ebi, K.L.; Kemp-Benedict, E.; Riahi, K.; Rothman, D.S.; van Ruijven, B.J.; van Vuuren, D.P.; Birkmann, J.; Kok, K.; et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Chang. 2017, 42, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Popp, A.; Calvin, K.; Fujimori, S.; Havlik, P.; Humpenöder, F.; Stehfest, E.; Bodirsky, B.L.; Dietrich, J.P.; Doelmann, J.C.; Gusti, M.; et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Chang. 2017, 42, 331–345. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
Ecosystem Services | ESV Coefficients (2020 USD/ha/Year) |
---|---|
Flood attenuation | 2607.43 |
Industrial wastewater treatment | 871.69 |
Agriculture production | 162.67 |
Support to downstream fisheries (fish breeding and nursery) | 107.41 |
Firewood | 42.75 |
Fishing (fisheries production) | 33.62 |
Leisure and recreation | 28.36 |
Domestic sewage treatment | 23.20 |
Freshwater supplies for local population | 20.30 |
Carbon sequestration | 4.19 |
Ecosystem Services | USD Million/Year | ||||||
---|---|---|---|---|---|---|---|
1997 | 2007 | 2017 | Changes | ||||
1997–2007 | % of 1997 | 2007–2017 | % of 2007 | ||||
Flood attenuation | 17.94 | 15.25 | 11.94 | −2.69 | −14.99 | −3.31 | −21.70 |
Industrial wastewater treatment | 6.00 | 5.10 | 4.00 | −0.90 | −15.00 | −1.10 | −21.57 |
Agriculture production | 1.12 | 0.95 | 0.75 | −0.17 | −15.18 | −0.20 | −21.05 |
Support to downstream fisheries (fish breeding and nursery) | 0.74 | 0.63 | 0.49 | −0.11 | −14.86 | −0.14 | −22.22 |
Firewood | 0.29 | 0.25 | 0.20 | −0.04 | −13.79 | −0.05 | −20.00 |
Fishing (fisheries production) | 0.23 | 0.20 | 0.15 | −0.03 | −13.04 | −0.05 | −25.00 |
Leisure and recreation | 0.19 | 0.17 | 0.13 | −0.02 | −10.53 | −0.04 | −23.53 |
Domestic sewage treatment | 0.16 | 0.13 | 0.11 | −0.03 | −18.75 | −0.02 | −15.38 |
Freshwater supplies for local population | 0.14 | 0.12 | 0.09 | −0.02 | −14.29 | −0.03 | −25.00 |
Carbon sequestration | 0.03 | 0.03 | 0.02 | 0.00 | 0.00 | −0.01 | −33.33 |
Total | 26.84 | 22.83 | 17.88 | −4.01 | −4.95 |
LUC Class | 2017 | 2030 BAU | 2030 EP | Changes | |||
---|---|---|---|---|---|---|---|
2017–2030 BAU | % of 2017 | 2017–2030 EP | % of 2017 | ||||
Marshland | 3058.47 | 1729.89 | 1995.66 | −1328.58 | −43.44 | −1062.81 | −34.75 |
Mangrove | 1522.98 | 1309.5 | 1352.07 | −213.48 | −14.02 | −170.91 | −11.22 |
Settlement | 5741.10 | 7283.16 | 6974.82 | 1542.06 | 26.86 | 1233.72 | 21.49 |
Ecosystem Services | 2017–2030 (BAU) | 2017–2030 (EP) | ||||
---|---|---|---|---|---|---|
Million USD/Year | % of 2017 | % of Total Decrease | Million USD/Year | % of 2017 | % of Total Decrease | |
Flood attenuation | −4.02 | −33.67 | 66.89 | −3.21 | −26.88 | 67.01 |
Industrial wastewater treatment | −1.35 | −33.75 | 22.46 | −1.08 | −27.00 | 22.55 |
Agriculture production | −0.26 | −34.67 | 4.33 | −0.21 | −28.00 | 4.38 |
Support to downstream fisheries (fish breeding and nursery) | −0.16 | −32.65 | 2.66 | −0.13 | −26.53 | 2.71 |
Firewood | −0.07 | −35.00 | 1.16 | −0.05 | −25.00 | 1.04 |
Fishing (fisheries production) | −0.05 | −33.33 | 0.83 | −0.03 | −20.00 | 0.63 |
Leisure and recreation | −0.04 | −30.77 | 0.67 | −0.03 | −23.08 | 0.63 |
Domestic sewage treatment | −0.04 | −36.36 | 0.67 | −0.03 | −27.27 | 0.63 |
Freshwater supplies for local population | −0.02 | −22.22 | 0.33 | −0.02 | −22.22 | 0.42 |
Carbon sequestration | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Total | −6.01 | 100.00 | −4.79 | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athukorala, D.; Estoque, R.C.; Murayama, Y.; Matsushita, B. Ecosystem Services Monitoring in the Muthurajawela Marsh and Negombo Lagoon, Sri Lanka, for Sustainable Landscape Planning. Sustainability 2021, 13, 11463. https://doi.org/10.3390/su132011463
Athukorala D, Estoque RC, Murayama Y, Matsushita B. Ecosystem Services Monitoring in the Muthurajawela Marsh and Negombo Lagoon, Sri Lanka, for Sustainable Landscape Planning. Sustainability. 2021; 13(20):11463. https://doi.org/10.3390/su132011463
Chicago/Turabian StyleAthukorala, Darshana, Ronald C. Estoque, Yuji Murayama, and Bunkei Matsushita. 2021. "Ecosystem Services Monitoring in the Muthurajawela Marsh and Negombo Lagoon, Sri Lanka, for Sustainable Landscape Planning" Sustainability 13, no. 20: 11463. https://doi.org/10.3390/su132011463
APA StyleAthukorala, D., Estoque, R. C., Murayama, Y., & Matsushita, B. (2021). Ecosystem Services Monitoring in the Muthurajawela Marsh and Negombo Lagoon, Sri Lanka, for Sustainable Landscape Planning. Sustainability, 13(20), 11463. https://doi.org/10.3390/su132011463