Scenarios of Bioenergy Recovery from Organic Fraction of Residual Municipal Waste in the Marche Region (Italy)
Abstract
:1. Introduction
2. Methodology
2.1. Synthetic Overview on MW Management in the Marche Region
2.2. Derivation of the Mass Balances of the Provincial MBT Systems
2.3. Characterisation of the RMW, us-OFRMW, and bios-OFRMW
2.4. Development of the BIOENERGYus-OFRMW Scenario
- Per capita MW generation of 472.1 kg person−1 year−1 as the objective of reducing the generation of waste set by the Marche’s regional waste management plan [26].
- Regional population of 1,474,769 inhabitants, officially estimated (as the forecast median scenario) by the Italian National Institute of Statistics [27].
- Percentage of sc-OFMW set at 43.7% of the total regional amount of sc-MW, determined as the mean value from 2012 to 2019.
- Percentage of us-OFRMW (related to the total regional amount of RMW) determined as the mean from the mass balances of the provincial MBT systems (see Section 2.2).
2.5. Development of the BIOENERGY-IMPACTbios-OFRMW Scenario
2.6. Analytical Procedures
3. Results
3.1. Mass Balances of the Provincial MBT Systems
3.2. Representative Compositional Characteristics of the RMW
3.3. Representative Physico-Chemical Characteristics and BMPs of the us-OFRMW and bios-OFRMW
3.4. Resulting BIOENERGYus-OFRMW Scenario
3.5. Resulting BIOENERGY-IMPACTbios-OFRMW Scenario
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ISPRA (Italian Institute for Environmental Protection and Research). Municipal Waste Report-Edition 2020; Report Series No. 331/2020; ISPRA: Rome, Italy, 2020. (In Italian)
- Di Lonardo, M.C.; Lombardi, F.; Gavasci, R. Quality evaluation and improvement of mechanically-biologically treated municipal solid waste in view of a possible recovery. Int. J. Environ. Sci. Technol. 2015, 12, 3243–3254. [Google Scholar] [CrossRef] [Green Version]
- Christensen, T.H.; Manfredi, S.; Kjeldsen, P. Landfilling: Environmental issues. In Solid Waste Technology & Management; Christensen, T.H., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2010; Volume 2, pp. 695–708. [Google Scholar]
- Stegmann, R. Landfilling: MBP waste landfills. In Solid Waste Technology & Management; Christensen, T.H., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2010; Volume 2, pp. 788–799. [Google Scholar]
- Trulli, E.; Ferronato, N.; Torretta, V.; Piscitelli, M.; Masi, S.; Mancini, I. Sustainable mechanical biological treatment of solid waste in urbanized areas with low recycling rates. Waste Manag. 2018, 71, 556–564. [Google Scholar] [CrossRef]
- APAT (Italian Environmental Protection Agency and Technical Services). Physico-Chemical Characterisation of Organic Outputs from Mechanical Biological Waste Treatment Plants; Report Series; APAT: Rome, Italy, 2007. (In Italian) [Google Scholar]
- CITEC (Italian Committee on Complex Technology Plants). Guidelines for the Design, Realisation, and Management of Complex Technology Plants for Municipal Waste Disposal, 2nd ed.; Hyper Publisher: Venice, Italy, 2008. [Google Scholar]
- Di Lonardo, M.C.; Lombardi, F.; Gavasci, R. Characterization of MBT plants input and outputs: A review. Rev. Environ. Sci. Bio/Technol. 2012, 11, 353–363. [Google Scholar] [CrossRef]
- Pantini, S.; Verginelli, I.; Lombardi, F.; Scheutz, C.; Kjeldsen, P. Assessment of biogas production from MBT waste under different operating conditions. Waste Manag. 2015, 43, 37–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carchesio, M.; Di Addario, M.; Tatàno, F.; de Rosa, S.; Gambioli, A. Evaluation of the biochemical methane potential of residual organic fraction and mechanically-biologically treated organic outputs intended for landfilling. Waste Manag. 2020, 113, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Capaccioni, B.; Caramiello, C.; Tatàno, F.; Viscione, A. Effects of a temporary HDPE cover on landfill gas emissions: Multiyear evaluation with the static chamber approach at an Italian landfill. Waste Manag. 2011, 31, 956–965. [Google Scholar] [CrossRef]
- Di Maria, F. Upgrading of a mechanical biological treatment plant with a solid anaerobic digestion batch: A real case study. Waste Manag. Res. 2012, 30, 1089–1094. [Google Scholar] [CrossRef] [PubMed]
- EEA (European Environment Agency). Bio-waste in Europe-turning challenges into opportunities, EEA Report no. 04/2020; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Carchesio, M.; Tatàno, F.; Lancellotti, I.; Taurino, R.; Colombo, E.; Barbieri, L. Comparison of biomethane production and digestate characterization for selected agricultural substrates in Italy. Environ. Technol. 2014, 35, 2212–2226. [Google Scholar] [CrossRef]
- ARPAM (Environmental Protection Agency of the Marche Region). Annual Report on Municipal Waste in the Marche Region. 2019; Boccarossa, M., Ed.; ARPAM: Pesaro, Italy, 2020. (In Italian) [Google Scholar]
- ISTAT (Italian National Institute of Statistics). The Extensions of Italian Municipalities, Provinces, and Regions; Report; ISTAT: Rome, Italy, 2013. (In Italian) [Google Scholar]
- European Commission. Commission Decision of 18 December 2014 amending Decision 2000/532/EC on the list of waste pursuant to Directive 2008/98/EC of the European Parliament and of the Council. Off. J. Eur. Union 2014, 370, 44–86. [Google Scholar]
- ARPAM. Compositional Analyses of the RMW from the Provincial Districts in the Marche Region. 2017–2018; Boccarossa, M., Ed.; ARPAM: Pesaro, Italy, 2019. (In Italian)
- Di Maria, F.; Sordi, A.; Micale, C. Energy production from mechanical biological treatment and composting plants exploiting solid anaerobic digestion batch: An Italian case study. Energy Convers. Manage. 2012, 56, 112–120. [Google Scholar] [CrossRef]
- Marigo, L.; Pasqualin, P. Planning of biogas plants. In Biomethane from Biogas; Arecco, F., Ghelardi, G.P., Eds.; Edizioni Ambiente Publisher: Milan, Italy, 2018; pp. 57–67. (In Italian) [Google Scholar]
- Torregrossa, M. Techniques for upgrade of biogas to biomethane. In Advanced Biological Treatments-BioMAc 2018; Series in Environmental Engineering; Belgiorno, V., Cesaro, A., Naddeo, V., Zarra, T., Eds.; ASTER Publisher: Fisciano, SA, Italy, 2018; pp. 315–336. (In Italian) [Google Scholar]
- CRPA (Research Centre on Animal Production). Biogas: Technical and Economic Feasibility; Booklet Series No. 4/2008; CRPA: Reggio Emilia, Italy, 2008. (In Italian) [Google Scholar]
- Pöschl, M.; Ward, S.; Owende, P. Evaluation of energy efficiency of various biogas production and utilization pathways. Appl. Energy 2010, 87, 3305–3321. [Google Scholar] [CrossRef]
- ANPA (Italian Environment Protection Agency). Anaerobic Treatment of Waste. Design and Operation; Handbook and Standard Series No. 13/2002; ANPA: Rome, Italy, 2002. (In Italian) [Google Scholar]
- European Parliament and Council of the European Union. Directive (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018 amending Directive 2008/98/EC on waste. Off. J. Eur. Union 2018, L 150, 109–140. [Google Scholar]
- Marche Region. Regional Waste Management Plan. Off. Bull. Marche Region. 2015, XLVI-Annex No. 4, 1–1241. (In Italian) [Google Scholar]
- ISTAT. Population Forecast-Years 2018–2065. Available online: http://dati.istat.it/Index.aspx?DataSetCode=DCIS_PREVDEM1 (accessed on 1 March 2021). (In Italian).
- Marche Region. Prevention, Production, and Management of Waste in the Marche Region. 2017; Report No. 9; Regione Marche and ARPAM: Ancona and Pesaro, Italy, 2018. (In Italian) [Google Scholar]
- Zwietering, M.H.; Jongenburger, I.; Rombouts, F.M.; van’t Riet, K. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 1990, 56, 1875–1881. [Google Scholar] [CrossRef] [Green Version]
- Cecchi, F.; Traverso, P.; Pavan, P.; Bolzonella, D.; Innocenti, L. Characteristics of the OFMSW and behaviour of the anaerobic digestion process. In Biomethanization of the Organic Fraction of Municipal Solid Wastes; Mata-Alvarez, J., Ed.; IWA Publishing: London, UK, 2002; pp. 141–180. [Google Scholar]
- Zhang, Y.; Banks, C.J.; Heaven, S. Anaerobic digestion of two biodegradable municipal waste streams. J. Environ. Manage. 2012, 104, 166–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dillah, D.D.; Panesar, B.; Gornto, M.; Dieleman, B.L. New and Improved Implementation of the First Order Model for Landfill Gas Generation or Collection. SCS Engineers. Available online: https://www.scsengineers.com/scs-white-papers/new-and-improved-implementation-of-the-first-order-model-for-landfill-gas-generation-or-collection/ (accessed on 1 March 2021).
- Oonk, H. Literature Review: Methane from Landfills. Methods to Quantify Generation, Oxidation and Emission; Final Report; Oonkay Innovations in Environmental Technology: Apeldoorn, The Netherlands, 2010. [Google Scholar]
- Tatàno, F.; Viscione, A.; de Rosa, S.; Corigliano, G.; Capaccioni, B. Landfill Gas Emission Monitoring with the Static, Non-stationary Chamber Method: A Long-term (2005–2016) Study at an Italian Site. In Proceedings of the Sardinia 2017, Sixteenth International Waste Management and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, 2–6 October 2017; CISA Publisher: Padova, Italy, 2017; pp. 1–17. [Google Scholar]
- Willumsen, H.; Barlaz, M.A. Landfilling: Gas production, extraction and utilization. In Solid Waste Technology & Management; Christensen, T.H., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2010; Volume 2, pp. 841–857. [Google Scholar]
- Myhre, G.; Shindell, D.; Bréon, F.M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and natural radiative forcing. In Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 659–740. [Google Scholar]
- IRSA (Italian Water Research Institute). Analytical Methods for Sludge: Physico-Chemical Parameters; IRSA Book Series no. 64; CNR (Italian National Research Council) Publisher: Rome, Italy, 1985. (In Italian) [Google Scholar]
- UNI (Italian Institute for Standardisation). Characterisation of Waste-Digestion for Subsequent Determination of Aqua Regia Soluble Portion of Elements; Standard UNI EN 13657:2004; UNI Publisher: Milan, Italy, 2004. (In Italian) [Google Scholar]
- UNI. Water Quality-Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry; Standard UNI EN ISO 11885:2009; UNI Publisher: Milan, Italy, 2009. [Google Scholar]
- USEPA (US Environmental Protection Agency). Method 6020B: Inductively Coupled Plasma-Mass Spectrometry, SW-846, Revision 2; USEPA: Washington, DC, USA, 2014. Available online: https://www.epa.gov/sites/production/files/2015-12/documents/6020b.pdf (accessed on 1 March 2021).
- Hebel, J.R.; McCarter, R.J. A Study Guide to Epidemiology and Biostatistics; Jones & Bartlett Learning: Burlington, VT, USA, 2012. [Google Scholar]
- Cesaro, A.; Russo, L.; Farina, A.; Belgiorno, V. Organic fraction of municipal solid waste from mechanical selection: Biological stabilization and recovery options. Environ. Sci. Pollut. Res. 2016, 23, 1565–1575. [Google Scholar] [CrossRef] [PubMed]
- APAT. Methods for the Assessment of Waste Biological Stability; Handbook Series on Instruments and Methods No. 25/2003; APAT: Rome, Italy, 2003. (In Italian) [Google Scholar]
- De Gioannis, G.; Muntoni, A.; Cappai, G.; Milia, S. Landfill gas generation after mechanical biological treatment of municipal solid waste. Estimation of gas generation rate constants. Waste Manag. 2009, 29, 1026–1034. [Google Scholar] [CrossRef] [PubMed]
- Montejo, C.; Costa, C.; Márquez, M.C. Influence of input material and operational performance on the physical and chemical properties of MSW compost. J. Environ. Manag. 2015, 162, 240–249. [Google Scholar] [CrossRef]
- van Praagh, M.; Heerenklage, J.; Smidt, E.; Modin, H.; Stegmann, R.; Persson, K.M. Potential emissions from two mechanically-biologically pretreated (MBT) wastes. Waste Manag. 2009, 29, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Environment Agency. A Review of Human Health and Environmental Risks Associated with the Land Application of Mechanical-Biological Treatment Outputs; Science report SC030144/SR2; Environment Agency: Bristol, UK, 2009.
- Farrell, M.; Jones, D.L. Use of composts in the remediation of heavy metal contaminated soil. J. Hazard. Mater. 2010, 175, 575–582. [Google Scholar] [CrossRef]
- Almendro-Candel, M.B.; Navarro-Pedreño, J.; Jordán, M.M.; Gómez, I.; Meléndez-Pastor, I. Use of municipal solid waste compost to reclaim limestone quarries mine spoils as soil amendments: Effects on Cd and Ni. J. Geochem. Explor. 2014, 144, 363–366. [Google Scholar] [CrossRef]
- Alvarenga, P.; Palma, P.; Gonçalves, A.P.; Fernandes, R.M.; Cunha-Queda, A.C.; Duarte, E.; Vallini, G. Evaluation of chemical and ecotoxicological characteristics of biodegradable organic residues for application to agricultural land. Environ. Int. 2007, 33, 505–513. [Google Scholar] [CrossRef]
- Pantini, S.; Verginelli, I.; Lombardi, F. Analysis and modeling of metals release from MBT wastes through batch and up-flow column tests. Waste Manag. 2015, 38, 22–32. [Google Scholar] [CrossRef]
- Tatàno, F.; Pagliaro, G.; Di Giovanni, P.; Floriani, E.; Mangani, F. Biowaste home composting: Experimental process monitoring and quality control. Waste Manag. 2015, 38, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Salati, S.; Scaglia, B.; Di Gregorio, A.; Carrera, A.; Adani, F. The use of the dynamic respiration index to predict the potential MSW-leachate impacts after short term mechanical biological treatment. Bioresour. Technol. 2013, 128, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Kenneally, D.; Odio, M.; Hatzopoulos, I. Modern diaper performance: Construction, materials, and safety review. Int. J. Dermatol. 2016, 55 (Suppl. 1), 18–20. [Google Scholar] [CrossRef] [PubMed]
- TERNA (Italian National Electricity Transmission Grid). Statistical Report 2019-Marche Region. Available online: https://www.terna.it/it/sistema-elettrico/statistiche/evoluzione-mercato-elettrico (accessed on 1 March 2021). (In Italian).
- Ragazzoni, A. Analysis of the Return from Biogas Plants in Accordance with the New Subsidies. Available online: http://www.crpa.it/media/documents/crpa_www/Convegni/20130314_BiogasBiometano_RA/Ragazzoni_RA_14-3-2013.pdf (accessed on 1 March 2021). (In Italian).
- Bogner, J.; Lagerkvist, A. Organic Carbon Cycling in Landfills: Model for a Continuum Approach. In Proceedings of Sardinia 97, Sixth International Landfill Symposium; Christensen, T.H., Cossu, R., Stegmann, R., Eds.; CISA Publisher: Cagliari, Italy, 1997; Volume I, pp. 45–56. [Google Scholar]
- Fischer, C.; Maurice, C.; Lagerkvist, A. Gas Emission from Landfills. An Overview of Issues and Research Needs; AFR-Report 264; Swedish Environmental Protection Agency: Stockholm, Sweden, 1999.
- Colón, J.; Ponsá, S.; Álvarez, C.; Vinot, M.; Lafuente, F.J.; Gabriel, D.; Sánchez, A. Analysis of MSW full-scale facilities based on anaerobic digestion and/or composting using respiration indices as performance indicators. Bioresour. Technol. 2017, 236, 87–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cord’homme, C. Integrated Residual Municipal Waste Treatment Combining Material from Waste, Organic Recovery and Energy from Waste-Case Studies. In Short Abstract Collection, Proceedings of the 5th MatER Meeting and 6th International Conference on Final Sinks, Recovery and Final Sinks for an Effective Waste Management, Virtual Event, 7–9 June 2021; Politecnico di Milano: Milan, Italy, 2021; p. 58. [Google Scholar]
- Vielhaber, B. Mechanical-biological treatment plant in Hanover, Germany-Experience in mechanical processing, anaerobic digestion and refuse derived fuel quality. In Waste Management-Waste-to-Energy; Thomé-Kozmiensky, K.J., Thiel, S., Eds.; TK Verlag Karl Thomé-Kozmiensky: Neureppin, Germany, 2015; Volume 5, pp. 387–398. [Google Scholar]
- Seruga, P.; Krzywonos, M.; Wilk, M. Treatment of by-products generated from anaerobic digestion of municipal solid waste. Waste Biomass Valorization 2020, 11, 4933–4940. [Google Scholar] [CrossRef] [Green Version]
- DEFRA (Department for Environment, Food & Rural Affairs). Mechanical Biological Treatment of Municipal Solid Waste; DEFRA: London, UK, 2013.
- Cook, E.; Wagland, S.; Coulon, F. Investigation into the non-biological outputs of mechanical-biological treatment facilities. Waste Manag. 2015, 46, 212–226. [Google Scholar] [CrossRef]
- Thanopoulos, S.; Karellas, S.; Kavrakos, M.; Konstantellos, G.; Tzempelikos, D.; Kourkoumpas, D. Analysis of alternative MSW treatment technologies with the aim of energy recovery in the municipality of Vari-Voula-Vouliagmeni. Waste Biomass Valorization 2020, 11, 1585–1601. [Google Scholar] [CrossRef]
Output | PT1 | PT2 | PT3 | PT4 | PT5 | Regional Mean |
---|---|---|---|---|---|---|
os-RMW (% RMW) | 78.1 | 61.0 | 69.1 | 64.6 | 64.0 | 67.36 |
metal (% RMW) | 0.0 | 1.5 | 0.03 | 0.1 | 0.3 | 0.39 |
bios-OFRMW (% RMW) | 13.3 | 28.1 | 25.4 | 27.9 | 25.5 | 24.0 |
leachate/aqueous liquid waste (% RMW) | 0.0 | 0.0 | 3.02 | 0.0 | 1.1 | 0.8 |
process losses (% RMW) | 8.6 | 9.4 | 2.45 | 7.4 | 9.1 | 7.4 |
total (% RMW) | 100 | 100 | 100 | 100 | 100 | 100 |
us-OFRMW (% RMW) | 21.9 | 37.5 | 30.9 | 35.3 | 35.7 | 32.3 |
Provincial Territory | PT1 3 | PT2 | PT3 | PT4 | PT5 |
---|---|---|---|---|---|
Moisture (% FM) 1 | 42.66 | 36.45 | 41.41 | 38.42 | 51.01 |
TS (% FM) 1 | 57.34 | 63.55 | 58.59 | 61.58 | 48.99 |
VS (% TS) 1 | 46.33 | 49.55 | 61.23 | 41.97 | 55.80 |
TKN (g kg TS−1) 1 | 7.74 | 22.97 | 17.07 | 23.55 | 8.37 |
TAN (g kg TS−1) 1 | 0.75 | 0.42 | 1.03 | 2.24 | 1.32 |
TP (g kg TS−1) 1 | 2.01 | 1.04 | 0.81 | 6.22 | 0.94 |
TK (g kg TS−1) 1 | 3.84 | 1.50 | 4.25 | 6.52 | 2.83 |
Cd (mg kg TS−1) 1 | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 |
Cr (mg kg TS−1) | 13.94 1 | 73.43 1 | 34.14 2 | 16.24 2 | 0.00 1 |
Cu (mg kg TS−1) | 40.80 1 | 136.38 1 | 2651.19 1 | 81.20 2 | 81.65 2 |
Ni (mg kg TS−1) | 5.39 1 | 15.74 2 | 17.07 2 | 16.24 2 | 0.00 1 |
Pb (mg kg TS−1) | 5.44 1 | 31.47 2 | 22.76 1 | 162.39 2 | 0.00 1 |
Zn (mg kg TS−1) | 417.97 1 | 3252.03 1 | 1018.38 1 | 1553.53 1 | 571.55 2 |
Provincial Territory | PT1 | PT2 | PT3 | PT4 | PT5 |
---|---|---|---|---|---|
Moisture (% FM) 1 | 25.19 | 17.00 | 37.44 | 36.99 | 13.73 |
TS (% FM) 1 | 74.81 | 83.00 | 62.56 | 63.01 | 86.27 |
VS (% TS) 1 | 49.67 | 26.10 | 60.01 | 70.09 | 45.10 |
TKN (g kg TS−1) 1 | 17.15 | 7.05 | 15.98 | 16.82 | 23.18 |
TAN (g kg TS−1) 1 | 0.50 | 1.19 | 5.56 | 2.84 | 0.47 |
TP (g kg TS−1) 1 | 2.05 | 2.17 | 1.47 | 2.30 | 2.20 |
TK (g kg TS−1) 1 | 6.79 | 5.18 | 2.58 | 3.20 | 1.60 |
Cd (mg kg TS−1) 1 | 0.53 | 0.00 | 0.00 | 0.00 | 0.00 |
Cr (mg kg TS−1) | 23.77 1 | 1596.39 1 | 95.91 2 | 31.74 2 | 57.96 1 |
Cu (mg kg TS−1) 1 | 123.98 | 566.27 | 378.30 | 7279.27 | 367.06 |
Ni (mg kg TS−1) | 17.08 1 | 698.80 1 | 255.75 2 | 31.74 2 | 23.18 2 |
Pb (mg kg TS−1) | 21.58 1 | 131.33 1 | 303.71 2 | 63.48 2 | 11.59 2 |
Zn (mg kg TS−1) | 217.84 1 | 638.55 1 | 7885.76 1 | 2920.17 2 | 7519.03 1 |
Provincial Territory | BMP [Nm3 CH4 ton FM−1] | |
---|---|---|
us-OFRMW | bios-OFRMW | |
PT1 | 118.4 | 53.3 |
PT2 | 140.3 | 31.1 |
PT3 | 159.9 | 53.8 |
PT4 | 115.2 | 63.3 |
PT5 | 121.8 | 55.8 |
Provincial Territory/ Total | us-OFRMW (ton year−1) | Biomethane Production (Nm3 year−1) | Gross Electrical Energy (GWh year−1) | Electrical Power (MWel) | Net Electrical Energy (GWh year−1) | Gross CHP Energy Recovery (GWh year−1) |
---|---|---|---|---|---|---|
PT1 | 11,268 | 1,334,160 | 5.07 | 0.62 | 4.59 | 11.01 |
PT2 | 25,997 | 3,647,362 | 13.86 | 1.69 | 12.54 | 30.09 |
PT3 | 12,159 | 1,943,819 | 7.39 | 0.90 | 6.68 | 16.04 |
PT4 | 7822 | 901,132 | 3.42 | 0.42 | 3.10 | 7.43 |
PT5 | 12,826 | 1,562,152 | 5.94 | 0.72 | 5.37 | 12.89 |
Marche Region | 70,072 | 9,388,625 | 35.68 | 4.35 | 32.28 | 77.46 |
Comparison to Energy Production or Consumption | us-OFRMW |
---|---|
Contributions on regional electrical energy production sources [55] | |
Gross electrical energy (see Table 5) on: | |
- regional gross electrical energy production from renewable sources (%) | 1.8 |
- regional gross electrical energy production from bioenergy (%) | 24.4 |
Gross CHP energy recovery (see Table 5) on regional gross CHP energy production (%) | 8.0 |
Alternative shares in regional electrical energy consumptions by representative sectors [55] | |
Net electrical energy (see Table 5) in: | |
- regional electrical energy consumption by agriculture (%) | 28.5 |
- regional electrical energy consumption by manufacturing industry (%) | 1.3 |
- regional electrical energy consumption by commercial sector (%) | 5.7 |
- regional electrical energy consumption by public offices (%) | 30.8 |
- regional electrical energy consumption by health service (%) | 26.3 |
- regional electrical energy consumption by public lighting (%) | 19.1 |
- regional electrical energy consumption by hospitality sector (%) | 10.1 |
- regional electrical energy consumption by domestic sector (%) | 2.1 |
us-OFRMW | |
---|---|
Amount (ton year−1) | 57,132 |
Biomethane production (Nm3 year−1) | 7,490,751 |
Gross electrical energy (GWh year−1) | 28.46 |
Electrical power (MWel) | 3.47 |
Net electrical energy (GWh year−1) | 25.76 |
Gross CHP energy recovery (GWh year−1) | 61.80 |
Provincial Territory/Total | bios-OFRMW (ton year−1) | Residual Landfill Biomethane Generation 1 (Nm3) | Overall Bioenergy as Gross Electrical Energy (GWh) | Overall Impact as GHG Diffuse Emissions (ton CO2 eq.) |
---|---|---|---|---|
PT1 | 6843 | 364,746 | 1.07 | 1522 |
PT2 | 19,480 | 605,838 | 1.78 | 2527 |
PT3 | 9995 | 537,708 | 1.57 | 2243 |
PT4 | 6183 | 391,354 | 1.15 | 1633 |
PT5 | 9161 | 511,190 | 1.50 | 2133 |
Marche Region | 51,662 | 2,410,836 | 7.07 | 10,058 |
bios-OFRMW | |
---|---|
Amount (ton year−1) | 42,451 |
Residual landfill biomethane generation (Nm3) 1 | 2,184,514 |
Overall bioenergy as gross electrical energy (GWh) | 6.40 |
Overall impact as GHG diffuse emissions (ton CO2 eq.) | 9113 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boccarossa, M.; Di Addario, M.; Folino, A.; Tatàno, F. Scenarios of Bioenergy Recovery from Organic Fraction of Residual Municipal Waste in the Marche Region (Italy). Sustainability 2021, 13, 11462. https://doi.org/10.3390/su132011462
Boccarossa M, Di Addario M, Folino A, Tatàno F. Scenarios of Bioenergy Recovery from Organic Fraction of Residual Municipal Waste in the Marche Region (Italy). Sustainability. 2021; 13(20):11462. https://doi.org/10.3390/su132011462
Chicago/Turabian StyleBoccarossa, Massimiliano, Martina Di Addario, Adele Folino, and Fabio Tatàno. 2021. "Scenarios of Bioenergy Recovery from Organic Fraction of Residual Municipal Waste in the Marche Region (Italy)" Sustainability 13, no. 20: 11462. https://doi.org/10.3390/su132011462
APA StyleBoccarossa, M., Di Addario, M., Folino, A., & Tatàno, F. (2021). Scenarios of Bioenergy Recovery from Organic Fraction of Residual Municipal Waste in the Marche Region (Italy). Sustainability, 13(20), 11462. https://doi.org/10.3390/su132011462