Influence of the Population Density of Cities on Energy Consumption of Their Households
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Classification of Cities by Population Density
3.2. Population Density of Cities
3.3. Electric and Thermal Energy Consumption
4. Application of the Method to the Case of Spain
4.1. Classification of Spanish Cities
4.2. Thermal and Electric Energy Consumption
5. Results and Discussion
5.1. Sample of Study
5.2. Total Energy Consumption
5.3. Energy Consumptions per Household
5.4. Energy Consumptions per Inhabitant
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Parliament News. Available online: https://www.europarl.europa.eu/news/en/headlines/society/20180301STO98928/greenhouse-gas-emissions-bycountry-and-sector-infographic (accessed on 12 October 2020).
- International Energy Agency; United Nations Environment Programme. 2018 Global Status Report: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector. 2018. Available online: https://wedocs.unep.org/20.500.11822/27140 (accessed on 12 October 2020).
- Shahrokni, H.; Levihn, F.; Brandt, N. Big meter data analysis of the energy efficiency potential in Stockholm’s building stock. Energy Build. 2014, 78, 153–164. [Google Scholar] [CrossRef]
- Energy Cities. Covenant of Mayors for Climate & Energy. Available online: https://energy-cities.eu/project/covenant-of-mayors-for-climate-energy/#:~:text=The%20Covenant%20of%20Mayors%20gathers,and%20affordable%20energy%20to%20all (accessed on 13 May 2020).
- Department of Economic and Social Affairs. Make Cities and Human Settlements Inclusive, Safe, Resilient and Sustainable. Available online: https://sdgs.un.org/goals/goal11 (accessed on 14 September 2020).
- European Parliament News. Green Deal: Key to a Climate-Neutral and Sustainable EU. Available online: https://www.europarl.europa.eu/news/en/headlines/society/20200618STO81513/green-deal-key-to-a-climate-neutral-and-sustainable-eu (accessed on 25 July 2020).
- COM 98 Final. A New Circular Economy Action Plan for a Cleaner and More Competitive Europe; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Jiang, L.; Xing, R.; Chen, X.; Xue, B. A survey-based investigation of greenhouse gas and pollutant emissions from household energy consumption in the Qinghai-Tibet Plateau of China. Energy Build. 2021, 235, 110753. [Google Scholar] [CrossRef]
- Zarco-Soto, I.M.; Zarco-Periñán, P.J.; Sánchez-Durán, R. Influence of cities population size on their energy consumption and CO2 emissions: The case of Spain. Environ. Sci. Pollut. Res. 2021, 28, 28146–28167. [Google Scholar] [CrossRef]
- Huo, T.; Ren, H.; Cai, W. Estimating urban residential building-related energy consumption and energy intensity in China based on improved building stock turnover model. Sci. Total. Environ. 2019, 650, 427–437. [Google Scholar] [CrossRef]
- Urquizo, J.; Calderón, C.; James, P. Metrics of urban morphology and their impact on energy consumption: A case study in the United Kingdom. Energy Res. Soc. Sci. 2017, 32, 193–206. [Google Scholar] [CrossRef]
- Bart, I.L. Urban sprawl and climate change: A statistical exploration of cause and effect, with policy options for the EU. Land Use Policy 2010, 27, 283–292. [Google Scholar] [CrossRef]
- Nägeli, C.; Camarasa, C.; Jakob, M.; Catenazzi, G.; Ostermeyer, Y. Synthetic building stocks as a way to assess the energy demand and greenhouse gas emissions of national building stocks. Energy Build. 2018, 173, 443–460. [Google Scholar] [CrossRef]
- Salim, R.A.; Shafiei, S. Urbanization and renewable and non-renewable energy consumption in OECD countries: An empirical analysis. Econ. Model. 2014, 38, 581–591. [Google Scholar] [CrossRef] [Green Version]
- Dibene-Arriola, L.; Carrillo-González, F.; Quijas, S.; Rodríguez-Uribe, M. Energy Efficiency Indicators for Hotel Buildings. Sustainability 2021, 13, 1754. [Google Scholar] [CrossRef]
- Todeschi, V.; Boghetti, R.; Kämpf, J.; Mutani, G. Evaluation of Urban-Scale Building Energy-Use Models and Tools—Application for the City of Fribourg, Switzerland. Sustainability 2021, 13, 1595. [Google Scholar] [CrossRef]
- Tian, L.; Li, Y.; Lu, J.; Wang, J. Review on Urban Heat Island in China: Methods, Its Impact on Buildings Energy Demand and Mitigation Strategies. Sustainability 2021, 13, 762. [Google Scholar] [CrossRef]
- Dingil, A.E.; Schweizer, J.; Rupi, F.; Stasiskiene, Z. Updated Models of Passenger Transport Related Energy Consumption of Urban Areas. Sustainability 2019, 11, 4060. [Google Scholar] [CrossRef] [Green Version]
- Adebayo, T.; Awosusi, A.; Odugbesan, J.; Akinsola, G.; Wong, W.-K.; Rjoub, H. Sustainability of Energy-Induced Growth Nexus in Brazil: Do Carbon Emissions and Urbanization Matter? Sustainability 2021, 13, 4371. [Google Scholar] [CrossRef]
- Dogan, E.; Turkekul, B. CO2 emissions, real output, energy consumption, trade, urbanization and financial development: Testing the EKC hypothesis for the USA. Environ. Sci. Pollut. Res. 2016, 23, 1203–1213. [Google Scholar] [CrossRef] [PubMed]
- Nathaniel, S.; Nwodo, O.; Sharma, G.; Shah, M. Renewable energy, urbanization, and ecological footprint linkage in CIVETS. Environ. Sci. Pollut. Res. 2020, 27, 19616–19629. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, M. Urbanization and energy intensity: Evidence from the institutional threshold effect. Environ. Sci. Pollut. Res. 2021, 28, 11142–11157. [Google Scholar] [CrossRef]
- Günay, M.E. Forecasting annual gross electricity demand by artificial neural networks using predicted values of socio-economic indicators and climatic conditions: Case of Turkey. Energy Policy 2016, 90, 92–101. [Google Scholar] [CrossRef]
- Pérez-García, J.; Moral-Carcedo, J. Analysis and long term forecasting of electricity demand trough a decomposition model: A case study for Spain. Energy 2016, 97, 127–143. [Google Scholar] [CrossRef]
- Mirasgedis, S.; Sarafidis, Y.; Georgopoulou, E.; Kotroni, V.; Lagouvardos, K.; Lalas, D. Modeling framework for estimating impacts of climate change on electricity demand at regional level: Case of Greece. Energy Convers. Manag. 2007, 48, 1737–1750. [Google Scholar] [CrossRef]
- Bianco, V.; Marchitto, A.; Scarpa, F.; Tagliafico, L.A. Forecasting Energy Consumption in the EU Residential Sector. Int. J. Environ. Res. Public Health 2020, 17, 2259. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A. Modelling and forecasting the demand for natural gas in Pakistan. Renew. Sustain. Energy Rev. 2015, 49, 1145–1159. [Google Scholar] [CrossRef]
- Wadud, Z.; Dey, H.S.; Kabir, A.; Khan, S.I. Modeling and forecasting natural gas demand in Bangladesh. Energy Policy 2011, 39, 7372–7380. [Google Scholar] [CrossRef] [Green Version]
- Azadeh, A.; Asadzadeh, S.; Saberi, M.; Nadimi, V.; Tajvidi, A.; Sheikalishahi, M. A Neuro-fuzzy-stochastic frontier analysis approach for long-term natural gas consumption forecasting and behavior analysis: The cases of Bahrain, Saudi Arabia, Syria, and UAE. Appl. Energy 2011, 88, 3850–3859. [Google Scholar] [CrossRef]
- Bianco, V.; Scarpa, F.; Tagliafico, L.A. Analysis and future outlook of natural gas consumption in the Italian residential sector. Energy Convers. Manag. 2014, 87, 754–764. [Google Scholar] [CrossRef]
- Rahman, M.M. Exploring the effects of economic growth, population density and international trade on energy consumption and environmental quality in India. Int. J. Energy Sect. Manag. 2020, 14, 1177–1203. [Google Scholar] [CrossRef]
- La Greca, P.; Barbarossa, L.; Ignaccolo, M.; Inturri, G.; Martinico, F. The density dilemma. A proposal for introducing smart growth principles in a sprawling settlement within Catania Metropolitan Area. Cities 2011, 28, 527–535. [Google Scholar] [CrossRef]
- Ali, W.; Abdullah, A.; Azam, M. The dynamic relationship between structural change and CO2 emissions in Malaysia: A cointegrating approach. Environ. Sci. Pollut. Res. 2017, 24, 12723–12739. [Google Scholar] [CrossRef]
- Ali, S.; Razman, M.; Awang, A.; Asyraf, M.; Ishak, M.; Ilyas, R.; Lawrence, R. Critical Determinants of Household Electricity Consumption in a Rapidly Growing City. Sustainability 2021, 13, 4441. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, X. Urbanization impact on residential energy consumption in China: The roles of income, urbanization level, and urban density. Environ. Sci. Pollut. Res. 2019, 26, 3542–3555. [Google Scholar] [CrossRef]
- Morikawa, M. Population density and efficiency in energy consumption: An empirical analysis of service establishments. Energy Econ. 2012, 34, 1617–1622. [Google Scholar] [CrossRef] [Green Version]
- Sarkodie, S.A.; Adom, P.K. Determinants of energy consumption in Kenya: A NIPALS approach. Energy 2018, 159, 696–705. [Google Scholar] [CrossRef]
- Li, S.; Shi, J.; Wu, Q. Environmental Kuznets Curve: Empirical Relationship between Energy Consumption and Economic Growth in Upper-Middle-Income Regions of China. Int. J. Environ. Res. Public Health 2020, 17, 6971. [Google Scholar] [CrossRef] [PubMed]
- Larivière, I.; Lafrance, G. Modelling the electricity consumption of cities: Effect of urban density. Energy Econ. 1999, 21, 53–66. [Google Scholar] [CrossRef]
- Burney, N.A. Socioeconomic development and electricity consumption A cross-country analysis using the random coefficient method. Energy Econ. 1995, 17, 185–195. [Google Scholar] [CrossRef]
- Zarco-Soto, I.M.; Zarco-Periñán, P.J.; Sánchez-Durán, R. Influence of climate on energy consumption and CO2 emissions: The case of Spain. Environ. Sci. Pollut. Res. 2020, 27, 15645–15662. [Google Scholar] [CrossRef]
- GMES Urban Atlas Project. Mapping Guide for a European Urban Atlas; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- Eurostat Methodologies and Working Papers. Statistical Classification of Economic Activities in the European Community; European Commission: Luxembourg, 2008. [Google Scholar]
- Instituto Nacional de Estadística—INE. Cifras de Población. Available online: https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736176951&menu=ultiDatos&idp=1254735572981 (accessed on 12 October 2019).
- Copernicus. Urban Atlas. Available online: https://land.copernicus.eu/local/urban-atlas (accessed on 6 January 2020).
- Instituto Nacional de Estadística—INE. Demografía y Población. Available online: http://www.ine.es/ss/Satellite?L=es_ES&c=Page&cid=1254735910183&p=1254735910183&pagename=INE%2FINELayout (accessed on 1 November 2019).
- Comisión Nacional de los Mercados y la Competencia. Informe de Supervisión del Mercado de Gas Natural en España; Ministerio de Economía, Industria y Competitividad: Madrid, Spain, 2017. [Google Scholar]
- Secretaría de Estado de la Energía. Estadísticas y Balances Energéticos; Ministerio para la Transición Ecológica: Madrid, Spain, 2018. [Google Scholar]
Inhabitants/Hectare | Cities |
---|---|
Group 1: density < 100 | Albacete, Alcalá de Guadaíra, Alcoy/Alcoi, Alicante/Alacant, Aranjuez, Arganda del Rey, Arona, Ávila, Badajoz, Benalmádena, Benidorm, Boadilla del Monte, Cáceres, Cartagena, Castellón de la Plana, Chiclana de la Frontera, Ciudad Real, Collado Villalba, Córdoba, Elche/Elx, Elda, Estepona, Ferrol, Jerez de la Frontera, Linares, Línea de la Concepción (La), Lorca, Lugo, Marbella, Mérida, Mijas, Murcia, Orihuela, Ourense, Paterna, Ponferrada, Pontevedra, Pozuelo de Alarcón, Puerto de Santa María, Rivas-Vaciamadrid, Rozas de Madrid (Las), Rubí, Sagunto/Sagunt, San Cristóbal de la Laguna, San Sebastián de los Reyes, San Vicente del Raspeig, Sanlúcar de Barrameda, Sant Cugat del Vallès, Santiago de Compostela, Talavera de la Reina, Toledo, Torrelavega, Torrevieja, Utrera, Vélez-Málaga, Vigo, Vila-Real |
Group 2: 100 ≤ density < 200 | Alcobendas, Algeciras, Almería, Arrecife, Avilés, Burgos, Castelldefels, Cerdanyola del Vallès, Coslada, Cuenca, Dos Hermanas, Ejido (El), Fuengirola, Gandía, Getxo, Gijón, Girona, Granada, Granollers, Guadalajara, Huesca, Irún, Jaén, Las Palmas, León, Lleida, Logroño, Majadahonda, Málaga, Manresa, Molina de Segura, Motril, Oviedo, Palencia, Palma de Mallorca, Pinto, Reus, Roquetas de Mar, Salamanca, San Bartolomé de Tirajana, San Sebastián/Donostia, Santa Cruz de Tenerife, Santa Lucía de Tirajana, Santander, Segovia, Siero, Tarragona, Telde, Terrassa, Torremolinos, Valdemoro, Valladolid, Vilanova i la Geltrú, Vitoria/Gasteiz, Zamora, Zaragoza |
Group 3: 200 ≤ density < 300 | A Coruña, Alcalá de Henares, Alcorcón, Barakaldo, Ceuta, Getafe, Leganés, Madrid, Mataró, Melilla, Mollet del Vallès, Móstoles, Pamplona/Iruña, Sabadell, San Fernando, Sant Boi de Llobregat, Sevilla, Valencia, Viladecans |
Group 4: 300 ≤ density < 400 | Badalona, Barcelona, Bilbao, Cádiz, Fuenlabrada, Huelva, Parla, Prat de Llobregat (El), Torrejón de Ardoz |
Group 5: 400 ≤ density | Cornellà de Llobregat, L’Hospitalet de Llobregat, Santa Coloma de Gramenet, Torrent |
POPULATION | NUMBEROF HOUSEHOLDS | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Population Density | Total | Mean | Std. Dev. | Median | Maximum | Minimum | Total | Mean | Std. Dev. | Median | Maximum | Minimum |
Group 1 | 6,132,394 | 107,586 | 79,857 | 79,878 | 443,243 | 50,334 | 2,280,611 | 40,011 | 29,113 | 29,727 | 154,421 | 15,434 |
Group 2 | 7,888,999 | 140,875 | 123,196 | 90,730 | 664,938 | 50,442 | 3,060,916 | 54,659 | 48,525 | 33,872 | 269,347 | 18,160 |
Group 3 | 6,938,864 | 365,203 | 710,045 | 178,288 | 3,182,981 | 51,128 | 2,684,033 | 141,265 | 282,318 | 67,113 | 1,262,282 | 18,967 |
Group 4 | 2,957,407 | 328,601 | 491,187 | 145,115 | 1,620,809 | 63,897 | 1,167,260 | 129,696 | 204,159 | 54,952 | 666,143 | 23,831 |
Group 5 | 542,186 | 135,547 | 82,802 | 102,104 | 257,349 | 80,630 | 201,649 | 50,412 | 31,580 | 37,685 | 97,044 | 29,235 |
TOTAL (MWh/year) | THERMAL (MWh/year) | ELECTRIC (MWh/year) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Population Density | Total | Mean | Std. Dev. | Median | Max. | Min. | Total | Mean | Std. Dev. | Median | Max. | Min. | Total | Mean | Std. Dev. | Median | Max. | Min. |
Group 1 | 21,669,891 | 380,174 | 260,575 | 303,694 | 1,516,830 | 140,786 | 4,769,859 | 83,682 | 72,436 | 56,765 | 267,920 | 0.00 | 16,900,032 | 296,492 | 229,752 | 210,365 | 1,340,879 | 120,861 |
Group 2 | 34,153,406 | 609,882 | 591,430 | 379,561 | 3,717,939 | 156,564 | 12,332,035 | 220,215 | 288,821 | 144,797 | 1,627,614 | 0.00 | 21,821,371 | 389,667 | 365,806 | 243,110 | 2,090,324 | 120,890 |
Group 3 | 34,147,099 | 1,797,216 | 4,073,759 | 972,005 | 18,400,465 | 143,830 | 14,703,803 | 773,884 | 1,997,447 | 268,310 | 8,969,965 | 0.00 | 19,443,297 | 1,023,331 | 2,099,678 | 528,230 | 9,430,500 | 135,908 |
Group 4 | 13,842,679 | 1,538,075 | 2,366,828 | 740,029 | 7,756,365 | 286,388 | 6,004,988 | 667,221 | 1,065,972 | 360,754 | 3,447,946 | 20,960 | 7,837,691 | 870,855 | 1,304,278 | 379,275 | 4,308,420 | 169,850 |
Group 5 | 2,495,895 | 623,974 | 420,414 | 488,615 | 1,231,541 | 287,123 | 1,047,692 | 261,923 | 205,067 | 217,205 | 547,458 | 65,824 | 1,448,203 | 362,051 | 218,586 | 271,411 | 684,083 | 221,299 |
TOTAL (MWh/year) | THERMAL (MWh/year) | ELECTRIC (MWh/year) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Population Density | Mean | Std. Dev. | Median | Max. | Min. | Mean | Std. Dev. | Median | Max. | Min. | Mean | Std. Dev. | Median | Max. | Min. |
Group 1 | 9.90 | 3.45 | 8.46 | 18.79 | 5.99 | 2.59 | 2.71 | 1.32 | 9.16 | 0.00 | 7.31 | 1.08 | 7.16 | 9.63 | 5.68 |
Group 2 | 11.17 | 3.14 | 11.21 | 18.44 | 6.04 | 4.01 | 2.87 | 4.54 | 8.99 | 0.00 | 7.16 | 1.14 | 7.03 | 9.64 | 5.30 |
Group 3 | 11.88 | 3.67 | 12.83 | 16.07 | 5.66 | 4.84 | 2.97 | 5.70 | 8.63 | 0.00 | 7.03 | 0.80 | 7.12 | 8.24 | 5.66 |
Group 4 | 12.31 | 4.13 | 12.63 | 17.28 | 6.26 | 5.17 | 3.03 | 5.62 | 8.43 | 0.46 | 7.15 | 1.24 | 7.02 | 8.86 | 5.74 |
Group 5 | 11.97 | 1.55 | 12.54 | 13.11 | 9.69 | 4.80 | 1.72 | 5.57 | 5.83 | 2.22 | 7.17 | 0.25 | 7.14 | 7.47 | 6.94 |
TOTAL (MWh/year) | THERMAL (MWh/year) | ELECTRIC (MWh/year) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Population Density | Mean | Std. Dev. | Median | Max. | Min. | Mean | Std. Dev. | Median | Max. | Min. | Mean | Std. Dev. | Median | Max. | Min. |
Group 1 | 3.69 | 1.05 | 3.33 | 5.78 | 2.40 | 0.94 | 0.91 | 0.56 | 2.82 | 0.00 | 2.75 | 0.32 | 2.74 | 3.57 | 2.25 |
Group 2 | 4.33 | 1.19 | 4.53 | 6.47 | 2.40 | 1.57 | 1.11 | 1.93 | 3.76 | 0.00 | 2.76 | 0.34 | 2.71 | 3.86 | 2.25 |
Group 3 | 4.48 | 1.45 | 4.79 | 6.35 | 1.67 | 1.84 | 1.12 | 2.13 | 3.45 | 0.00 | 2.64 | 0.38 | 2.66 | 2.96 | 1.67 |
Group 4 | 4.56 | 1.27 | 4.79 | 6.35 | 2.43 | 1.90 | 1.07 | 2.13 | 3.45 | 0.18 | 2.66 | 0.23 | 2.66 | 2.96 | 2.25 |
Group 5 | 4.48 | 1.07 | 4.79 | 5.78 | 2.62 | 1.80 | 0.92 | 2.13 | 2.82 | 0.19 | 2.68 | 0.18 | 2.66 | 2.96 | 2.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarco-Periñán, P.J.; Zarco-Soto, I.M.; Zarco-Soto, F.J. Influence of the Population Density of Cities on Energy Consumption of Their Households. Sustainability 2021, 13, 7542. https://doi.org/10.3390/su13147542
Zarco-Periñán PJ, Zarco-Soto IM, Zarco-Soto FJ. Influence of the Population Density of Cities on Energy Consumption of Their Households. Sustainability. 2021; 13(14):7542. https://doi.org/10.3390/su13147542
Chicago/Turabian StyleZarco-Periñán, Pedro J., Irene M. Zarco-Soto, and Fco. Javier Zarco-Soto. 2021. "Influence of the Population Density of Cities on Energy Consumption of Their Households" Sustainability 13, no. 14: 7542. https://doi.org/10.3390/su13147542