A Study on Sustainable Usage Intention of Blockchain in the Big Data Era: Logistics and Supply Chain Management Companies
Abstract
:1. Introduction
2. Theoretical Background
2.1. Concept and Types of Blockchain
2.2. Blockchain Logistics Applications
2.3. UTAUT
2.4. TOE Framework
3. Research Model and Hypotheses
3.1. Hypotheses Development
3.2. Data Collection and Methodology
4. Model Structure
5. Conclusions
5.1. Result
5.2. Implication and Limitation
Funding
Conflicts of Interest
References
- Mao, D.; Wang, F.; Hao, Z.; Li, H. Credit Evaluation System based on Blockchain for Multiple Stakeholders in the Food Supply Chain. Int. J. Environ. Res. Public Health 2018, 15, 1627. [Google Scholar] [CrossRef] [Green Version]
- Zakky, Z.; Teguh, W. Promoting the Use of Social Commerce on SME in the Context of Logistics: UTAUT Model Examination. LOGI Sci. J. Transp. Logist. 2018, 9, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Kuang, Y.; Shi, X.; Dong, C. Sustainable Investment in a Supply Chain in the Big Data Era: An Information Updating Approach. Sustainability 2018, 10, 403. [Google Scholar] [CrossRef] [Green Version]
- Choi, D.; Chung, C.Y.; Seyha, T.; Young, J. Factors Affecting Organizations’ Resistance to the Adoption of Blockchain Technology in Supply Networks. Sustainability 2020, 12, 8882. [Google Scholar] [CrossRef]
- Zhang, A.; Lin, X. Towards Secure and Privacy-Preserving Data Sharing in e-health Systems via Consortium Blockchain. J. Med. Syst. 2018, 42, 140. [Google Scholar] [CrossRef] [PubMed]
- Verhoeven, P.; Sinn, F.; Herden, T.T. Examples from Blockchain Implementations in Logistics and Supply Chain Management: Exploring the Mindful Use of a New Technology. Logistics 2018, 2, 20. [Google Scholar] [CrossRef] [Green Version]
- Hao, Z.; Mao, D.; Zhang, B.; Zuo, M.; Zhao, Z. A Novel Visual Analysis Method of Food Safety Risk Traceability Based on Blockchain. Int. J. Environ. Res. Public Health 2020, 17, 2300. [Google Scholar] [CrossRef] [Green Version]
- Bublitz, F.M.; Oetomo, A.; Sahu, K.S.; Kuang, A.; Fadrique, L.X.; Velmovitsky, P.E.; Morita, P.P. Disruptive Technologies for Environment and Health Research: An Overview of Artificial Intelligence, Blockchain, and Internet of Things. Int. J. Environ. Res. Public Health 2019, 16, 3847. [Google Scholar] [CrossRef] [Green Version]
- Queiroz, M.M.; Telles, R.; Bonilla, S.H. Blockchain and Supply Chain Management Integration: A Systematic Review of the Literature. Supply Chain Manag. 2019, 25, 241–254. [Google Scholar] [CrossRef]
- Treiblmaier, H. The Impact of the Blockchain on the Supply Chain: A Theory-based Research Framework and a Call for Action. Supply Chain Manag. 2018, 23, 545–559. [Google Scholar] [CrossRef] [Green Version]
- Tijan, E.; Aksentijević, S.; Ivanić, K.; Jardas, M. Blockchain Technology Implementation in Logistics. Sustainability 2019, 11, 1185. [Google Scholar] [CrossRef] [Green Version]
- Pournader, M.; Shi, Y.; Seuring, S.; Koh, S.L. Blockchain Applications in Supply Chains, Transport and Logistics: A Systematic Review of the Literature. Int. J. Prod. Res. 2020, 58, 2063–2081. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. Manag. Inf. Syst. Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Queiroz, M.M.; Fosso Wamba, S.; De Bourmont, M.; Telles, R. Blockchain Adoption in Operations and Supply Chain Management: Empirical Evidence from an Emerging Economy. Int. J. Prod. Res. 2020. [Google Scholar] [CrossRef]
- Chan, F.T.; Chong, A.Y.L.; Zhou, L. An Empirical Investigation of Factors Affecting E-Collaboration Diffusion in SMEs. Int. J. Prod. Econ. 2012, 138, 329–344. [Google Scholar] [CrossRef]
- Dulle, F.W.; Minishi-Majanja, M.K. The Suitability of the Unified Theory of Acceptance and Use of Technology (UTAUT) Model in Open Access Adoption Studies. Inf. Dev. 2011, 27, 32–45. [Google Scholar] [CrossRef] [Green Version]
- Tornatzky, L.G.; Fleischer, M.; Chakrabarti, A.K. Processes of Technological Innovation; Lexington Books: Washington, DC, USA, 1990; ISBN-13 978-0669203486. [Google Scholar]
- Chan, F.T.; Chong, A.Y.L. Determinants of Mobile Supply Chain Management System Diffusion: A Structural Equation Analysis of Manufacturing Firms. Int. J. Prod. Res. 2013, 51, 1196–1213. [Google Scholar] [CrossRef]
- Lian, J.W.; Yen, D.C.; Wang, Y.T. An Exploratory Study to understand the Critical Factors Affecting the Decision to adopt Cloud Computing in Taiwan Hospital. Int. J. Inf. Manag. 2014, 34, 28–36. [Google Scholar] [CrossRef]
- Oliveira, T.; Thomas, M.; Espadanal, M. Assessing the Determinants of Cloud Computing Adoption: An Analysis of the Manufacturing and Services Sectors. Inf. Manag. 2014, 51, 497–510. [Google Scholar] [CrossRef]
- Crosby, M.; Pattanayak, P.; Verma, S.; Kalyanaraman, V. Blockchain Technology: Beyond Bitcoin. Appl. Innov. 2016, 1, 6–10. [Google Scholar]
- Wang, H.; Chen, K.; Xu, D. A Maturity Model for Blockchain Adoption. Financ. Innov. 2016, 2, 12. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Cegielski, C.G.; Jia, L.; Hall, D.J. Understanding the Factors Affecting the Organizational Adoption of Bigdata. J. Comput. Inf. Syst. 2018, 58, 193–203. [Google Scholar] [CrossRef]
- Chen, D.Q.; Preston, D.S.; Swink, M. How the Use of Bigdata Analytics affects Value Creation in Supply Chain Management. J. Comput. Inf. Syst. 2015, 32, 4–39. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis, 6th ed.; Pearson Education: Upper Saddle River, NJ, USA, 2006; ISBN-13 978-0130329295. [Google Scholar]
- Gallagher, D.; Ting, L.; Palmer, A. A Journey into the unknown; Taking the Fear out of Structural Equation Modeling with AMOS for the First-Time User. Mark. Rev. 2008, 8, 255–275. [Google Scholar] [CrossRef]
Construct | Items | References |
---|---|---|
Performance Expectancy | Blockchain will facilitate the use of a variety of information. | Zakky and Teguh (2018) [2] Venkatesh et al. (2003) [13] Queiroz et al. (2020) [14] Chan et al. (2012) [15] Dulle and Minishi-Majanja (2011) [16] |
Blockchain will provide information useful for decision making. | ||
Blockchain will help improve management performance. | ||
Effort Expectancy | I will try to adopt (implement) blockchain. | |
I will learn to adopt (implement) blockchain. | ||
I will be trained to adopt (implement) blockchain. | ||
Social Influence | Blockchain has good social effects. | |
Blockchain adoption is recommended by others. | ||
The use of blockchain becomes increasingly apparent in the social context. | ||
Facilitating Conditions | We have the knowledge necessary to adopt blockchain. | |
We have the resources necessary to implement blockchain. | ||
We are ready to implement blockchain. | ||
Blockchain Technological Context | We have the technological environment suitable for blockchain. | Tornatzky et al. (1990) [17] Chan and Chong (2013) [18] Lian et al. (2014) [19] Oliveira et al. (2014) [20] Crosby et al. (2016) [21] Wang et al. (2016) [22] Sun et al. (2018) [23] Chen et al. (2015) [24] |
We are capable of implementing blockchain. | ||
We are able to learn blockchain. | ||
Blockchain Organizational Context | The management is interested in adopting blockchain. | |
The management perceives that blockchain is necessary. | ||
We have appropriate human resources to adopt (implement) blockchain. | ||
Attitude | I agree with the adoption (implementation) of blockchain. | Zakky and Teguh (2018) [2] Chan and Chong (2013) [18] Lian et al. (2014) [19] |
I will accept any changes resulting from blockchain adoption (implementation). | ||
I will actively participate in the adoption (implementation) of blockchain. | ||
Sustainable Usage Intention of Blockchain | I am willing to adopt blockchain. | Venkatesh et al. (2003) [13] Queiroz et al. (2020) [14] Sun et al. (2018) [23] |
I am continuously looking for blockchain-based tasks. | ||
I like to utilize blockchain for multiple purposes. |
Frequency | Percent (%) | |
---|---|---|
Gender of respondent | ||
Male | 151 | 88 |
Female | 21 | 12 |
Age of respondent | ||
30–40 | 70 | 41 |
40–50 | 85 | 49 |
Over 50 | 17 | 10 |
Title of respondent | ||
Assistant manager | 19 | 11 |
Manager | 74 | 43 |
General manager | 68 | 39 |
Executive director | 11 | 7 |
Type of Industry | ||
Logistics and Distribution Industry | 158 | 92 |
Other Industry | 14 | 8 |
Item | EE | SUB | BTC | SI | BOC | AT | FC | PE |
---|---|---|---|---|---|---|---|---|
PE1 | −0.100 | 0.069 | 0.244 | 0.119 | 0.128 | 0.098 | 0.058 | 0.774 |
PE 2 | 0.398 | −0.087 | 0.140 | 0.141 | −0.068 | −0.295 | −0.063 | 0.636 |
PE 3 | 0.167 | 0.052 | 0.107 | −0.071 | 0.167 | 0.093 | 0.277 | 0.763 |
EE1 | 0.738 | 0.030 | 0.163 | −00.311 | −0.199 | −0.129 | 0.188 | 0.158 |
EE2 | 0.812 | 0.010 | 0.168 | −0.069 | 0.079 | −0.132 | 0.134 | 0.072 |
EE 3 | 0.854 | −0.081 | 0.087 | 0.091 | −0.043 | −0.231 | −0.009 | 0.021 |
SI1 | 0.116 | 0.085 | 0.048 | 0.768 | 0.007 | −0.083 | −0.106 | 0.146 |
SI 2 | −0.159 | 0.010 | 0.030 | 0.891 | −0.041 | 0.135 | −0.024 | 0.030 |
SI 3 | −0.091 | −0.029 | 0.119 | 0.891 | 0.120 | −0.062 | −0.025 | −0.048 |
FC1 | −0.082 | 0.027 | 0.474 | −0.005 | 0.191 | 0.161 | 0.649 | 0.016 |
FC2 | 0.131 | 0.098 | 0.170 | −0.224 | −0.181 | −0.058 | 0.758 | 0.197 |
FC3 | 0.153 | −0.033 | −0.003 | 0.003 | 0.203 | 0.049 | 0.787 | 0.062 |
BTC1 | 0.110 | 0.005 | 0.825 | 0.063 | 0.131 | −0.027 | 0.032 | 0.228 |
BTC 2 | 0.289 | −0.004 | 0.824 | 0.124 | 0.143 | 0.051 | 0.115 | 0.135 |
BTC 3 | 0.119 | 0.071 | 0.640 | 0.061 | 0.189 | 0.236 | 0.245 | 0.123 |
BOC1 | 0.179 | 0.127 | 0.175 | 0.018 | 0.788 | 0.048 | 0.130 | 0.096 |
BOC2 | −0.193 | 0.258 | 0.272 | −0.081 | 0.714 | 0.164 | 0.115 | 0.111 |
BOC3 | −0.159 | 0.139 | 0.109 | 0.160 | 0.816 | 0.282 | −0.022 | 0.075 |
AT1 | −0.171 | 0.117 | 0.018 | −0.019 | 0.165 | 0.811 | −0.025 | 0.201 |
AT2 | −0.107 | 0.133 | 0.386 | −0.041 | 0.160 | 0.682 | −0.026 | −0.089 |
AT3 | −0.218 | 0.047 | −0.005 | 0.038 | 0.103 | 0.821 | 0.145 | −0.080 |
SUB1 | −0.147 | 0.826 | 0.051 | 0.081 | 0.312 | 0.076 | 0.011 | 0.015 |
SUB2 | 0.039 | 0.915 | 0.040 | 0.074 | 0.038 | 0.077 | 0.022 | −0.002 |
SUB3 | 0.027 | 0.904 | −0.013 | −0.075 | 0.102 | 0.099 | 0.029 | 0.053 |
Constructs | AVE | CR | Cronbach α |
---|---|---|---|
Performance Expectancy | 0.718 | 0.857 | 0.721 |
Effort Expectancy | 0.760 | 0.875 | 0.776 |
Social Influence | 0.723 | 0.859 | 0.731 |
Facilitating Conditions | 0.811 | 0.921 | 0.829 |
Blockchain Technological Context | 0.779 | 0.892 | 0.798 |
Blockchain Organizational Context | 0.752 | 0.861 | 0.781 |
Attitude | 0.712 | 0.847 | 0.755 |
Sustainable Usage Intention of Blockchain | 0.731 | 0.862 | 0.746 |
Construct | PE | EE | SI | FC | BTC | BOC | AT | IUB |
---|---|---|---|---|---|---|---|---|
Performance Expectancy | 0.847 | |||||||
Effort Expectancy | 0.371 ** | 0.872 | ||||||
Social Influence | 0.429 ** | 0.462 ** | 0.850 | |||||
Facilitating Conditions | 0.389 ** | 0.357 ** | 0.365 ** | 0.901 | ||||
Blockchain Technological Context | 0.321 ** | 0.397 ** | 0.424 ** | 0.409 ** | 0.883 | |||
Blockchain Organizational Context | 0.299 ** | 0.382 ** | 0.294 ** | 0.352 ** | 0.412 ** | 0.867 | ||
Attitude | 0.357 ** | 0.423 ** | 0.472 ** | 0.403 ** | 0.317 ** | 0.324 ** | 0.844 | |
Sustainable Usage Intention of Blockchain | 0.331 ** | 0.375 ** | 0.295 ** | 0.387 ** | 0.383 ** | 0.336 ** | 0.392 ** | 0.855 |
Tolerance | VIF | Tolerance | VIF | ||
---|---|---|---|---|---|
UTAUT | 0.710 | 1.426 | TOE | 0.697 | 1.413 |
Attitude | 0.662 | 1.781 | Dependent Variable: Sustainable Usage Intention of Blockchain |
Recommended Value | Measurement Model | |
---|---|---|
Fit statistics | X2/DF (≤3.000) | 2.890 |
GFI (≥0.900) | 0.913 | |
RMSR (≤0.050) | 0.042 | |
RMSEA (≤0.080) | 0.061 | |
AGFI (≥0.800) | 0.817 | |
CFI (≥0.900) | 0.881 | |
TLI (≥0.900) | 0.924 | |
PGFI (≥0.600) | 0.619 |
Attitude | Sustainable Usage Intention of Blockchain | ||
---|---|---|---|
UTAUT | Direct Effect | 0.27 ** | 0.24 ** |
Indirect Effect | - | 0.12 ** | |
Total Effect | 0.27 ** | 0.36 ** | |
TOE | Direct Effect | 0.31 ** | 0.32 ** |
Indirect Effect | - | 0.09 * | |
Total Effect | 0.31 ** | 0.41 ** | |
Attitude | Direct Effect | 0.40 ** | |
Indirect Effect | - | ||
Total Effect | 0.40 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, K.O. A Study on Sustainable Usage Intention of Blockchain in the Big Data Era: Logistics and Supply Chain Management Companies. Sustainability 2020, 12, 10670. https://doi.org/10.3390/su122410670
Park KO. A Study on Sustainable Usage Intention of Blockchain in the Big Data Era: Logistics and Supply Chain Management Companies. Sustainability. 2020; 12(24):10670. https://doi.org/10.3390/su122410670
Chicago/Turabian StylePark, Kwang O. 2020. "A Study on Sustainable Usage Intention of Blockchain in the Big Data Era: Logistics and Supply Chain Management Companies" Sustainability 12, no. 24: 10670. https://doi.org/10.3390/su122410670