Examining the Asymmetric Nexus between Energy Consumption, Technological Innovation, and Economic Growth; Does Energy Consumption and Technology Boost Economic Development?
Abstract
1. Introduction
2. Literature Review
3. Materials and Methods
4. Empirical Model
5. Empirical Results and Discussion
6. Conclusions and Policy Implications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bosah, P.C.; Li, S.; Ampofo, G.K.M.; Asante, D.A.; Wang, Z. The nexus between electricity consumption, economic growth, and CO2 emission: An asymmetric analysis using nonlinear ARDL and nonparametric causality approach. Energies 2020, 13, 1258. [Google Scholar] [CrossRef]
- Bejan, A.; Errera, M.R.; Gunes, U. Energy theory of periodic economic growth. Int. J. Energy Res. 2020, 44, 5231–5242. [Google Scholar] [CrossRef]
- Hossain, M.A.; Chen, S. Decoupling of energy-related CO2 emissions from economic growth: A case study of Bangladesh. Environ. Sci. Pollut. Res. 2020, 27, 20844–20860. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wan, N.; Zhang, H.; Zhang, X.; Zhou, Q. Linking environmental regulation and economic growth through technological innovation and resource consumption: Analysis of spatial interaction patterns of urban agglomerations. Ecol. Indic. 2020, 112, 106062. [Google Scholar] [CrossRef]
- Rashid Khan, H.U.; Islam, T.; Yousaf, S.U.; Zaman, K.; Shoukry, A.M.; Sharkawy, M.A.; Gani, S.; Aamir, A.; Hishan, S.S. The impact of financial development indicators on natural resource markets: Evidence from two-step GMM estimator. Resour. Policy 2019, 62, 240–255. [Google Scholar] [CrossRef]
- Shan, Y.; Guan, D.; Hubacek, K.; Zheng, B.; Davis, S.J.; Jia, L.; Liu, J.; Liu, Z.; Fromer, N.; Mi, Z.; et al. City-level climate change mitigation in China. Sci. Adv. 2018, 4, eaaq0390. [Google Scholar] [CrossRef]
- Huseynov, F.; Sardarli, S.; Zhang, W. Does index addition affect corporate tax avoidance? J. Corp. Financ. 2017, 43, 241–259. [Google Scholar] [CrossRef]
- Wang, T.; Wen, Y.; Lin, B. Energy consumption and the influencing factors in China: A nonlinear perspective. J. Clean. Prod. 2020, 249, 119375. [Google Scholar] [CrossRef]
- Ike, G.N.; Usman, O.; Sarkodie, S.A. Fiscal policy and CO2 emissions from heterogeneous fuel sources in Thailand: Evidence from multiple structural breaks cointegration test. Sci. Total Environ. 2020, 702, 134711. [Google Scholar] [CrossRef]
- Bao, C.; Xu, M. Cause and effect of renewable energy consumption on urbanization and economic growth in China’s provinces and regions. J. Clean. Prod. 2019, 231, 483–493. [Google Scholar] [CrossRef]
- Wang, M.C.; Kuo, P.L.; Chen, C.S.; Chiu, C.L.; Chang, T. Yield spread and economic policy uncertainty: Evidence from Japan. Sustainability 2020, 12, 4302. [Google Scholar] [CrossRef]
- Irandoust, M. The renewable energy-growth nexus with carbon emissions and technological innovation: Evidence from the Nordic countries. Ecol. Indic. 2016, 69, 118–125. [Google Scholar] [CrossRef]
- Álvarez-Ayuso, I.C.; Kao, C.; Romero-Jordán, D. Long run effect of public grants and tax credits on R&D investment: A non-stationary panel data approach. Econ. Model. 2018, 75, 93–104. [Google Scholar] [CrossRef]
- Begum, R.A.; Sohag, K.; Abdullah, S.M.S.; Jaafar, M. CO2 emissions, energy consumption, economic and population growth in Malaysia. Renew. Sustain. Energy Rev. 2015, 41, 594–601. [Google Scholar] [CrossRef]
- Duan, F.; Ji, Q.; Liu, B.Y.; Fan, Y. Energy investment risk assessment for nations along China’s Belt & Road Initiative. J. Clean. Prod. 2018, 170, 535–547. [Google Scholar] [CrossRef]
- Prihawantoro, S. Technological Progress and Economic Growth in Indonesia: A Regional Perspective. Int. J. Recent Sci. Res. 2016, 7, 14033–14039. [Google Scholar]
- Nguyen, H.M.; Bui, N.H.; Vo, D.H.; McAleer, M. Energy consumption and economic growth: Evidence from Vietnam. J. Rev. Glob. Econ. 2019, 8, 350–361. [Google Scholar] [CrossRef]
- Shao, Z. On electricity consumption and economic growth in China. Renew. Sustain. Energy Rev. 2017, 76, 353–368. [Google Scholar] [CrossRef]
- Shimbar, A.; Ebrahimi, S.B. Political risk and valuation of renewable energy investments in developing countries. Renew. Energy 2020, 145, 1325–1333. [Google Scholar] [CrossRef]
- Benny, V. The Impact of Patent, Trademark and Industrial Design Applications in Indian Economy. Gedrag Organ. Rev. 2020, 33, 2399–2411. [Google Scholar] [CrossRef]
- Khan, Z.; Hussain, M.; Shahbaz, M.; Yang, S.; Jiao, Z. Natural resource abundance, technological innovation, and human capital nexus with financial development: A case study of China. Resour. Policy 2020, 65, 101585. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, B.; Wei, W.; Shao, L.; Li, Z.; Jiang, W.; Chen, G. Global water use associated with energy supply, demand and international trade of China. Appl. Energy 2020, 257, 113992. [Google Scholar] [CrossRef]
- Ahmad, M.; Khan, Z.; Rahman, Z.U.; Khattak, S.I.; Khan, Z.U. Can innovation shocks determine CO2 emissions (CO2e) in the OECD economies? A new perspective. Econ. Innov. New Technol. 2019, 1–21. [Google Scholar] [CrossRef]
- Liu, X.; Sun, T.; Feng, Q.; Zhang, D. Dynamic nonlinear influence of urbanization on China’s electricity consumption: Evidence from dynamic economic growth threshold effect. Energy 2020, 196. [Google Scholar] [CrossRef]
- Chandio, A.A.; Jiang, Y.; Rauf, A.; Mirani, A.A.; Shar, R.U.; Ahmad, F.; Shehzad, K. Does Energy-Growth and Environment Quality Matter for Agriculture Sector in Pakistan or not? An Application of Cointegration Approach. Energies 2019, 12, 1879. [Google Scholar] [CrossRef]
- Chandio, A.A.; Jiang, Y.; Rauf, A.; Ahmad, F.; Amin, W.; Shehzad, K. Assessment of formal credit and climate change impact on agricultural production in Pakistan: A time series ARDL modeling approach. Sustainability 2020, 12, 5241. [Google Scholar] [CrossRef]
- Zaharia, A.; Diaconeasa, M.C.; Brad, L.; Lădaru, G.R.; Ioanăs, C. Factors influencing energy consumption in the context of sustainable development. Sustainability 2019, 11, 4147. [Google Scholar] [CrossRef]
- Murad, M.W.; Alam, M.M.; Noman, A.H.M.; Ozturk, I. Dynamics of technological innovation, energy consumption, energy price and economic growth in Denmark. Environ. Prog. Sustain. Energy 2019. [Google Scholar] [CrossRef]
- Yen, P.S.; Wei, P.S. Modelling the Economic Cycle between GDP and Government Spending on Technological Innovation. Soc. Sci. Humanit. 2017, 25, 22–45. [Google Scholar]
- Shehzad, K.; Liu, X.; Rauf, A.; Arif, M.; Sohail, N.; Amin, W. Revolutionising tourism development in China: An effective role of ICT and Western Silk Road project Revolutionising tourism development in China: An e ff ective role of ICT and Western Silk Road project. Asia Pac. J. Tour. Res. 2019, 1665. [Google Scholar] [CrossRef]
- Shehzad, K.; Xiaoxing, L.; Sarfraz, M.; Zulfiqar, M. Signifying the imperative nexus between climate change and information and communication technology development: A case from Pakistan. Environ. Sci. Pollut. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Meo, M.S.; Nathaniel, S.P.; Khan, M.M.; Nisar, Q.A.; Fatima, T. Does Temperature Contribute to Environment Degradation? Pakistani Experience Based on Nonlinear Bounds Testing Approach. Glob. Bus. Rev. 2020, 1–15. [Google Scholar] [CrossRef]
- Azam, M. Energy and economic growth in developing Asian economies. J. Asia Pacific Econ. 2020, 25, 447–471. [Google Scholar] [CrossRef]
- Carrion-I-Silvestre, J.L.; Kim, D.; Perron, P. GLS-based unit root tests with multiple structural breaks under both the null and the alternative hypotheses. Econom. Theory 2009, 25, 1754–1792. [Google Scholar] [CrossRef]
- Bildirici, M.; Türkmen, C. The Chaotic Relationship between Oil Return, Gold, Silver and Copper Returns in TURKEY: Non-Linear ARDL and Augmented Non-linear Granger Causality. Procedia Soc. Behav. Sci. 2015, 210, 397–407. [Google Scholar] [CrossRef]
- Tou, Y.; Watanabe, C.; Moriya, K.; Naveed, N.; Vurpillat, V.; Neittaanmäki, P. The transformation of R&D into neo open innovation- a new concept in R&D endeavor triggered by amazon. Technol. Soc. 2019, 58. [Google Scholar] [CrossRef]
- Apergis, N.; Cooray, A. The dynamics of Greek public debt – evidence from simultaneous and structural VAR models. Appl. Econ. 2015, 47, 967–980. [Google Scholar] [CrossRef]
- Van Hoang, T.H.; Lahiani, A.; Heller, D. Is gold a hedge against inflation? New evidence from a nonlinear ARDL approach. Econ. Model. 2016, 54, 54–66. [Google Scholar] [CrossRef]
- Baz, K.; Xu, D.; Ali, H.; Ali, I.; Khan, I.; Khan, M.M.; Cheng, J. Asymmetric impact of energy consumption and economic growth on ecological footprint: Using asymmetric and nonlinear approach. Sci. Total Environ. 2020, 718, 137364. [Google Scholar] [CrossRef]
- Greenwood, C.J.; Youssef, G.J.; Betts, K.S.; Letcher, P.; Mcintosh, J.; Spry, E.; Hutchinson, D.M.; Macdonald, J.A.; Hagg, L.J.; Sanson, A.; et al. A comparison of longitudinal modelling approaches: Alcohol and cannabis use from adolescence to young adulthood. Drug Alcohol Depend. 2019, 201, 58–64. [Google Scholar] [CrossRef]
- Sarfraz, M.; Shehzad, K. Gauging the air quality of New York: A non-linear Nexus between COVID-19 and nitrogen dioxide emission. Air Qual. Atmos. Health 2020, 13, 1135–1145. [Google Scholar] [CrossRef]
- Shehzad, K.; Xiaoxing, L.; Arif, M.; Rehman, K.U. Investigating the Psychology of Financial Markets During COVID-19 Era: A Case Study of the US and European Markets. Front. Psychol. 2020, 11, 1–13. [Google Scholar] [CrossRef]
- Narayan, P.K.; Popp, S. A new unit root test with two structural breaks in level and slope at unknown time. J. Appl. Stat. 2010, 37, 1425–1438. [Google Scholar] [CrossRef]
- Vendrell-Herrero, F.; Bustinza, O.F.; Opazo-Basaez, M. Information technologies and product-service innovation: The moderating role of service R&D team structure. J. Bus. Res. 2020, 1–15. [Google Scholar] [CrossRef]
- Zivot, E.; Andrews, D.W.K. Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. J. Bus. Econ. Stat. 1992, 10, 251–270. [Google Scholar] [CrossRef]
- Bano, S.; Zhao, Y.; Ahmad, A.; Wang, S.; Liu, Y. Why Did FDI Inflows of Pakistan Decline? From the Perspective of Terrorism, Energy Shortage, Financial Instability, and Political Instability. Emerg. Mark. Financ. Trade 2019, 55, 90–104. [Google Scholar] [CrossRef]
- Zheng, X.; Lu, Y.; Yuan, J.; Baninla, Y.; Zhang, S.; Stenseth, N.C.; Hessen, D.O.; Tian, H.; Obersteiner, M.; Chen, D. Drivers of change in China’s energy-related CO2 emissions. Proc. Natl. Acad. Sci. USA 2020, 117, 29–36. [Google Scholar] [CrossRef]
- Narayan, P.K.; Narayan, S. Carbon dioxide emissions and economic growth: Panel data evidence from developing countries. Energy Policy 2010, 38, 661–666. [Google Scholar] [CrossRef]
- Chimbo, B. Information and communication technology and electricity consumption in transitional economies. Int. J. Energy Econ. Policy 2020, 10, 296–302. [Google Scholar] [CrossRef]
- Kumar, N.; Kumar, R.R.; Kumar, R.; Stauvermann, P.J. Is the tourism–growth relationship asymmetric in the Cook Islands? Evidence from NARDL cointegration and causality tests. Tour. Econ. 2020, 26, 658–681. [Google Scholar] [CrossRef]
- Ha, N.M.; Ngoc, B.H. Revisiting the relationship between energy consumption and economic growth nexus in Vietnam: New evidence by asymmetric ARDL cointegration. Appl. Econ. Lett. 2020, 1–7. [Google Scholar] [CrossRef]
- Zafeiriou, E.; Mallidis, I.; Galanopoulos, K.; Arabatzis, G. Greenhouse gas emissions and economic performance in EU agriculture: An empirical study in a non-linear framework. Sustainability 2018, 10, 3837. [Google Scholar] [CrossRef]
- Dong, F.; Liu, Y. Policy evolution and effect evaluation of new-energy vehicle industry in China. Resour. Policy 2020, 67, 101655. [Google Scholar] [CrossRef]
- Petti, C.; Tang, Y.; Margherita, A. Technological innovation vs technological backwardness patterns in latecomer firms: An absorptive capacity perspective. J. Eng. Technol. Manag. 2019, 51, 10–20. [Google Scholar] [CrossRef]
- Schut, M.; Klerkx, L.; Sartas, M.; Lamers, D.; Campbell, M.M.C.; Ogbonna, I.; Kaushik, P.; Atta-Krah, K.; Leeuwis, C. Innovation platforms: Experiences with their institutional embedding in agricultural research for development. Exp. Agric. 2016, 52, 537–561. [Google Scholar] [CrossRef]
- Shin, Y.; Yu, B.; Greenwood-Nimmo, M. Modelling Asymmetric Cointegration and Dynamic Multipliers in a Nonlinear ARDL Framework. In Festschrift in Honor of Peter Schmidt; Springer: New York, NY, USA, 2014; pp. 281–314. [Google Scholar]
- Sima, V.; Gheorghe, I.G.; Subić, J.; Nancu, D. Influences of the industry 4.0 revolution on the human capital development and consumer behavior: A systematic review. Sustainability 2020, 12, 4035. [Google Scholar] [CrossRef]
- Calabrese, A.; Levialdi Ghiron, N.; Tiburzi, L. ‘Evolutions’ and ‘revolutions’ in manufacturers’ implementation of industry 4.0: A literature review, a multiple case study, and a conceptual framework. Prod. Plan. Control 2020, 1–15. [Google Scholar] [CrossRef]
- Oke, A.; Fernandes, F.A.P. Innovations in teaching and learning: Exploring the perceptions of the education sector on the 4th industrial revolution (4IR). J. Open Innov. Technol. Mark. Complex. 2020, 6, 31. [Google Scholar] [CrossRef]
- Bongomin, O.; Nganyi, E.O.; Abswaidi, M.R.; Hitiyise, E.; Tumusiime, G. Sustainable and Dynamic Competitiveness towards Technological Leadership of Industry 4.0: Implications for East African Community. PLoS ONE 2020, 15, e0239410. [Google Scholar] [CrossRef]
- Le, H.P.; Ozturk, I. The impacts of globalization, financial development, government expenditures, and institutional quality on CO2 emissions in the presence of environmental Kuznets curve. Environ. Sci. Pollut. Res. 2020, 27, 22680–22697. [Google Scholar] [CrossRef]
- Breusch, T.S.; Pagan, A.R. A Simple Test for Heteroscedasticity and Random Coefficient Variation. Econometrica 2006. [Google Scholar] [CrossRef]
GDP | Eu | Ea | Ta | Pa | |
---|---|---|---|---|---|
Mean | 8.441806 | 362,737.3 | 74,631.36 | 201,631 | 280,420.8 |
Median | 8.402000 | 378,243.5 | 75,100.50 | 90,818 | 56,769.00 |
Maximum | 13.63600 | 592,000.0 | 80,694.00 | 90,818 | 1,393,815 |
Minimum | 2.394000 | 162,000.0 | 65,323.00 | 80,6906 | 4749.000 |
SD | 2.616564 | 122,492.5 | 4554.022 | 1056.594 | 419,519.3 |
Skewness | −0.15535 | −0.177816 | −0.45065 | 1.297069 | 1.520902 |
Kurtosis | 3.206767 | 2.312813 | 2.146924 | 3.2238376 | 3.950545 |
Jarque–Bera | 0.179915 | 0.748376 | 1.796797 | 9.887029 | 13.11830 |
Probability | 0.913970 | 0.687848 | 0.407221 | 0.007129 | 0.001417 |
Correlation Matrix | |||||
GDP | 1 | ||||
Eu | 0.01874816 (0.09367) | 1 | |||
TA | 0.20705581 (0.19357) | −0.247885 (0.93782) | 1 | ||
PA | 0.17548158 (0.03875) | −0.169977 (0.01347) | −0.3306815 (0.14857) | 1 | |
EA | 0.25865154 (0.05464) | −0.370272 (0.843847) | −0.0088671 (0.28753) | 0.8299540 (0.04834) | 1 |
Variables | Unit Root Tests | |||
---|---|---|---|---|
ADF (Augmented Dickey Fuller) | PP (Phillip Perron) | |||
Levels | First Different | Levels | First Different | |
GDP | −3.807014 | −4.72528 | −2.72751 | −6.49355 * |
Eu | −2.043326 | −5.532918 * | −2.04332 | −5.51193 * |
Pa | 1.346344 | −4.664734 * | 1.052668 | −4.66566 * |
Ea | −4.354776 * | −3.783461 * | −4.21527 * | −3.77840 * |
Ta | 6.656549 * | 0.409641 | −2.69351 *** | −4.51578 * |
Variables | Levels | First Difference | ||
---|---|---|---|---|
t-Statistics | Time Break | t-Statistics | Time Break | |
GDP | −4.248315 | 2008 | −4.25846 | 2008 |
Eu | −6.463767 | 1998 | −2.499530 | 2003 |
Pa | −4.054040 * | 1998 | −3.290208 * | 1998 |
Ea | −4.248315 * | 2013 | −5.224478 * | 2013 |
Ta | −4.248315 * | 2013 | −4.934449 | 2013 |
BDS Statistics | Embedding Dimension = B | |||||
---|---|---|---|---|---|---|
Series | B = 1 | B = 2 | B = 3 | B = 4 | B = 5 | |
GDP | 0.1471 * | 0.2537 * | 0.3214 * | 0.3551 * | 0.3624 * | |
Pa | 0.1860 ** | 0.3047 ** | 0.3794 * | 0.4262 * | 0.4510 * | |
Eu | 0.1471 * | 0.2537 * | 0.3214 * | 0.3551 * | 0.3624 * | |
Ea | 0.2068 * | 0.3517 * | 0.4152 * | 0.5237 * | 0.5761 * | |
Ta | 0.0649 * | 0.0851 * | 0.0964 * | 0.4191 * | 0.1194 * |
Model | F-Statistics | Sign-in | I(0) | I(1) | Remark |
---|---|---|---|---|---|
GDP/(Eu, Pa, Ta, Ea) | 45.84105 | 10% | 1.85 | 2.85 | |
k = 8 | 5% | 2.11 | 3.15 | Co-integration exists | |
2.5% | 2.33 | 3.42 | |||
1% | 2.62 | 3.77 |
Variable | Coefficient | Std. Error | t-Statistics |
---|---|---|---|
Energy use_Pos | −1.242007 | 0.510426 | −2.433278 ** |
Energy use_Neg | −0.441104 | 0.362000 | −1.218521 |
Trademarkapplications_Pos | 0.829725 | 0.393323 | 2.109526 *** |
Trademark_Neg | 0.113232 | 0.033624 | 3.367615 * |
Patent applications_Pos | −0.104392 | 0.202605 | −0.515248 |
Patent applications_Neg | −2.260455 | 3.255772 | −0.694292 |
Economically active population_Pos | 0.318199 | 1.637421 | 0.194329 |
Economically active population_Neg | −146.0106 | 103.1310 | −1.415778 |
C | −2.22766 | 1.012728 | −2.199664 *** |
Variable | Coefficient | Std. Error | t-Statistics |
---|---|---|---|
Δ Energy use_Pos | −0.678979 | 0.122247 | −5.554137 * |
Δ Energy use_Neg | −0.863097 | 0.068803 | −12.54450 * |
Δ Trademark applications_Pos | 1.309284 | 0.134522 | 9.732848 * |
Δ Trademarkapplications_Neg | −0.0190 | 0.008833 | −2.161705 *** |
Δ Patent applications_Pos | 0.573774 | 0.086612 | 6.624656 * |
Δ Patent applications_Neg | −1.51160 | 4.473701 | −0.337887 |
Δ Economically active population_Pos | 9.968609 | 0.422946 | 23.56946 * |
Δ Economically active population_Neg | −277.3478 | 10.10407 | −27.4491 2 * |
CointEq(−1) * | −0.891813 | 0.030218 | −29.51237 * |
Hypothesis | F-Statistics | P-Value |
---|---|---|
Hy1: for long-run asymmetry | 5.1784 | 0.0198 |
Hy2: for short-run asymmetry | 3.303 | 0.0756 |
Breusch–Godfrey Serial Correlation LM Test: | |||
F-statistic | 1.197803 | Prob. F(2,6) | 0.3650 |
Heteroskedasticity Test: Breusch–Pagan–Godfrey | |||
F-statistic | 0.273719 | Prob. F(22,8) | 0.9925 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeraibi, A.; Balsalobre-Lorente, D.; Shehzad, K. Examining the Asymmetric Nexus between Energy Consumption, Technological Innovation, and Economic Growth; Does Energy Consumption and Technology Boost Economic Development? Sustainability 2020, 12, 8867. https://doi.org/10.3390/su12218867
Zeraibi A, Balsalobre-Lorente D, Shehzad K. Examining the Asymmetric Nexus between Energy Consumption, Technological Innovation, and Economic Growth; Does Energy Consumption and Technology Boost Economic Development? Sustainability. 2020; 12(21):8867. https://doi.org/10.3390/su12218867
Chicago/Turabian StyleZeraibi, Ayoub, Daniel Balsalobre-Lorente, and Khurram Shehzad. 2020. "Examining the Asymmetric Nexus between Energy Consumption, Technological Innovation, and Economic Growth; Does Energy Consumption and Technology Boost Economic Development?" Sustainability 12, no. 21: 8867. https://doi.org/10.3390/su12218867
APA StyleZeraibi, A., Balsalobre-Lorente, D., & Shehzad, K. (2020). Examining the Asymmetric Nexus between Energy Consumption, Technological Innovation, and Economic Growth; Does Energy Consumption and Technology Boost Economic Development? Sustainability, 12(21), 8867. https://doi.org/10.3390/su12218867