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Abstract: Current food traceability systems have a number of problems, such as data being easily
tampered with and a lack of effective methods to intuitively analyze the causes of risks. Therefore,
a novel method has been proposed that combines blockchain technology with visualization technology,
which uses Hyperledger to build an information storage platform. Features such as distribution
and tamper-resistance can guarantee the authenticity and validity of data. A data structure model
is designed to implement the data storage of the blockchain. The food safety risks of unqualified
detection data can be quantitatively analyzed, and a food safety risk assessment model is established
according to failure rate and qualification deviation. Risk analysis used visual techniques, such as
heat maps, to show the areas where unqualified products appeared, with a migration map and a
force-directed graph used to trace these products. Moreover, the food sampling data were used as the
experimental data set to test the validity of the method. Instead of difficult-to-understand and highly
specialized food data sets, such as elements in food, food sampling data for the entire year of 2016
was used to analyze the risks of food incidents. A case study using aquatic products as an example
was explored, where the results showed the risks intuitively. Furthermore, by analyzing the reasons
and traceability processes effectively, it can be proven that the proposed method provides a basis to
formulate a regulatory strategy for regions with risks.
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1. Introduction

With the improvement of living standards, people have higher requirements for food quality.
Ensuring food quality safety has become a major problem for governments, business organizations,
and merchants. However, due to the complexity of the food supply chain, there is no effective regulatory
mechanism from farm to table, which has led to frequent food safety issues around the world over
the past few decades. For example, according to The Sunday Times, on June 5, 2005, the British
Food Standards Agency found the carcinogen “malachite green” in salmon sold in a well-known
supermarket. Even in recent years, food safety issues have not been well resolved. In 2019, hundreds
of African swine fever epidemics have occurred in many provinces of China [1]. These directly caused
an increase of pork prices and seriously affected people’s daily lives.

At present, it is difficult to recall food quickly after it has entered the market. This is because the
storage of food information is incomplete and the stored information can be easily forged. Countries
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around the world have adopted different regulatory approaches to prevent food safety incidents.
For example, the United States has utilized product traceability systems and product recall systems [2].
The European Union (EU) regulates the production, distribution, and processing of the entire food
chain from farm to table [3]. China has used a segmented management safety oversight model [4].
This traditional regulatory model will lead to independent law enforcement by various departments.
Each supervisory authority is responsible for its own affairs, or can shirk its responsibilities with
other authorities, which is not conducive to supervision. In addition, due to the large number of food
safety supervision departments and the lack of effective coordination departments and mechanisms,
the regulatory information of a certain product cannot be effectively transmitted to the next stage.
This may lead to repeated sampling and waste of manpower and resources. In addition to these issues,
there are a number of problems with these models; for example, information can be easily tampered
with, sources can be difficult to track, and so on.

In recent years, blockchain technology has received increasing attention due to features such
as having a distributed system, decentralization, and generating data that cannot be tampered
with [5]. Blockchain is a distributed database system containing multiple independent nodes.
It is essentially a distributed ledger that is maintained jointly by the nodes in the network.
Information can be recorded into the blockchain to ensure its security and credibility. It implements
decentralized point-to-point transactions in distributed networks by using encryption algorithms,
timestamps, consensus mechanisms, and reward mechanisms. The process is efficient and transparent.
This technology solves the problems of poor reliability, low security, high cost, and low efficiency in
the current centralized storage mode.

The introduction of blockchain technology into food safety supervision is becoming a trend.
In October 2016, the Wal-Mart Food Safety Cooperation Center, International Business Machines
Corporation (IBM), and Tsinghua University piloted a food traceability system based on blockchain
technology in China. In March 2017, Alibaba cooperated with PricewaterhouseCoopers to launch a
food supply blockchain test project in the food supply chain. In addition, Walmart has required its
vegetable suppliers to use blockchain technology developed by IBM to track products in real time
since September 2019. These practices have proven to the public that stakeholders in the global
food supply chain consider food safety as being collaborative rather than competitive. Blockchain
technology provides a new tool for traceability. By applying blockchain technology to food traceability
systems, the authenticity of data can be guaranteed to solve trust issues. In addition, establishing
a more transparent and traceable food system can ensure that every stakeholder in the blockchain,
such as food producers, processors, retailers, and consumers, can benefit from it. For example, Tian [6]
has built a traceability system for an agricultural product supply chain based on Radio Frequency
Identification (RFID) and blockchain technology, which covers the entire process of data collection and
information management in each link of the supply chain and realizes the monitoring, tracking, and
traceability management of agricultural food quality and safety.

However, there are two main challenges. One is the lack of an intuitive display and analysis of the
vast amounts of data. Visualization technologies can help people quickly identify and make relevant
decisions. For example, Saura et al. [7] extracted useful knowledge from available user generated
content (UGC) samples and visualized them. The results obtained are relevant to innovative education
trends, and practitioners can use them to improve strategies and interventions in the education sector
in the short-term future. Another challenge is that it is difficult to establish a good risk assessment
model for food safety risks. Risk assessment refers to the use of the employed method to analyze
existing data to assess the possibility of potential risks [8], and is applied to the food industry to
evaluate food safety risks. Its basic content includes hazard identification, hazard feature description,
exposure assessment, and risk feature description [9]. Therefore, visualization technologies and risk
assessment models can be introduced into the food industry, as they help people formulate relevant
strategies to reduce the risk of food safety incidents.
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In order to meet these challenges, we propose a visual analysis method of food safety risk
traceability based on blockchain. The theoretical framework and implementation process of this
research were divided into three steps. First, we designed a data structure for users with different
identity roles to update, view, and obtain information. Here, users can also upload relevant information
to the network for verification. Food sampling data are used in this research for food safety risk
assessment, where a method to quantitatively analyze food safety risks is proposed according to the
food sampling data to facilitate traceability analysis. After the information is verified, it is uploaded to
the blockchain. The consortium blockchain Hyperledger Fabric is used as a data hosting platform.
Ordinary users and regulators are given different identity permissions in the system to perform
different functions. Finally, visualization technologies are used to analyze food safety risk assessment
results and food safety risk traceability processes based on spatial characteristics of the data in the
blockchain. Heat maps are used to illustrate macro risks. Migration maps and force-directed graphs
are also applied to show microscopic flow. By using a human’s rapid recognition ability in visual mode,
people can easily track and monitor the extent and impact of the dangerous spreading of food(s).

The rest of this research is organized as follows. Related work is described in Section 2. Section 3
presents the framework. Design and implementation are illustrated in Section 4. Section 5 shows
experiments and analysis, and the conclusion is given in Section 6.

2. Relate Work

Currently, many technologies have been used in the food industry to solve frequent food
safety incidents, with one example being RFID (Radio Frequency Identification) [10]. For example,
Zhang et al. [11] proposed a special food safety traceability network model based on RFID technology,
which applies RFID technology to data acquisition of raw material procurement, production processing,
warehousing management, logistics, and transportation. However, traditional models using RFID
technology have problems such as low efficiency. In order to solve these problems, Alfian et al. [12]
used Internet of Things (IoT) technology and machine learning methods to improve the efficiency of
RFID-based perishable food traceability systems. In addition, Fan et al. [13] proposed a method to
improve the continuous traceability of food by using barcode RFID two-way conversion equipment.
In addition to RFID, IoT technology is also widely used in the food industry [14]. For example,
Verdouw et al. [15] developed and applied a framework for the food industry, which is based on the
Internet of Things system for modeling. However, these technologies still have some drawbacks.
For example, the centralized storage of data increases the possibility of information loss and tampering.
In addition, there are other problems, such as low transparency and easy leakage of information.
For instance, the largest information leakage incident of South Korea occurred in 2013, where 104 million
people’s personal information was leaked [16].

Recently, blockchain technology has been applied to the food industry [17,18]. Tse et al. [19]
proposed a method of applying blockchain technology to the food supply chain for ensured information
security. Unlike the traditional food supply chain traceability system, it is transformed into a distributed
storage platform based on the underlying protocol of the blockchain to ensure data security and
traceability [20]. Blockchain technology is often combined with other technologies. For example,
Hong et al. [21] implemented a traceability system based on the Internet of Things and blockchain
technology. Tsang et al. [22] used the Internet of Things to achieve traceability through integrated
consensus mechanisms. Through the application of blockchain, the environment of the food supply
chain has been greatly improved [23].

However, current data about the food industry requires professional visualization methods to
help quantitative analysis [24,25]. For example, ElMasry et al. [26] used near-infrared hyperspectral
imaging to quantitatively analyze the prediction parameters of fresh beef. Cropotova et al. proposed a
fluorimetric assay method to quantitatively analyze protein carbonyls [27]. Lohumi et al. [28] used
Fourier transform infrared (FTIR) spectroscopy to quantitatively analyze Sudan dye adulteration for
risk assessment. However, these results may cause great difficulties to the understanding of ordinary



Int. J. Environ. Res. Public Health 2020, 17, 2300 4 of 18

people. Therefore, suitable data sets are needed to help users understand and avoid food safety risks.
Therefore, we chose food sampling data as the data set for experimental testing. Blockchain technology
is used to ensure the true validity of the data, and visual methods, such as heat maps and migration
maps, are used to display and analyze risks.

3. Framework

The method uses Hyperledger Fabric as the underlying technology. Hyperledger is derived from
the open source project led by the Linux Foundation in 2015. Hyperledger Fabric is its sub-project,
which allows multiple parties to participate in the development, deployment, and operation of the
consortium blockchain platform. It aims to create an extensible blockchain development framework
that provides solutions for the development of enterprise-level blockchain applications.

In order to better understand Hyperledger Fabric, its architecture is introduced briefly here.
Hyperledger Fabric includes multiple components: (1) Orderer. In Hyperledger Fabric, an ordering
service is provided through multiple Orderers. They receive all transactions from the entire network
and packs the transactions into blocks in order of time. It does not participate in the execution and
verification of the transaction, so it does not care about the specific content of the transaction. The goal
is to reach a consensus on the order in which the transactions occur, and then broadcast the results.
(2) Client. The client is the access point between the user and the Hyperledger Fabric network, and
deploys a proprietary Software Development Kit (SDK). Users can use the client to initiate a transaction
request. (3) Endorser. When a client wants to initiate a transaction, it must first obtain a certain number
of endorsements from Endorsers for the transaction, that is, signing to prove that the transaction
has been processed by the endorsing nodes. (4) Committer. This type of node is the main body
for maintaining the ledger in the network. Committers can receive packaged blocks and verify the
validity of transactions in the blocks, and submit valid transactions to the ledger. Endorsers are special
Committers. Their endorsement function is an additional function.

The framework is shown in Figure 1 and has three layers as follows.

Int. J. Environ. Res. Public Health 2020, 17, x 5 of 18 

 

Database layer. As can be seen from Module C, this layer consists of a shared ledger. Here, we 
create a data structure model to implement different types of data upload. The uploaded information 
is stored in blocks. Each block consists of a block header and a block body. The block header is divided 
into a few parts, such as version (the version number of the block header, used to track 
software/protocol updates), prevBlockHash (the hash address of the previous block), merkleRoot (the 
hash value of the Merkle tree root in the block), time (the creation timestamp of the block), and so on. 
The block body contains transaction information, which is the number of transactions and transaction 
details such as location, time, etc. The information recorded in the ledger is used as data for visual 
analysis. 

 
Figure 1. The framework of the method. 

4. System Design and Implements 

4.1. Data Structure and Storage process 

A custom data model is created, as shown in Figure 2. The data model includes detailed 
parameters such as its identification and information for uploading. There are nine fields in total, 
which are ID, Name, Date, Location, FromLocation, ToLocation, PrincipalName, PrincipalPhone, and 
OtherInfo. Among these, ID is the classification of food categories, such as: milk and dairy products, 
fats, oils and emulsified fat productsand cereals. Name refers to the sub-categories of food, such as 
high calcium milk. Date is the timestamp of data uploaded for each link. Location represents the 
geographical coordinates of the current link. The previous geographical coordinates are defined as 
FromLocation. ToLocation represents the next geographical coordinates. RunningTime is the 
transport time. PrincipalName the name of the principal in this link. PrincipalPhone represents phone 
calls of the principal. OtherInfo is the reserved field. Each link uploads a different type of data, but 
the ID and Name fields must be uploaded. Other fields can be filled out based on the specific link and 
role. The format of the key-value store sets the data format to JavaScript Object Notation (JSON). 
Therefore, these data models eventually need to be converted to JSON strings. 

In addition, there are five roles for data upload: manufacturer , processor , inspector , transporter, 
and distributor. Different roles have different responsibilities and parameters. The three roles of 
manufacturer, processor and distributor can use all of the above parameters. Different from these 

Figure 1. The framework of the method.



Int. J. Environ. Res. Public Health 2020, 17, 2300 5 of 18

Business Layer. This layer supports user access and contains entry points for human-computer
interaction. It consists of modules A and D in Figure 1. Module A is the operation of uploading data,
and Module D is the visual display. Module A is mainly applicable to business developers who deploy
smart contracts at the business level. Smart contracts can be understood as script code running on
the blockchain, which provides programmable functions to support upper-layer applications. Users
write their own smart contracts through the Application Programming Interface (API). Users can
update or obtain information in the blockchain through smart contracts. Module D is the information
visualization part. The results of this module can be fed back to users to help the user perform risk and
traceability analysis. The heat map can show the risks in a macro view. The area shown by the heat
map is an important attribute of food risk data and the basis of food safety traceability. Based on this,
force-directed graphs and migration maps can be used to show the microscopic flow of products to
analyze their traceability. These techniques can produce direct, simple, and high-quality results.

Communication layer. This layer contains the network structure and protocols of the P2P network
(Module B). It provides network services for the blockchain platform and uses the Gossip data
communication protocol to achieve state synchronization and data distribution between nodes in
the network. Due to the use of Hyperledger Fabric, nodes in the communication layer are assigned
different roles to execute various services [29]. The communication layer not only deals directly with
the business layer, but also connects with the database layer. The uploaded data is verified by the
consensus algorithm and then uploaded to the blockchain to achieve consistency and correctness of
the ledger data on different ledger nodes. Consensus algorithms are the foundation of blockchain
technology. PBFT (Practical Byzantine Fault Tolerance) is used in Hyperledger Fabric. The main steps
are: (1) The client (user) sends a request to activate the service operation of the master node (regulator).
(2) After receiving the request, the master node broadcasts the request to each node. (3) The client
waits for responses from different nodes. If more than half of the nodes (for example, 51%) have the
same response, it is the result recorded in the blockchain.

Database layer. As can be seen from Module C, this layer consists of a shared ledger. Here, we
create a data structure model to implement different types of data upload. The uploaded information
is stored in blocks. Each block consists of a block header and a block body. The block header is divided
into a few parts, such as version (the version number of the block header, used to track software/protocol
updates), prevBlockHash (the hash address of the previous block), merkleRoot (the hash value of the
Merkle tree root in the block), time (the creation timestamp of the block), and so on. The block body
contains transaction information, which is the number of transactions and transaction details such as
location, time, etc. The information recorded in the ledger is used as data for visual analysis.

4. System Design and Implements

4.1. Data Structure and Storage Process

A custom data model is created, as shown in Figure 2. The data model includes detailed parameters
such as its identification and information for uploading. There are nine fields in total, which are ID,
Name, Date, Location, FromLocation, ToLocation, PrincipalName, PrincipalPhone, and OtherInfo.
Among these, ID is the classification of food categories, such as: milk and dairy products, fats, oils and
emulsified fat productsand cereals. Name refers to the sub-categories of food, such as high calcium milk.
Date is the timestamp of data uploaded for each link. Location represents the geographical coordinates
of the current link. The previous geographical coordinates are defined as FromLocation. ToLocation
represents the next geographical coordinates. RunningTime is the transport time. PrincipalName the
name of the principal in this link. PrincipalPhone represents phone calls of the principal. OtherInfo
is the reserved field. Each link uploads a different type of data, but the ID and Name fields must be
uploaded. Other fields can be filled out based on the specific link and role. The format of the key-value
store sets the data format to JavaScript Object Notation (JSON). Therefore, these data models eventually
need to be converted to JSON strings.
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In addition, there are five roles for data upload: manufacturer, processor, inspector, transporter,
and distributor. Different roles have different responsibilities and parameters. The three roles
of manufacturer, processor and distributor can use all of the above parameters. Different from
these roles, inspector can use one more parameter, DetectionInfo, and transporter can use the other
parameter RunningTime.

The process of data recording to the blockchain is shown in Figure 3. When a participant initiates
a request, the system will call an embedded smart contract and then verify the data structure, signature
integrity, and whether it is duplicated. After the verification is passed, the custom smart contract will
be called to upload the data to the blockchain. Nodes in the blockchain network can access different
information through different rights. In addition, digital signatures are used to ensure the integrity
of the information. The digital signature in this research uses asymmetric encryption technology.
It ensures that the information cannot be tampered with, and the identity information of the two nodes
does not need to be disclosed. When the process is completed, the smart contract will automatically
execute the content of the agreement. For example, during the transaction, both parties use asymmetric
keys to encrypt and decrypt transaction information. It guarantees that the transaction information
will not be tampered with maliciously, and solves the integrity problem in the transaction process.
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4.2. Quantitative Analysis of Safety Risks

Risk assessment refers to the consideration of all available relevant data, and on this basis to
identify areas where risks may arise. The results of food safety risk assessments can provide a basis for
regulators to formulate regulatory strategies. When constructing food safety risk indicators, we study



Int. J. Environ. Res. Public Health 2020, 17, 2300 7 of 18

the degree of risk of food through the rate of non-conformity and the degree of deviation from
conformity. The failure rate describes the frequency with which foods that do not meet the required
standards [30] occur (unqualified products). The deviation rate describes how far these unqualified
products deviate from their safety standards. They can be calculated using the following procedure.

The specific detection results of the product i in a region are defined as mp
i , where p is the type

of product. mp
i needs to be compared with [Minp, Maxp], which is the scope of safety standards,

and unqualified number count Ep
i

(
Ep

i ∈ [0, 1]
)

can be notified by following:

• If Minp
≤ mp

i ≤Maxp , then the detected item meets safety standards, Ep
i = 0.

• If mp
i < Minp or mp

i >. Maxp, then the detected item does not meet safety standards, Ep
i = 1.

Thus, the failure rate Ṽp
i can be calculated by:

Ṽp
i =

∑np
i Ep

i

np
i

. (1)

where np
i is the number of sampled products. For unqualified products, the deviation rate needs to be

calculated, as shown in Equation (2). It is represented by Bp
i (0 < Bp

i ≤ 1).

Bp
i =


Minp

−mp
i

Minp , 0 < mp
i < Minp

mp
i −Maxp

mp
i

, 0 < Maxp < mp
i

(2)

The average deviation rate B̃p
i can be calculated by:

B̃p
i =

∑np
i Bp

i

np
i

(3)

For a region j, the risk indicator can be calculated according to this formula:

ψ j =
n∑
1

(Ṽp
i × B̃p

i ) (4)

This obtains the risk indicators set (ψ1, ψ2,ψ3, . . . ,ψn). After sorting, the region set with risks can
be acquired according to the results in the order from large to small. Then, these can be analyzed using
visualization techniques.

4.3. Visual Analysis Methods

Visual analysis consists of macro and micro analysis. The macro analysis method uses heat map
technology to illustrate the risk distributions of regions. For a specific region, the migration map
and force-directed graph technologies are used to demonstrate the reasons why these risks occur.
The details of these methods are explained in the following.

4.3.1. Macro Analysis

The macro analysis of risks can be processed by heat maps [31]. These display areas of interest
to users in colored highlights. The heat map generation process is roughly divided into three steps.
First, the original data needs to be clustered to form clusters. Then, Gaussian fitting is performed
according to the center points of the clusters to obtain each heat value in regards to its surrounding
area. Finally, the heat map can be formed by coloring according to the heat value, which is combined
with maps for intuitive display. The detailed process is as follows.
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Clustering data is the basis of heat map generation. Clustering refers to clustering similar entities
together to form a cluster [32]. The spatial distance between the data can be used as the basis for
clustering. In a cluster obtained by clustering data with spatial-temporal characteristics (spatial points),
the distance between any two spatial points must be smaller than the distance between any point in
other clusters. From the aspect of density, the tight aggregation of points forms a cluster with high
density and a cluster with low density represents points that are scattered. The operation of clustering
is summarized as follows.

• 1. Data initialization. Data dimensions are reduced and certain characteristics are standardized.
• 2. Selection of data characteristics. The characteristics that can best distinguish the data are found,

extracted, and stored.
• 3. Data clustering. Select or construct a certain clustering function to test the similarity of the data

according to the characteristics, and perform clustering based on the test results.
• 4. Data cluster evaluation [33]. Perform evaluation of correlation and validity on clusters.

Processing the original data based on the grid clustering algorithm can preserve the important
attributes of the data [34]. The efficiency of a grid cluster will not depend on the amount of raw data.
It is determined by the number of elements in a one-dimensional case. It can improve data processing
efficiency by flexibly processing the amount of data at different levels. The risk distribution can be
shown by heat maps after the above operation of the risk regions (hotspots). These hotspots will
produce a certain range of influence, and the strength of this range of influence can be calculated using
a Gaussian function, as shown in Equation (5).

r(x) =
k

σ
√

2π
e−

x2

2σ2 (5)

where x is the distance between sampling site and hotspot, σ is the scale factor of the function, and k is
the influence factor. The larger of these two factors, the wider the range of influence. Equation (5)
shows that its range of action is inversely proportional to distance. The influence of the center area is
the largest, and the periphery is the smallest. When processing a certain area, it is necessary to add up
all the heat values that can be generated in the surrounding area. Therefore, the final heat value of a
certain region can be calculated by:

H =
∑n

i=1
r(x) (6)

After H is obtained, the corresponding location information is required. We can process the
discreteness of all sampling sites within the range into a matrix. Each sampling site corresponds to a
specific position coordinate (longitude, latitude), and the heat value of the sampling site is calculated
by Gaussian fitting. The area represented by the rectangular lattice consists of longitude (Lon1, Lon2),
latitude (Lat2, Lat1), and the matrix size is M ×M. Then, the latitude and longitude corresponding to
the hotspot of the row r and the column c can be calculated by Equations (7) and (8).

lat = r×
(Lat2 − Lat1)

M
+ Lat1 (7)

lon = c×
(Lon2 − Lon1)

M
+ Lon1 (8)

Combining the heat value with the corresponding coordinates, and then rendering the map with
the corresponding chromaticity through the color table, we can further enhance the heat perception of
the risk distribution. Therefore, the generation process is shown in Algorithm 1.
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4.3.2. Micro Analysis

For the risk distribution results, micro analysis is needed to discover the reasons for these risks
occurring. Micro analysis is achieved through migration graphs and force-directed graphs. Migration
diagrams can show relationships between regions with risks. Migration graph technology calculates,
analyzes, and visualizes the data of a geographic location-based service (LBS) to dynamically, instantly,
and intuitively display the trajectory and characteristics of data [35]. This technique is widely used
in the analysis of movement. For example, Baidu launched a technology project called “Baidu
Migration Map” during the Chinese Spring Festival Transport in 2014. It analyzed mobile phone
user’s positioning information to map their tracks. This was used to observe the movement situation
of China, as well as its provinces, cities, and districts in the current and earlier time periods, so as to
intuitively determine the source and destination of the population. However, the migration graph can
only mark the general flow direction, so the traceability of a specific product needs to be achieved
through a force-directed graph.

Force-directed graphs can be used to illustrate specific flow directions, since they make relationships
clear. Force-directed graphs are mainly used in the visualization of complex networks such as social
networks [36]. They show the relationship between multiple nodes. Nodes are configured in two- or
three-dimensional space, and the relationship between them is represented by lines. These lines are
almost equal in length and as far as possible do not intersect. Both nodes and lines are subjected to
forces (Coulomb repulsion, Hooke’s law, and damping attenuation also should be considered [37]),
which can be calculated according to the relative positions. The motion trajectories of the nodes are
determined according to the action of the forces, and their energy is continuously reduced, eventually
reaching a stable and balanced state. Through predefined points, edge weights, and other information,
the force-directed graph can reflect the data flow direction according to the real-time state.

In order to better understand the principle of its generation, we use physical methods as an
analogy. First, the entire network can be considered as a virtual physical system. Each node of the
network can be considered as a discharge particle in the system with a certain energy and, in the
proposed method, represents a place (the start or end location of the unqualified products flow).
The forces reflect the strength of these relationships among places. There is Coulomb repulsion between
particles, which makes them repel each other. At the same time, some particles are implicated by some
edges (lines), which can reflect the flows of the relationships in the method. These edges generate
hooke ’s gravitational force to keep the particles at both ends of the edge. Under the continuous action
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of repulsion and gravity between particles, the particles are constantly displaced from the random
and disordered initial state, and gradually tend to balance to form an orderly final state. At the same
time, the energy of the entire physical system is also continuously consumed. After several iterations,
relative displacements between the particles almost no longer occurs, and the entire system reaches a
stable and balanced state. Based on this, the process of generating a force-directed graph is as follows.

• 1. The initial nodes positions are distributed randomly.
• 2. Calculate the unit displacement (edge/ line) caused by the repulsive force and gravitational

forces between any two nodes in the area at each iteration.
• 3. Constantly adjust according to parameters such as the distance between nodes, the location of

nodes, and the repulsive and gravitational coefficients.
• 4. Add up the unit displacements (edges/ lines) of all nodes.
• 5. Iterate n times until the desired effect is achieved.

Through the use of migration graphs and force-oriented graphs, regulators can more intuitively
observe the causes of risks. Therefore, relevant rules can be formulated to reduce the occurrence of
food safety incidents and ensure a food safety environment.

5. Experiments and Numerical Analysis

5.1. Experiment Platform

This research work is based on the Hyperledger Fabric v1.0 for development. The underlying
environment is ubuntu16.04, Git client version 2.5.1, Node.js v8.11.2, NPM v5.6.0, Docker version
17.12.0-ce, Docker Compose-v1.8. The development languages are Python 3.6.0 and Go v1.9. LevelDB
is used as the database, which is also the default database built into the Hyperledger. The front end is
mainly developed through Hyper Text Markup Language (HTML), Javascript, JQuery, and Cascading
Style Sheet (CSS). The background includes server deployment, information uploading to the blockchain,
and information display of the blockchain. In the experiment, the CPU model of the microcomputer is
Intel(R) Xeon(R) CPU e5-2603 v3@1.60ghz *6, and the memory is 8GB.

The description of the system interfaces can be divided into four parts. Part A the main interface
of the system. It contains three main users of the system, which are inspectors, transporters, and users
(manufacturers, processors and distributors). Here we take the transporter as an example. When
the transporter completes the transportation of a batch of products, the detailed information of the
products needs to be recorded and uploaded. Part B is the data upload interface, which contains
detailed information of the transported products, such as name, ID, date, and so on. After the data
upload operation is finished, the consensus of the nodes needs to be completed to ensure the validity of
the data. Then, the valid data can be uploaded to the blockchain. Part C is the visual display interface.
The upper part shows the relationship between the three roles, and the other part demonstrates the
blockchain. It shows the basic information of blocks such as block number, hash value, and date. Part
D shows the detailed information, which includes size, nonce, and so on. It can be used to analyze
data traceability.

Hyperledger Fabric uses container technology such as Docker to host the “chaincode” (i.e., smart
contracts) which include the system application logic. Smart contracts typically use the Domain-Specific
Language (DSL) for development. These languages have specific restrictions for blockchain, like
Ethereum. It is not only not conducive to the use of ordinary users, it also causes greater difficulties for
developers. One of the features of Hyperledger Fabric is that it uses general-purpose programming
languages such as Java, Node.js, and Go to develop smart contracts. It greatly reduces the learning
costs for developers. In addition, it is the only channel for users to interact with Hyperledger Fabric
and the only tool for performing transactions on the blockchain platform [38]. Based on these, we use
smart contracts to implement the operations of recording data to the blockchain and downloading
data, as shown in Figure 4.
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Since the sampling results are stored on the blockchain, we collected the sampling data for the
whole year of 2016. In order to protect the privacy of the merchant, we performed address hiding and
other processing on the data, and the results are shown in Figure 5.
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Figure 5. Data in the blockchain.

As shown in Figure 5, using the blockchain platform to store the sampling data can meet the
following security requirements: (1) Privacy protection. The merchant information stored in the block
is hash encrypted (from and to). It does not disclose any private information about merchants, thus
achieving privacy protection and improving security. (2) Data integrity. After the information is
record into the block, it will correspond to a specific block number (blockNumber), and the block
will be encrypted by the hash function to generate a unique hash value (blockHash). (3) Information
security. Digital signatures are used to prove ownership, and the hash function is also used to encrypt
transaction information (transactionHash). In addition, the use of digital signatures can prevent
duplicate transactions. This ensures the security to a certain extent.

5.2. An Example of Using Aquatic Products Data

The data set used in this research is the Food Sampling Data of the full year of 2016. The data
set contains 341 types of food with a total of 1,048,575 items. The detailed parameters are shown in
Table 1. Here we have selected the data related to 19,578 aquatic products as the experimental data
set, which includes fish, shrimps, crabs, shells, and mollusks. Among these, a total of 19,142 items
were marked with qualified items. There were 436 items marked as unqualified items, question items,
and non-determined items. In order to protect the privacy of the merchants, we blurred the information
in the data set and processed the detection results in proportion to ensure the validity of the results.
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Table 1. An example of the dataset.

ID Product
ID

Product
Name

Place of
Production

Place of
Sold

Food
Category ID

Food
Category

Substance
ID

Substance
Name Result Judgement Date

1 93074 Razor
clam C1 A2 745 Shell 136 Tetracycli-ne 0 Qualified 1/1/2016

5.2.1. Quantitative Risk Analysis Based on Heat Map

In order to visualize the areas where unqualified products appear, we use a heat map here.
The generation results are shown in Figure 6. (A) and (B), where we first conduct grid clustering
based on unqualified products data. (A) shows relatively rough clustering results, and (B) is a graph
representing the results with accurate clustering. After the data is processed, the gray value, which
reflects the color depth of the points in the black and white image, is superimposed and displayed as
shown in (C). Then, the value is mapped using a color-band with 256 colors to finally form a colored
heat map, as shown in (D).
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The heat map will show different results over time. In order to measure this, we built a 3D model
similar to [39,40]. Figure 7 shows the results of the heat map changes from June to December 2016. In
order to better present the results, we selected the results in June, October and December. From Figure 7,
it can be seen that most of the areas where incidents appear are initially near the water. Incidents are
concentrated in some areas. As time goes on, incidents have gradually emerged in inland areas and
some areas have a tendency to concentrate. From June to October, in particular, this trend is obvious.
For the areas where incidents occur, we use the results from December for analysis (see Figure 8).
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Figure 8. Part of the heat map.

For better analysis, the pictures were divided into 28 different grids. It can be seen from Figure 8
that large red areas appear in grids A, B, and C, which indicates that a large number of unqualified items
occurred in these three grids. In particular, continuous red areas appeared in grid C, which indicates
that the unqualified items occurred more frequently in grid C. Therefore, we recommend finding
solutions for all grids where incidents occur. For grids A, B, and C, a high degree of attention must be
paid to the resolution process to reduce the risk of the incident recurring. In this way, special solutions
can be formulated for different causes of problems in different places, greatly improving the efficiency
of problem solving.

5.2.2. Traceability Analysis Based on Migration Map and Force-Directed Graph

In order to provide effective evidence to facilitate the development of solutions, we need to conduct
a traceability analysis based on the above results. We select a1 in Grid A for further analysis. As shown
in Figure 9, the migration map and force-directed graph realizes the traceability analysis of unqualified
products. These product parameters are shown in Table 2. However, the results presented in Figure 9
are too complex and greatly increase the difficulty of analysis. Thus, we simplified the original image
for better analysis and produced Figure 10. As can be seen from Figure 10, the unqualified products
appearing in a1 come from eight locations in grids B, C, D, E, F, and G, which are b1, c1, c2, c3, d1, e1, f1,
and g1. These results reflect the flow of unqualified products. Analyzing these flow processes can
help regulators in these regions perform better management. From Table 2 and Figure 10 it can be
observed that the unqualified products appear in regions near the water. The regulations in these areas
can be strengthened to reduce the occurrence of unqualified products. For example, regulators need to
formulate stricter regulations, such as increased frequency of spot checks on products, and increased
penalties for manufacturers of unqualified products [41].
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Table 2. Parameters of the unqualified products.

ID Product ID Product Name Place of Production Place of Sold Food Category ID Food Category Substance ID Substance Name Result 1 Judgement Color

1 60813 Sea crab b1 a1 738 Crab 41 Cadmium 1.481364 Unqualified Green
2 4708 Croaker c1 a1 737 Fish 184 AOZ 42.804198 Unqualified Blue
3 96064 Scylla serrata c2 a1 738 Crab 41 Cadmium 3.7944408 Unqualified Purple
4 93568 White shrimp c3 a1 736 Shrimp 1027 AOZ 1.9691520 Unqualified Pink
5 11859 Weever d1 a1 737 Fish 1027 AMOZ 3.344956 Unqualified White
6 9290 Turbot e1 a1 736 Fish 182 SEM 56.294333 Unqualified Red
7 93109 Pomfret f1 a1 737 Fish 1027 AOZ 1.1054634 Unqualified Gray
8 9415 Mantis Shrimp g1 a1 736 Shrimp 123 Chloramp-henicol 0.304360 Unqualified Orange

1 This refers to detection results. Due to the length limitation here, only six digits after the decimal point are retained.
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6. Conclusions

Most current research only uses blockchain technology to ensure the authenticity and validity
of the data. This research not only proposes a method based on blockchain technology to realize
the storage and management of food sampling data, but also introduced visualization methods to
intuitively show risks and help the traceability analysis of food. This research can expand the current
research system from the following aspects.

First, unlike the current data storage and management methods, the designed data structure
can meet the needs of different roles and normalize the recording rules. In addition, the blockchain
technology is used to store data. Since the blockchain features are distributed, the stored data cannot to
be tampered with maliciously. Therefore, the reliability and integrity of data can be ensured. Second,
most current methods for risk analysis are qualitative, that is, the risk is classified into several levels.
Based on food sampling data, a quantitative analysis method has been proposed for food safety risk
assessment. We have proven that this method can provide a scientific basis for management, thereby
reducing the occurrence of risks and protecting people’s health. Finally, unlike many current analysis
methods that only focus on the results, a holistic and detailed analysis approach has been adopted to
obtain results and the reasons for their occurrence, respectively. The experimental results visualize risks
through heat maps, and the traceability can be analyzed through migration and force-oriented graphs.
By using visualization methods to display information, people can easily mine some important data.
In practical implications, this research can help regulators (such as the Food and Drug Administration)
through using these results to develop more scientific and reasonable regulatory strategies for reducing
the occurrence of food safety incidents. In addition, it can also facilitate the management and control
of the regions with risks.

However, there are still deficiencies that need to be improved. Blockchain technology has issues
related to the speed and scalability of generating blocks. These problems will greatly reduce the
efficiency of data processing. In addition, the visual analysis is also affected by the quality of the
sampling data, and problems such as sampling errors can greatly affect the validity of the results.
In the future, we should consider effective methods to solve these problems in order to obtain more
accurate results.
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