Effects of Endocrine-Disrupting Chemicals in the Brain: The Example of Neurodevelopment Alterations upon Exposure In Utero to Synthetic Sex Hormones
Abstract
1. Introduction
2. Material and Methods
3. Results
3.1. EDC Specific Features
3.2. Hormones and Neuronal Development
3.3. EDCs and Neurodevelopmental Abnormalities
3.4. Impact of Synthetic Sex Hormones: The HHORAGES-France Cohort
3.4.1. Sex Steroids
3.4.2. The Particular Case of Progestogens
3.4.3. The Particular Case of Estrogens Combined or Not with Progestogens: Psychiatric Disorders in a Cohort of Patients Exposed in Utero to Synthetic Sex Hormones
3.4.4. Multigenerational Effect
3.5. Gender Incongruence
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Özel, F.; Rüegg, J. Exposure to endocrine-disrupting chemicals and implications for neurodevelopment. Dev. Med. Child. Neurol. 2023, 65, 1005–1011. [Google Scholar] [CrossRef]
- Sultan, C.; Gaspari, L.; Paris, F.; Soyer-Gobillard, M.O. Perturbateurs endocriniens et neurodéveloppement. Lett. Neurol. 2025, XXIV, 64–67. [Google Scholar]
- Reis, J.; Buguet, A.; Román, G.C.; Spencer, P.S. Environmental neurology: Concepts and short history of an interdisciplinary approach to etiology, treatment and prevention. J. Neurol. Sci. 2023, 454, 120861. [Google Scholar] [CrossRef]
- Cediel-Ulloa, A.; Lupu, D.L.; Johansson, Y.; Hinojosa, M.; Özel, F.; Rüegg, J. Impact of endocrine disrupting chemicals on neurodevelopment: The need for better testing strategies for endocrine disruption-induced developmental neurotoxicity. Expert Rev. Endocrinol. Metab. 2022, 17, 131–141. [Google Scholar] [CrossRef]
- Galbiati, V.; Buoso, E.; Bianca, R.d.d.V.; Di Paola, R.; Morroni, F.; Nocentini, G.; Racchi, M.; Viviani, B.; Corsini, E. Immune and nervous systems interaction in endocrine disruptors toxicity: The case of atrazine. Front. Toxicol. 2021, 3, 649024. [Google Scholar] [CrossRef]
- Seralini, G.E.; Jungers, G. Endocrine disruptors also function as nervous disruptors and can be renamed endocrine and nervous disruptors (ENDs). Toxicol. Rep. 2021, 8, 1538–1557. [Google Scholar] [CrossRef] [PubMed]
- Combarnous, Y.; Nguyen, T.M.D. Comparative Overview of the Mechanisms of Action of Hormones and Endocrine Disruptor Compounds. Toxics 2019, 7, 5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- James, L.; Wittliff, D.; Kerr, A.; Andres, S.A. Estrogens IV: Estrogen-like pharmaceutical. In Encyclopedia of Toxicology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 254–258. [Google Scholar] [CrossRef]
- Skogen, J.C.; Overland, S. The fetal origins of adult disease: A narrative review of the epidemiological literature. JRSM Short Rep. 2012, 3, 59. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Soyer-Gobillard, M.O.; Paris, F.; Gaspari, L.; Courtet, P.; Sultan, C. Association between fetal DES-exposure and psychiatric disorders in adolescence/adulthood: Evidence from a French cohort of 1002 prenatally exposed children. Gynecol. Endocrinol. 2016, 32, 25–29. [Google Scholar] [CrossRef]
- Li, Y. Modern epigenetics methods in biological research. Methods 2021, 187, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Gaspari, L.; Haouzi, D.; Gennetier, A.; Granes, G.; Soler, A.; Sultan, C.; Paris, F.; Hamamah, S. Transgenerational Transmission of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) Effects in Human Granulosa Cells: The Role of MicroRNAs. Int. J. Mol. Sci. 2024, 25, 1144. [Google Scholar] [CrossRef] [PubMed]
- Demeneix, B.; Slama, R. Endocrine Disruptors: From Scientific Evidence to Human Health Protection. Brussels: Policy Department for Citizens Rights and Constitutional Affairs, Directorate General for Internal Policies of the Union. 2019. Available online: https://www.europarl.europa.eu/RegData/etudes/STUD/2019/608866/IPOL_STU(2019)608866_EN.pdf (accessed on 1 October 2025).
- Belfiore, A.; Perks, C.M. Grand challenges in cancer endocrinology: Endocrine related cancers, an expanding concept. Front. Endocrinol. 2013, 4, 141. [Google Scholar] [CrossRef]
- Haroche, Q. Perturbateurs Endocriniens: Santé Publique France Élargit son Dispositif. 2024. Available online: https://www.jim.fr/viewarticle/perturbateurs-endocriniens-santé-publique-france-2024a10000yr (accessed on 1 October 2025).
- de Assis, G.G.; de Sousa, M.B.C.; Murawska-Ciałowicz, E. Sex Steroids and Brain-Derived Neurotrophic Factor Interactions in the Nervous System: A Comprehensive Review of Scientific Data. Int. J. Mol. Sci. 2025, 26, 2532. [Google Scholar] [CrossRef]
- Goodman, R.L.; Herbison, A.E.; Lehman, M.N.; Navarro, V.M. Neuroendocrine control of gonadotropin-releasing hormone: Pulsatile and surge modes of secretion. J. Neuroendocrinol. 2022, 34, e13094. [Google Scholar] [CrossRef]
- Li, F.; Xing, X.; Jin, Q.; Wang, X.M.; Dai, P.; Han, M.; Shi, H.; Zhang, Z.; Shao, X.; Peng, Y.; et al. Sex differences orchestrated by androgens at single-cell resolution. Nature 2024, 631, E6. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, M.; Mattern, C.; Ghoumari, A.; Oudinet, J.P.; Liere, P.; Labombarda, F.; Sitruk-Ware, R.; De Nicola, A.F.; Guennoun, R. Revisiting the role of progesterone and allopregnanolone in the nervous system: Resurgence of the progesterone receptors. Prog. Neurobiol. 2014, 113, 6–39. [Google Scholar] [CrossRef]
- Melcangi, R.C.; Giatti, S.; Calabrese, D.; Pesaresi, M.; Cermenati, G.; Mitro, N.; Viviani, B.; Garcia-Segura, L.M.; Caruso, D. Levels and actions of progesterone and its metabolites in the nervous system during physiological and pathological conditions. Prog. Neurobiol. 2014, 113, 56–69. [Google Scholar] [CrossRef]
- Soyer-Gobillard, M.-O.; Gaspari, L.; Sultan, C. Evidence for link between mental disorders and in utero exposure to synthetic hormones: A long and crucial history. In Psychopathology: An International and Interdisciplinary Perspective; Woolfolk, R., Allen, L., Durbano, F., Irtelli, F., Eds.; IntechOpen: London, UK, 2020; pp. 7–22. [Google Scholar] [CrossRef]
- Zhu, M.; Brinton, R. How Progestin, a synthetic female hormone could affect the brain. Atlantic 2012, 14, 1–16. Available online: https://www.theatlantic.com/health/archive/2012/01/how-progestin-a-synthetic-female-hormone-could-affect-the-brain/251299 (accessed on 4 January 2020).
- Soyer-Gobillard, M.O.; Puillandre, M.; Paris, F.; Gaspari, L.; Courtet, P.; Sultan, C. Neurodevelopmental disorders in children exposed in utero to progestin treatment: Study of a cohort of 115 children from the HHORAGES Association. Gynecol. Endocrinol. 2019, 35, 247–250. [Google Scholar] [CrossRef]
- Tournaire, M.; Epelboin, S.; Devouche, E.; Viot, G.; Le Bidois, J.; Cabau, A.; Dunbavand, A.; Levadou, A. Adverse health effects in children of women exposed in utero to diethylstilbestrol (DES). Therapie 2016, 71, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Tournaire, M.; Devouche, E.; Espié, M.; Asselain, B.; Levadou, A.; Cabau, A.; Dunbavand, A.; Grosclaude, P.; Epelboin, S. Cancer Risk in women exposed to Diethylstilbestrol in utero. Therapie 2015, 70, 433–441. [Google Scholar] [CrossRef]
- Dugard, M.L.; Tremblay-Leveau, H.; Mellier, D.; Caston, J. Prenatal exposure to ethinylestradiol elicits behavioural abnormalities in the rat. Dev. Brain Res. 2001, 129, 189–199. [Google Scholar] [CrossRef]
- Arabo, A.; Lefebvre, M.; Fermanel, M.; Caston, J. Administration of 17-alpha-ethinylestradiol during pregnancy elicits modifications of maternal behaviour and emotional alteration of the offspring in the rat. Dev. Brain Res. 2005, 156, 93–103. [Google Scholar] [CrossRef]
- O’Reilly, E.J.; Mirzaei, F.; Forman, M.R.; Ascherio, A. Diethylstilbestrol exposure in utero and depression in women. Am. J. Epidemiol. 2010, 171, 876–882. [Google Scholar] [CrossRef]
- Rivollier, F.; Chaumette, B.; Bendjemaa, N.; Chayet, M.; Millet, B.; Jaafari, N.; Barhdadi, A.; Lemieux Perreault, L.P.; Provost, S.; Dubé, M.P.; et al. Methylomic changes in individuals with psychosis, prenatally exposed to endocrine disrupting compounds: Lessons from diethylstilbestrol. PLoS ONE 2017, 12, e0174783. [Google Scholar] [CrossRef]
- Verdoux, H.; Devouche, E.; Tournaire, M.; Levadou, A. Impact of prenatal exposure to diethylstilbestrol (DES) on psychological outcome: A national survey of DES daughters and unexposed controls. Arch. Women’s Ment. Health 2017, 20, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Verdoux, H. Does prenatal exposure to diethylstilbestrol (DES) have psychiatric consequences? Ann. Med. Psychol. 2000, 158, 105–117. [Google Scholar]
- Kioumourtzoglou, M.-A.; Coull, B.A.; O’Reilly, E.J.; Ascherio, A.; Weisskopf, M.G. Association of exposure to diethylstilbestrol during pregnancy with multigenerational neurodevelopmental deficits. JAMA Pediatr. 2018, 172, 670–677. [Google Scholar] [CrossRef] [PubMed]
- Soyer-Gobillard, M.-O.; Gaspari, L.; Paris, F.; Kalfa, N.; Hamamah, S.; Courtet, P.; Sultan, C. Prenatal contamination by DES and multigenerational transmission of psychiatric disorders in an informative family. Int. J. Environ. Res. Public Health 2021, 18, 9965. [Google Scholar] [CrossRef]
- Baron-Cohen, S.; Auyeung, B.; Nørgaard-Pedersen, B.; Hougaard, D.M.; Abdallah, M.W.; Melgaard, L.; Cohen, A.S.; Chakrabarti, B.; Ruta, L.; Lombardo, M.V. Elevated fetal steroidogenic activity in autism. Mol. Psychiatry 2015, 20, 369–376. [Google Scholar] [CrossRef]
- Baron-Cohen, S.; Tsompanidis, A.; Auyeung, B.; Nørgaard-Pedersen, B.; Hougaard, D.M.; Abdallah, M.; Cohen, A.; Pohl, A. Foetal oestrogens and autism. Mol. Psychiatry 2020, 25, 2970–2978. [Google Scholar] [CrossRef]
- Zou, Y.; Lu, Q.; Zheng, D.; Chu, Z.; Liu, Z.; Chen, H.; Ruan, Q.; Ge, X.; Zhang, Z.; Wang, X.; et al. Prenatal levonorgestrel exposure induces autism-like behavior in offspring through ERβ suppression in the amygdala. Mol. Autism 2017, 8, 46. [Google Scholar] [CrossRef]
- Li, L.; Li, M.; Lu, J.; Ge, X.; Xie, W.; Wang, Z.; Li, X.; Li, C.; Wang, X.; Han, Y.; et al. Prenatal Progestin Exposure Is Associated with Autism Spectrum Disorders. Front. Psychiatry 2018, 9, 611. [Google Scholar] [CrossRef]
- Gaspari, L.; Soyer-Gobillard, M.-O.; Kerlin, S.; Paris, F.; Sultan, C. Early female transgender identity after prenatal exposure to DES: Report from a French national diethylstilbestrol (DES) cohort. J. Xenobiotics 2024, 14, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Soyer-Gobillard, M.-O.; Gaspari, L.; Sultan, C. Gender identity disorders: A legacy of fetal exposition to Diethylstilbestrol, an Endocrine Disruptor Chemical. Med. Res. Arch. 2025, 13, 11. [Google Scholar] [CrossRef]
- Troisi, R.; Palmer, J.R.; Hatch, E.E.; Strohsnitter, W.C.; Huo, D.; Hyer, M.; Fredriksen-Goldsen, K.I.; Hoover, R.; Titus, L. Gender Identity and Sexual Orientation Identity in Women and Men Prenatally Exposed to Diethylstilbestrol. Arch. Sex. Behav. 2020, 49, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Haney, A.F.; Newbold, R.R.; McLachlan, J.A. Prenatal diethylstilbestrol exposure in the mouse: Effects on ovarian histology and steroidogenesis in vitro. Biol. Reprod. 1984, 30, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Adamson, N.A.; Brokken, L.J.; Paranko, J.; Toppari, J. In vivo and in vitro effects of flutamide and diethylstilbestrol on fetal testicular steroidogenesis in the rat. Reprod. Toxicol. 2008, 25, 76–83. [Google Scholar] [CrossRef]
- Li, C.; Sang, C.; Zhang, S.; Zhang, S.; Gao, H. Effects of bisphenol A and bisphenol analogs on the nervous system. Chin. Med. J. 2023, 136, 295–304. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shaw, R.; Kaath, A.S.; Chaube, R. An overview of neurobehavioral and developmental toxicity induced by xenoestrogens. Discov. Toxicol. 2025, 2, 10. [Google Scholar] [CrossRef]
- Patisaul, H.B. Endocrine disrupting chemicals (EDCs) and the neuroendocrine system: Beyond estrogen, androgen, and thyroid. Adv. Pharmacol. 2021, 92, 101–150. [Google Scholar] [CrossRef] [PubMed]
- Vaudry, H.; Ubuka, T.; Soma, K.K.; Tsutsui, K. Editorial: Recent Progress and Perspectives in Neurosteroid Research. Front. Endocrinol. 2022, 13, 951990. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reddy, V.; McCarthy, M.; Raval, A.P. Xenoestrogens impact brain estrogen receptor signaling during the female lifespan: A precursor to neurological disease? Neurobiol. Dis. 2022, 163, 105596. [Google Scholar] [CrossRef] [PubMed]
- Reichard, J.; Zimmer-Bensch, G. The Epigenome in Neurodevelopmental Disorders. Front. Neurosci. 2021, 15, 776809. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Robotti, S. The heritable legacy of diethylstilbestrol: A bellwether for endocrine disruption in humans. Biol. Reprod. 2021, 105, 687–689. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Frutos, R.; Bennis, I.; Wakimoto, M.D. One Health governance: Theory, practice and ethics. Sci. One Health 2024, 3, 100089. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ting, X.; Daqiang, Y. The unlocking neurobehavioral effects of environmental endocrine-disrupting chemicals. Curr. Opin. Endocr. Metab. Res. 2019, 7, 9–13. [Google Scholar] [CrossRef]
- Cardenas-Iniguez, C.; Burnor, E.; Herting, M.M. Neurotoxicants, the Developing Brain and Mental Health. Biol. Psychiatry Glob. Open Sci. 2022, 2, 223–232. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sultan, C.; Gaspari, L.; Soyer-Gobillard, M.-O. DES (Diethylstilbestrol): A prototype for evaluating Xenoestrogen action, a clinical experimental model for analyzing early, late and multigenerational effects of fetal contamination by Endocrine disruptors. In Fetal Exposition to Sex Hormones: Their Nature and Impact on Human Health; Gobillard, S., Sultan., Eds.; CSP: Cambridge, UK, 2025; pp. XVII–XVIII. ISBN 978-1-0364-4997-1/978-1-0364-4998-8. [Google Scholar]
- Charlier, T.D. Neuroendocrine Disrupters. Neuroendocrinology 2024, 114, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Skovlund, C.W.; Morch, L.S.; Kessing, L.V. Association of Hormonal contraception with suicide attempts and Suicides. Am. J. Psychiatry 2017, 175, 336–342. [Google Scholar] [CrossRef]
EDCs | CLASSES OF EDCs | ACTION ON NERVOUS CENTRAL SYSTEM (NCS) |
---|---|---|
Acetochlore | Herbicide | Antithyroid |
Anthracene | PAH | ↓ AVP release |
Arochlore | PCB | ↓ AVP release, ↑ Oxydative stress |
Atrazine | Herbicide | ↓ Dopamine production |
Benzopyrene | PAH | ↓ Neuronal differentiation, ↓ glutamate |
Phtalates | PBDE, plastics | ↓ Thyroid function, ↓ Neuronal differentiation |
Bisphenol A | Plastics | ↑ Neurotoxicity, ↓ Myelination, ↓ Neuronal growth |
Cadmium | Heavy Metal | ↑ Neurotoxicity |
Chlorpyrifos | Insecticide | ↓ Acetylcholinesterase, ↑ Mitochondrial dysfunction |
Dioxine | Herbicide | ↑ Dopamine, ↑ Serotonin |
DES (Diethylstilbestrol) | Synthetic Estrogen | ↑ ER, ↓ AR, ↑ RXR, ↑PPARγ |
DTT | Insecticide | ↓ AR, ↓ GR, ↑ RXR, ↓ LHRH |
Heptachlore | Insecticide | ↓ Dopamine, ↓ Ca |
Parathion | Insecticide | ↓ Norepinephrine |
Nonylphenol | Formulant | ↓ AR, ↑ ER, ↓ Neurotrophic factors |
Triclosan | Antibacterial | ↓ AR, ↑ ArH, ↓ Iodin uptake |
Vinclosolin | Fongicide | ↓ AR |
Priority Category (and Associated Confidence Level) | Prioritization Criterion n°1: Evidence Weight | |||
---|---|---|---|---|
Strong | Moderate | Low | Not Documented | |
Strong | Breast cancer (High priority) Prostate cancer (High priority) | Endometriosis (High) Cardiovascular diseases (High) Endometrial cancer (Moderate) Ovarian cancer (Moderate) Childhood lymphomas and leukemias (Moderate) | Autism spectrum disorders (TSA) (High) Adult neurodegenerative diseases: Alzheimer’s, Parkinson’s (Moderate) Thyroid Cancer (Moderate) | Colon cancer (High) Lung cancer (High) Hematopoietic disorders and malignancies (Low) |
Moderate | Impaired sperm quality (High) Precocious puberty (High) Infertility (High) Overweight and obesity (High) Cryptorchidism (Moderate) Decreased fertility (Moderate) | Testicular cancer (High) Attention deficit hyperactivity disorder (ADHD) Type 2 diabetes (High) Metabolic syndrome (High) Behavioral disorders (Moderate) Asthma (Moderate) Intellectual disability (Low) Decreased intelligence quotient points (IQ) (Low) | Type 1 diabetes (High) Hyperthyroidism (Moderate) | Cerebral palsy (Moderate) |
Low | Hypospadias (Moderate) | Adverse pregnancy outcomes (High) Polycystic ovarian syndrome (PCOS)(Moderate) Irregular menstrual cycle (Moderate) Altered sex ratio at birth (Moderate) Hypo-and subclinical hyperthyroidism (Moderate) Non-alcoholic fatty liver disease (Moderate) Premature ovarian failure (POF) (Low) | Gestational diabetes (Moderate) Advance age at menopause (Low) | Hypothyroidism (High) Intersex variation (High) Uterine fibroids (Moderate) Autoimmune Thyroid disease (Low) |
Disorders/Outcomes | Group 2 | Group 3 | Group 1 | General Population |
---|---|---|---|---|
DES-Exposed (n = 740–20) | Post-DES (n = 262) | Firstborn pre-DES (n = 180) | ||
Mood disorders | (n = 109) (15.1%) | (n = 1) (0.4%) | (0%) | (3%) |
Eating disorders | (n = 81) (11.3%) | (n = 2) (0.8%) | (0%) | (1.60%) |
Schizophrenia | (n = 165) (22.9%) | (n = 6) (2.3%) | (0%) | (1%) |
Depressive disorders | (n = 248) (34.4%) | (n = 9) (3.4%) | (0%) | (6.30%) |
Suicide | ||||
Attempts | (n = 612) (85%) | (n = 30) (11.5%) | (0%) | (0.30%) |
Death | (n = 32) (4.4%) | (n = 1) (0.4%) | (0%) | (0.02%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sultan, C.; Gaspari, L.; Soyer-Gobillard, M.-O. Effects of Endocrine-Disrupting Chemicals in the Brain: The Example of Neurodevelopment Alterations upon Exposure In Utero to Synthetic Sex Hormones. J. Xenobiot. 2025, 15, 162. https://doi.org/10.3390/jox15050162
Sultan C, Gaspari L, Soyer-Gobillard M-O. Effects of Endocrine-Disrupting Chemicals in the Brain: The Example of Neurodevelopment Alterations upon Exposure In Utero to Synthetic Sex Hormones. Journal of Xenobiotics. 2025; 15(5):162. https://doi.org/10.3390/jox15050162
Chicago/Turabian StyleSultan, Charles, Laura Gaspari, and Marie-Odile Soyer-Gobillard. 2025. "Effects of Endocrine-Disrupting Chemicals in the Brain: The Example of Neurodevelopment Alterations upon Exposure In Utero to Synthetic Sex Hormones" Journal of Xenobiotics 15, no. 5: 162. https://doi.org/10.3390/jox15050162
APA StyleSultan, C., Gaspari, L., & Soyer-Gobillard, M.-O. (2025). Effects of Endocrine-Disrupting Chemicals in the Brain: The Example of Neurodevelopment Alterations upon Exposure In Utero to Synthetic Sex Hormones. Journal of Xenobiotics, 15(5), 162. https://doi.org/10.3390/jox15050162