The Impact of Essential Oil Feed Supplementation on Enteric Gas Emissions and Production Parameters from Dairy Cattle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Feeding
2.3. Emission Sampling
2.4. Emission Calculations
2.5. Milk Yield and Analysis
2.6. Blood Sampling
2.7. Data Analysis
3. Results and Discussion
3.1. Effect of AGO on GHG Emissions
3.2. Effect of AGO on Production Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United States Environmental Protection Agency. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2018; United States Environmental Protection Agency: Washington, DC, USA, 2020.
- Short-lived climate pollutants: Methane Emissions: Dairy and Livestock: Organic waste: Landfills. In Statutes of 2016; Chapter 395; California State Legislature: Sacramento, CA, USA, 2016.
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Boadi, D.; Benchaar, C.; Chiquette, J.; Massé, D. Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Can. J. Anim. Sci. 2004, 84, 319–335. [Google Scholar] [CrossRef]
- Benchaar, C.; Pomar, C.; Chiquette, J. Evaluation of dietary strategies to reduce methane production in ruminants: A modelling approach. Can. J. Anim. Sci. 2001, 81, 563–574. [Google Scholar] [CrossRef]
- Yan, T.; Agnew, R.E.; Gordon, F.J.; Porter, M.G. Prediction of methane energy output in dairy and beef cattle offered grass silage-based diets. Livest. Prod. Sci. 2000, 64, 253–263. [Google Scholar] [CrossRef]
- Leng, R.A.; Nolan, J.V. Nitrogen metabolism in the rumen. J. Dairy Sci. 1984, 67, 1072–1089. [Google Scholar] [CrossRef]
- McGuffey, R.K.; Richardson, L.F.; Wilkinson, J.I.D. Ionophores for dairy cattle: Current status and future outlook. J. Dairy Sci. 2001, 84, E194–E203. [Google Scholar] [CrossRef]
- Greathead, H. Plants and plant extracts for improving animal productivity. Proc. Nutr. Soc. 2003, 62, 279–290. [Google Scholar] [CrossRef]
- Bodas, R.; López, S.; Fernández, M.; García-González, R.; Rodríguez, A.B.; Wallace, R.J.; González, J.S. In vitro screening of the potential of numerous plant species as antimethanogenic feed additives for ruminants. Anim. Feed Sci. Technol. 2008, 145, 245–258. [Google Scholar] [CrossRef]
- Wallace, R.J. Antimicrobial properties of plant secondary metabolites. Proc. Nutr. Soc. 2004, 63, 621–629. [Google Scholar] [CrossRef]
- Mihaliak, C.A.; Gershenzon, J.; Croteau, R. Lack of rapid monoterpene turnover in rooted plants: Implications for theories of plant chemical defense. Oecologia 1991, 87, 373–376. [Google Scholar] [CrossRef]
- Chao, S.C.; Young, D.G.; Oberg, C.J. Screening for inhibitory activity of essential oils on selected bacteria, fungi and viruses. J. Essent. Oil Res. 2000, 12, 639–649. [Google Scholar] [CrossRef]
- Calsamiglia, S.; Busquet, M.; Cardozo, P.W.; Castillejos, L.; Ferret, A. Invited review: Essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci. 2007, 90, 2580–2595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, H.K.; Sakai, T.; Jones, M.B.; Longhurst, W.M. Effect of various essential oils isolated from Douglas fir needles upon sheep and deer rumen microbial activity. Appl. Microbiol. 1967, 15, 777–784. [Google Scholar] [CrossRef]
- Smith-Palmer, A.; Stewart, J.; Fyfe, L. Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett. Appl. Microbiol. 1998, 26, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Nagaraja, T.G.; Newbold, C.J.; van Nevel, C.J.; Demeyer, D.I. Manipulation of ruminal fermentation. In The Rumen Microbial Ecosystem; Blackie Academic and Professional: London, UK, 1997; pp. 523–632. [Google Scholar]
- Elcoso, G.; Zweifel, B.; Bach, A. Effects of a blend of essential oils on milk yield and feed efficiency of lactating dairy cows. Appl. Anim. Sci. 2019, 35, 304–311. [Google Scholar] [CrossRef]
- Klop, G.; Van Laar-Van Schuppen, S.; Pellikaan, W.F.; Hendriks, W.H.; Bannink, A.; Dijkstra, J. Changes in in vitro gas and methane production from rumen fluid from dairy cows during adaptation to feed additives in vivo. Animal 2017, 11, 591–599. [Google Scholar] [CrossRef] [Green Version]
- Durmic, Z.; Moate, P.J.; Eckard, R.; Revell, D.K.; Williams, R.; Vercoe, P.E. In vitro screening of selected feed additives, plant essential oils and plant extracts for rumen methane mitigation. J. Sci. Food Agric. 2014, 94, 1191–1196. [Google Scholar] [CrossRef]
- Castro-Montoya, J.; Peiren, N.; Cone, J.W.; Zweifel, B.; Fievez, V.; De Campeneere, S. In vivo and in vitro effects of a blend of essential oils on rumen methane mitigation. Livest. Sci. 2015, 180, 134–142. [Google Scholar] [CrossRef]
- Hart, K.J.; Jones, H.G.; Waddams, K.E.; Worgan, H.J.; Zweifel, B.; Newbold, C.J. An essential oil blend decreases methane emissions and increases milk yield in dairy cows. Open J. Anim. Sci. 2019, 09, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Klop, G.; Dijkstra, J.; Dieho, K.; Hendriks, W.H.; Bannink, A. Enteric methane production in lactating dairy cows with continuous feeding of essential oils or rotational feeding of essential oils and lauric acid. J. Dairy Sci. 2017, 100, 3563–3575. [Google Scholar] [CrossRef] [Green Version]
- Belanche, A.; Newbold, C.J.; Morgavi, D.P.; Bach, A.; Zweifel, B.; Yáñez-Ruiz, D.R. A meta-analysis describing the effects of the essential oils blend agolin ruminant on performance, rumen fermentation and methane emissions in dairy cows. Animals 2020, 10, 620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guasch, I.; Elcoso, G.; Zweifel, B.; Bach, A. Effects of a blend of essential oils on milk yield and feed efficiency of lactating cows. J. Anim. Sci. 2016, 94, 718–719. [Google Scholar] [CrossRef] [Green Version]
- Place, S.E.; Pan, Y.; Zhao, Y.; Mitloehner, F.M. Construction and operation of a ventilated hood system for measuring greenhouse gas and volatile organic compound emissions from cattle. Animals 2011, 1, 433–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, C.B.; Mashad, H.M.E.; Zhao, Y.; Pan, Y.; Mitloehner, F.M. Effects of SOP lagoon additive on gaseous emissions from stored liquid dairy manure. Sustainability 2020, 12, 1393. [Google Scholar] [CrossRef] [Green Version]
- Boyd, J.; Bernard, J.K.; West, J.W. Effects of feeding different amounts of supplemental glycerol on ruminal environment and digestibility of lactating dairy cows. J. Dairy Sci. 2013, 96, 470–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. Available online: https://cran.r-project.org/package=nlme (accessed on 28 May 2020).
- Lenth, R.; Singmann, H.; Love, J.; Buerkner, P.; Herve, M. Emmeans: Estimated Marginal Means, Aka Least-Squares Means; R Package Version 1.4.1. 2020. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 28 May 2020).
- R Core Team. R: A Language and Environment Statistical Computing; R Core Team: Vienna, Austria, 2018. [Google Scholar]
- Pinheiro, J.C.; Bates, D.M. Mixed-Effects Models in S and S-PLUS; Chambers, J., Eddy, W., Hardle, W., Sheather, S., Tierney, L., Eds.; Springer: New York, NY, USA, 2000; pp. 226–270. [Google Scholar]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biometrical J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [Green Version]
- Hristov, A.N.; Oh, J.; Firkins, J.L.; Dijkstra, J.; Kebreab, E.; Waghorn, G.; Makkar, H.P.S.; Adesogan, A.T.; Yang, W.; Lee, C.; et al. Special Topics—Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 2013, 91, 5045–5069. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Fernandez, G.; Denman, S.E.; Yang, C.; Cheung, J.; Mitsumori, M.; McSweeney, C.S. Methane inhibition alters the microbial community, hydrogen flow, and fermentation response in the rumen of cattle. Front. Microbiol. 2016, 7, 1–14. [Google Scholar] [CrossRef]
- Grainger, C.; Clarke, T.; McGinn, S.M.; Auldist, M.J.; Beauchemin, K.A.; Hannah, M.C.; Waghorn, G.C.; Clark, H.; Eckard, R.J. Methane emissions from dairy cows measured using the sulfur hexafluoride (SF6) tracer and chamber techniques. J. Dairy Sci. 2007, 90, 2755–2766. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; McAllister, T.A.; McGinn, S.M. Dietary mitigation of enteric methane from cattle. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2009, 4. [Google Scholar] [CrossRef]
- Baker, S.K. Rumen methanogens, and inhibition of methanogenesis. Aust. J. Agric. Res. 1999, 50, 1293–1298. [Google Scholar] [CrossRef]
- Melgar, A.; Harper, M.T.; Oh, J.; Giallongo, F.; Young, M.E.; Ott, T.L.; Duval, S.; Hristov, A.N. Effects of 3-nitrooxypropanol on rumen fermentation, lactational performance, and resumption of ovarian cyclicity in dairy cows. J. Dairy Sci. 2020, 103, 410–432. [Google Scholar] [CrossRef] [Green Version]
- Hristov, A.N.; Oh, J.; Giallongo, F.; Frederick, T.W.; Harper, M.T.; Weeks, H.L.; Branco, A.F.; Moate, P.J.; Deighton, M.H.; Williams, S.R.O.; et al. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proc. Natl. Acad. Sci. USA 2015, 112, E5218. [Google Scholar] [CrossRef] [Green Version]
- Melgar, A.; Welter, K.C.; Nedelkov, K.; Martins, C.M.M.R.; Harper, M.T.; Oh, J.; Räisänen, S.E.; Chen, X.; Cueva, S.F.; Duval, S.; et al. Dose-response effect of 3-nitrooxypropanol on enteric methane emissions in dairy cows. J. Dairy Sci. 2020, 103, 6145–6156. [Google Scholar] [CrossRef]
- Stackhouse, K.R.; Pan, Y.; Zhao, Y.; Mitloehner, F.M. Greenhouse gas and alcohol emissions from feedlot steers and calves. J. Environ. Qual. 2011, 40, 899–906. [Google Scholar] [CrossRef]
- Kaspar, H.F.; Tiedje, J.M. Dissimilatory reduction of nitrate and nitrite in the bovine rumen: Nitrous oxide production and effect of acetylene. Appl. Environ. Microbiol. 1981, 41, 705–709. [Google Scholar] [CrossRef] [Green Version]
- Castillejos, L.; Calsamiglia, S.; Ferret, A. Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems. J. Dairy Sci. 2006, 89, 2649–2658. [Google Scholar] [CrossRef]
- Matloup, O.H.; Abd El Tawab, A.M.; Hassan, A.A.; Hadhoud, F.I.; Khattab, M.S.A.; Khalel, M.S.; Sallam, S.M.A.; Kholif, A.E. Performance of lactating Friesian cows fed a diet supplemented with coriander oil: Feed intake, nutrient digestibility, ruminal fermentation, blood chemistry, and milk production. Anim. Feed Sci. Technol. 2017, 226, 88–97. [Google Scholar] [CrossRef]
- McIntosh, F.M.; Williams, P.; Losa, R.; Wallace, R.J.; Beever, D.A.; Newbold, C.J. Effects of essential oils on ruminal microorganisms and their protein metabolism. Appl. Environ. Microbiol. 2003, 69, 5011–5014. [Google Scholar] [CrossRef] [Green Version]
- Annison, E.F. Nitrogen metabolism in the sheep; protein digestion in the rumen. Biochem. J. 1956, 64, 705–714. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, W.E. Chemical and Metabolic Aspects of Urea-Ammonia Toxicosis in Cattle and Sheep; Iowa State University: Ames, IA, USA, 1970. [Google Scholar]
- Jouany, J.; Morgavi, D.P. Use of ‘ natural ’ products as alternatives to antibiotic feed additives in ruminant production. Animal 2007, 1, 1443–1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, M.B.; Robinson, P.H.; Williams, P.; Losa, R. Effects of addition of an essential oil complex to the diet of lactating dairy cows on whole tract digestion of nutrients and productive performance. Anim. Feed Sci. Technol. 2010, 157, 64–71. [Google Scholar] [CrossRef]
- Oh, J.; Harper, M.; Lang, C.H.; Wall, E.H.; Hristov, A.N. Effects of phytonutrients alone or in combination with monensin on productivity in lactating dairy cows. J. Dairy Sci. 2018, 101, 7190–7198. [Google Scholar] [CrossRef] [PubMed]
- Joch, M.; Kudrna, V.; Hakl, J.; Božik, M.; Homolka, P.; Illek, J.; Tyrolová, Y.; Výborná, A. In vitro and in vivo potential of a blend of essential oil compounds to improve rumen fermentation and performance of dairy cows. Anim. Feed Sci. Technol. 2019, 251, 176–186. [Google Scholar] [CrossRef]
- Braun, H.S.; Schrapers, K.T.; Mahlkow-Nerge, K.; Stumpff, F.; Rosendahl, J. Dietary supplementation of essential oils in dairy cows: Evidence for stimulatory effects on nutrient absorption. Animal 2019, 13, 518–523. [Google Scholar] [CrossRef] [Green Version]
- Benchaar, C.; Hassanat, F.; Petit, H.V. Dose-response to eugenol supplementation to dairy cow diets: Methane production, N excretion, ruminal fermentation, nutrient digestibility, milk production, and milk fatty acid profile. Anim. Feed Sci. Technol. 2015, 209, 51–59. [Google Scholar] [CrossRef]
- Tekippe, J.A.; Tacoma, R.; Hristov, A.N.; Lee, C.; Oh, J.; Heyler, K.S.; Cassidy, T.W.; Varga, G.A.; Bravo, D. Effect of essential oils on ruminal fermentation and lactation performance of dairy cows. J. Dairy Sci. 2013, 96, 7892–7903. [Google Scholar] [CrossRef]
- Chapman, C.E.; Chester-Jones, H.; Ziegler, D.; Clapper, J.A.; Erickson, P.S. Effects of cinnamaldehyde or monensin on performance of weaned Holstein dairy heifers. J. Dairy Sci. 2017, 100, 1712–1719. [Google Scholar] [CrossRef] [Green Version]
TMR Composition (%; As Fed) | |
---|---|
Grain Mix 1 | 41.47 |
Alfalfa Hay | 32.25 |
Chopped Wheat | 8.06 |
Cottonseed, Whole | 7.68 |
Almond Hulls | 7.68 |
Mineral Premix | 1.15 |
EnerGII 2 | 1.15 |
Strata 2 | 0.32 |
Salt | 0.23 |
Grain Mix 1 | |
Steam Flaked Corn | 30.75 |
Wheat Mill Run | 21.95 |
Dried Distillers Grains | 21.04 |
Beet Pulp | 14.1 |
Rolled Barley | 10.25 |
Soybean Meal | 1.91 |
Treatment LSM | SEM | p-Value | ||
---|---|---|---|---|
AGO | CON | Treatment | ||
Gas Production | ||||
CH4 (g/period) | 357 | 381 | 12.1 | 0.15 |
CO2 (g/period) | 9248 | 9660 | 272 | 0.39 |
N2O (mg/period) | 1298 | 1374 | 39.3 | 0.11 |
NH3 (mg/period) | 293 | 331 | 12.1 | 0.028 |
Gas Head Chamber Yield 1 | ||||
CH4 (g/period/kg) | 24.5 | 24.1 | 0.56 | 0.62 |
CO2 (g/period/kg) | 641 | 614 | 17.1 | 0.18 |
N2O (mg/period/kg) | 89.1 | 87.6 | 2.12 | 0.54 |
NH3 (mg/period/kg) | 20.4 | 21.4 | 0.83 | 0.10 |
Gas Intensity 2 | ||||
CH4 (g/period/kg) | 15.8 | 17.8 | 0.71 | 0.025 |
CO2 (g/period/kg) | 411 | 452 | 22.3 | 0.15 |
N2O (mg/period/kg) | 56.8 | 64.7 | 2.65 | 0.05 |
NH3 (mg/period/kg) | 13.1 | 15.6 | 0.82 | 0.011 |
Treatment LSM | SEM | p-Value | ||
---|---|---|---|---|
AGO | CON | Treatment | ||
Feed Efficiency 1 | 1.57 | 1.63 | 0.03 | 0.28 |
DMI (kg) 2 | 26.4 | 26.2 | 0.30 | 0.60 |
Head Chamber DMI (kg) | 14.8 | 15.8 | 0.42 | 0.14 |
Head Chamber ECM (kg) 3 | 22.9 | 22.0 | 1.20 | 0.49 |
ECM (kg) | 41.1 | 42.1 | 0.98 | 0.47 |
Milk Fat (kg) | 1.65 | 1.69 | 0.05 | 0.56 |
Milk Protein (kg) | 1.11 | 1.13 | 0.02 | 0.60 |
MUN (mg/dL) | 9.67 | 9.68 | 0.27 | 0.97 |
SUN (mg/dL) 4 | 12.2 | 11.6 | 0.37 | 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrazco, A.V.; Peterson, C.B.; Zhao, Y.; Pan, Y.; McGlone, J.J.; DePeters, E.J.; Mitloehner, F.M. The Impact of Essential Oil Feed Supplementation on Enteric Gas Emissions and Production Parameters from Dairy Cattle. Sustainability 2020, 12, 10347. https://doi.org/10.3390/su122410347
Carrazco AV, Peterson CB, Zhao Y, Pan Y, McGlone JJ, DePeters EJ, Mitloehner FM. The Impact of Essential Oil Feed Supplementation on Enteric Gas Emissions and Production Parameters from Dairy Cattle. Sustainability. 2020; 12(24):10347. https://doi.org/10.3390/su122410347
Chicago/Turabian StyleCarrazco, Angelica V., Carlyn B. Peterson, Yongjing Zhao, Yuee Pan, John J. McGlone, Edward J. DePeters, and Frank M. Mitloehner. 2020. "The Impact of Essential Oil Feed Supplementation on Enteric Gas Emissions and Production Parameters from Dairy Cattle" Sustainability 12, no. 24: 10347. https://doi.org/10.3390/su122410347